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Abstract

In an era where digital maps act as gateways to explor-

ing the world, the availability of large scale geo-tagged

imagery has inspired a number of visual navigation tech-

niques. One promising approach to visual navigation is

cross-view image geo-localization. Here, the images whose

location needs to be determined are matched against a

database of geo-tagged aerial imagery. The methods based

on this approach sought to resolve view point changes. But

scenes also vary temporally, during which new landmarks

might appear or existing ones might disappear. One can-

not guarantee storage of aerial imagery across all time in-

stants and hence a technique robust to temporal variation

in scenes becomes of paramount importance. In this paper,

we address the temporal gap between scenes by proposing a

two step approach. First, we propose a semantically driven

data augmentation technique that gives Siamese networks

the ability to hallucinate unseen objects. Then we present

the augmented samples to a multi-scale attentive embed-

ding network to perform matching tasks. Experiments on

standard benchmarks demonstrate the integration of the

proposed approach with existing frameworks improves top-

1 image recall rate on the CVUSA data-set from 89.84 %

to 93.09 %, and from 81.03 % to 87.21 % on the CVACT

data-set.

1. Introduction

Consider the panoramic photographs in Figure 1. Is it

possible to discover their location? A classical way to de-

termine their location is to match them against a database

of geo-tagged aerial images covering a broad geographic

region. An accurate match would successfully localize

these photographs. On the face of it, matching images

across drastically different viewpoints seems intimidating,

since visual appearances and spatial correspondence of the

two views lie far apart. Recent progress in deep learn-

Figure 1: Given a ground view panorama, we retrieve corre-

sponding aerial views from a large database of geo-tagged

images (Top). Note that there exists time differences be-

tween the two views, during which new buildings appear

and vegetation patterns change (Middle). Our method re-

trieves the correct aerial view and is robust to these unseen

changes (Bottom).

ing [12, 20, 18] shows that it is possible to match images

across different views and localize panoramic images satis-

factorily. More often, the cross-view image geo-localization

problem is posed as an image retrieval task [12, 20, 18]. A

common setup involves a training objective to generate fea-

ture embeddings of image pairs from the same place closer

while those from different places far apart, solely based on

visible image content.
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Figure 2: We propose a semantically driven data augmentation technique to facilitate unseen object matching. An off-the-

shelf image segmentation module [28] is used to obtain class specific masks corresponding to the ground view image (Green).

These masks are used to create augmented samples in keep and remove mode respectively (Blue). The augmented samples

along with their original versions are used for training into a Siamese pipeline (Yellow). Note that the corresponding satellite

image is kept unchanged. This is done to enable the matching network in figure 3 to match available regions and hallucinate

unavailable ones to appropriate locations in the aerial view.

One major limitation of such an approach is that it does

not take into account the temporal variation of places. For

instance in figure 1 after the photographs have been cap-

tured new buildings might appear or vegetation patterns

might change. This would mean capturing aerial images

from every possible location and at every possible time.

Practically its impossible to store such an enormous data-

set, limiting the applicability of existing cross-view image

geo-localization methods.

In this paper we extend the capabilities of standard cross-

view image geo-localization systems by developing an im-

age matching module capable of matching unseen objects.

Such a module is important to match images with signifi-

cant time differences and could save us from the herculean

task of having aerial images from every possible location

and at every possible time.

Might there be a way to simulate the disappearing and

newly appearing characteristics of objects in temporally

varying scenes, while being able to preform successful

matching? We propose a data augmentation approach to

the cross-view image matching paradigm: employing se-

mantic segmentation to mask out image regions to keep and

remove objects as indicated in figure 2. Since the objects

being masked out can vary at different spatial scales (i.e.,

large spatial scale for objects near the camera and small

spatial scale for objects away from the camera), the samples

generated are presented to a multi-scaled attention module.

This extracts feature embeddings to perform cross-view im-

age matching across different image scales. The proposed

approach induces the abstraction of disappearing and newly

appearing objects in temporally varying scenes, while being

able to match images across the two views successfully.

Apart from solving the problem of matching across

temporal variation in scenes, equipping cross-view image

matching networks with hallucinating unavailable regions

also benefits matching areas that are occluded or covered

due to shadows (See Figure 8).

The contribution of this work are as follows:

• We propose a new data augmentation pipeline to ad-

dress the challenge of temporal variation in scenes for

cross-view image geo-localization. This gives match-

ing networks the ability to hallucinate unseen objects

and perform unseen object matching.

• We present a multi-scale attention module for match-

ing task, our ablation studies demonstrate the effective-

ness of using multiple scales compared to operating at

a single scale.

• We confirm the efficacy of our approach by conducting

extensive experiments on two established benchmarks.

Integrating our approach with existing frameworks in-

creases top-1 recall rates on the CVUSA [26] data-set

from 89.84 % to 93.09 %, and from 81.03 % to 87.21

% on the CVACT [12] data-set.
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2. Related work

In this section we briefly review existing works on cross-

view image geo-localization.

Cross-view image geo-localization has been explored

before prevalence of the deep learning age. Initial works by

[4, 9, 17, 2] extracted meaningful handcrafted features for

this task. Recently, the effectiveness of deep learning has

motivated deep learning based approaches for this research.

[24] provided a framework to make use of a pre-trained

CNN by discovering location specific semantic information

in deeper layers of a CNN. [25] studied the effect of fine-

tuning pre-trained CNNs by imposing an objective function

to place feature vectors of images from the same location

together. [10] used a Siamese style architecture with a con-

transtive loss function [6]. [8] demonstrated the effective-

ness of incorporating NetVLAD [1] for cross-view image

matching tasks. [12] incorporated orientation based priors

into the image matching process. This was accomplished

by generating color-coded angle maps, encoding azimuthal

and altitude angles. The color coded maps along with the

original RGB image was fed in as a six channel signal for

matching . [20] made use of an optimal feature transport

strategy to align ground and aerial views in feature space.

This lead to a more meaningful feature similarity and im-

proved retrieval rates by a significant margin. [18] reduced

the geometric gap between ground and aerial views by in-

troducing an effective polar transform. The transform was

developed by simple pixel re-ordering, it considered pixels

lying on the same azimuth direction in an aerial view corre-

sponded to pixels from the same vertical image column in

the ground view. [18] also proposed a spatial aware embed-

ding module to determine a spatially dependent embedding

map. This lead to significant improvements in the recall

rates for cross-view image geo-localization. [15] proposed

an image generation approach to reduce the visual differ-

ences between the two views, this was done by using con-

ditional GANs [14]. Their approach could generate plau-

sible aerial view images from corresponding ground view

images and consider it for matching. [19] considered chal-

lenges involved in cross-view image matching when mov-

ing from a full field of view configuration to a limited field

of view setup. [27] used a classification based approach.

[21] considered predicting orientation by incorporating re-

gression. [22] used a square ring partition of the signal and

learnt part-wise representation to encode context informa-

tion. Our approach is different from the above approaches

as we consider the problem of temporal variation in scenes.

To the best of our knowledge this is the first work that con-

siders scene changes with time and equips cross-view im-

age matching networks with the capability to match unseen

objects.

Figure 3: Our Siamese framework: The inputs to the two

multi-scale CNN (Figure 4) branches are ground view and

aerial view images, respectively. The Multi-Scale embed-

ding vectors corresponding to ground and aerial views are

learnt by a contrastive loss function.

3. Approach

In this section, we introduce our proposed object based

data augmentation method (Figure 2), we then present our

multi-scale attentive backbone network that is used within

a Siamese framework (Figure 3).

3.1. Object based data augmentation

In order to account for the time differences in scenes,

we propose to equip Siamese networks with the ability to

hallucinate unseen objects while being able to perform the

matching task successfully. We enforce such capabilities

into our Siamese pipeline by proposing an object based data

augmentation approach. We make use of a semantically

driven data augmentation technique to simulate the disap-

pearing and newly appearing object peculiarities in tempo-

rally varying scenes (Figure 2).

We make use of an off-the-shelf semantic segmentation

module [28] for obtaining segmentation maps correspond-

ing to ground view. The classes that we considered for this

task were building, car, grass, ground, road, sidewalk, tree

and sky. These masks are used to create augmented samples

in keep and remove mode respectively. Original pixel values

for a particular class are retained in keep mode whereas they

are masked by black pixels when operated in remove mode.

All object classes were considered for the remove mode, but

the classes sky and car were not considered in keep mode.

This is because regions from these classes are not available

in the aerial view for matching. When the ground view is

modified, we do not modify the aerial view. This is done to

enforce matching networks with the ability to identify what

parts are visible and what parts need to be hallucinated to

carry out cross-view image matching successfully.
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A similar object driven data augmentation method can be

performed in the aerial view, however we decided not carry

it out since no off-the-shelf semantic segmentation module

transferred well on the aerial images of CVACT [26] and

CVUSA [12] datasets.

3.2. Proposed model

As illustrated in figures 3 and 4 we make use of a

Siamese network pipeline trained with a contrastive loss

function (Eq.1), to solve for our image retrieval task. The

two CNN branches corresponding to ground and aerial

views have the same architecture (Figure 4) but are distinct

and do not share weights.

Input representation: We use a spatial resolution of

416 x 208 pixels for the ground view image and 300 x 300

pixels for the aerial view image. The aerial view image is

circular cropped with a radius of 150 pixels (Figure 3). This

done to exploit the 360◦ nature of the panoramic ground

view. As rotation around the center in the aerial view cor-

responds to a circular shift along the horizontal axis in the

ground view. Pre-processing the inputs in such a manner

helps create more samples for training by merely rotating

the aerial view along its center and circular shifting the

ground view by a corresponding amount. This was done

to facilitate extra sample creation by incorporating such a

style of data representation.

Multi-scale CNN backbone: The backbone network

used to extract feature representations is a modified version

of the ResNet-18 [7] network pre-trained on Imagenet [5].

In-order to capture features from different spatial scales,

we consider intermediate outputs of the ResNet-18 network

representative of features from different scales. Early layers

of the network are considered as low-scale feature extrac-

tors and later layers of the network are regarded as high-

scale feature extractors. Our approach is motivated by [16]

here we adapt it for the two dimensional case. This is dif-

ferent from common multi-scale approaches such as feature

pyramid [11] used for object detection. Considering inter-

mediate outputs of deep neural networks leads to capturing

features at different spatial scales. These intermediate val-

ues are passed through independent convolutional block at-

tention modules [23], in-order to apply attention along the

spatial and channel dimensions. This is done so that spa-

tial and channel correspondences at a particular scale can

be maintained across the two views by selecting salient fea-

tures while suppressing the features that are not relevant at

that scale.

Feature aggregation: We also consider aggregating

multiple attentive features by using multiple convolutional

block attention modules [23] and extracting multiple fea-

tures at each scale. Our best performing system makes

use of three such modules at every scale. Our aggregation

method is different from [13] as we use attention.

Parameter initialization: The learnable parameters of

ResNet-18 are initialised from Imagenet pre-training, while

that of the convolutional block attention module are ran-

domly initialised. Our network is trained end to end, all the

parameters of the model are updated during backward pass.

Figure 4: Architecture details of the proposed multi-scale

CNN model. Intermediate results of a residual neural net-

work are consider as multi-scaled features. Outputs of the

neural network before stride 2 operations are tapped for rep-

resentations at individual scale. The curved lines with ar-

rows represent residual connections. Convolutional block

attention module [23] is used to en-corporate channel and

spatial attention. Multiple attentive features are captured by

using multiple such modules at each scale.

3.3. Objective function

We employ a metric learning objective to learn multi

scale feature representations for both ground and aerial

views. One common objective is the contranstive loss (Eq.

1 and 2). The aim of contranstive loss is to learn repre-

sentations that bring matching pairs closer and drive non-

matching pairs away. We use the below objective function:

L = (1− Y )
1

2
(Dw)

2 + (Y )
1

2
{max(0,m−Dw)}

2 (1)

Dw = ||Fg(Ig)− Fa(Ia)||
2 (2)

where, m is a margin parameter. Fg is a multi-scale

ground CNN responsible to extract image features from

ground view image Ig . Fa is a multi-scale aerial CNN

responsible to extract image features from aerial view im-

age Ia. Dw represents euclidean distance and Y is a bi-

nary value indicating weather the ground view image Ig and

aerial view image Ia belong to the same pair or not.
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4. Experiments

We demonstrate the effectiveness of our proposed ap-

proach with qualitative and quantitative experiments. Qual-

itatively, we show some success and failure cases of our

method in comparison to SAFA [18] (See Figure 8). Our

method can match unseen objects that might newly appear

due to the presence of time differences between the two

views. Our method also performs well in the case of oc-

cluded landscape patterns and road structures. SAFA [18]

does well when all objects are present in both the views.

Data-sets: Our method is evaluated using two standard

benchmark data-sets i.e. CVUSA [26] and CVACT [12].

Here ground views consist of 360 degree panorama images

which are matched against a large data-set of geo-tagged

aerial views. The split for each of the two data- sets consists

of 35,532 training image pairs and 8,884 validation image

pairs, respectively. We also report the performance of im-

age geo-localization at scale by evaluating on an additional

large scale test split of CVACT [12] consisting of 92,802

image pairs. The ground and aerial view images from the

above data-sets are captured at different time.

Figure 5: Ground view (left) and corresponding aerial view

(right) from CVACT (top) and CVUSA (bottom).

Implementation Details: We make use of ResNet-18

model initialised with pre-trained Imagenet weights. Out-

puts from intermediate layers of this model are extracted to

capture features at multiple scales. Features at each scale

are passed through a convolutional block attention module

which applies attention across both channel and spatial di-

mensions. The networks are trained end-to-end. We make

use of adam as our optimiser and use 10−4 as our learning

rate. The margin m (Eq. 1) in our contrastive loss frame-

work is set to 1. We make use of B positive image pairs

and B(B− 1) negative image pairs in a single batch during

training. B is set to 128 for our experiments. To accommo-

date a large batch size we make use of gradient accumula-

tion. This involves making optimizer updates after several

forward and backward passes and accumulating the gradi-

ents for each pass, until the effective batch size is attained.

Table 1: Comparison with existing works on CVACT-val

[12]. R@K indicates top-K retrieval rate.

CVACT-val [12]

Methods R@1 R@5 R@10 R@1%

CVM-Net [8] 20.15 45.00 56.87 87.57

OriNet [12] 46.96 68.28 75.48 92.01

CVFT [20] 61.05 81.33 86.52 95.93

SAFA [18] 81.03 92.80 94.84 98.17

Ours 73.19 90.39 93.38 97.45

Ours + SAFA [18] 87.21 95.01 96.39 98.69

Our method was implemented on a single NVIDIA Quadro

RTX 8000 GPU and it took a week of training time.

Table 2: Comparison with existing works on CVUSA [26].

We use ’-’ when the metric for comparison is unavailable.

CVUSA [26]

Methods R@1 R@5 R@10 R@1%

MCVPlaces [25] - - - 34.30

Zhai [26] - - - 43.20

Vo [21] - - - 63.70

CVM-Net [8] 22.47 49.98 63.18 93.62

OriNet [12] 40.79 66.82 76.36 96.12

Zheng [27] 43.91 66.38 74.58 91.78

Regmi [15] 48.75 - 81.27 95.98

Siam-FCANet [3] - - - 98.30

CVFT [20] 61.43 84.69 90.49 99.02

SAFA [18] 89.84 96.93 98.14 99.64

Ours 75.95 91.90 95.00 99.42

Ours + SAFA[18] 93.09 98.14 98.94 99.80

Evaluation Metric: We follow top-K as our evaluation

metric similar to [8, 12, 20, 18] and compare it with the

methods [25, 26, 21, 8, 12, 27, 15, 3, 20, 18]. We consider a

ground view image as correctly localized if its correspond-

ing aerial view is within the nearest top-K retrieved images.

4.1. Comparison with stateoftheart methods

We compare our method with [25, 26, 21, 8, 12, 27, 15, 3,

20, 18] on CVUSA [26] and with [12, 20, 18, 8] on CVACT

[12]. We make use of codes open sourced by corresponding

authors for the case of fusion with SAFA [18]. We report

recall rates at top-1, top-5, top-10 until top-1% and enumer-

ate it in tables 1 and 2. It can be seen in tables 1 and 2 that

integrating our approach with SAFA [18] provides a large

performance gain. This can also be observed by the recall

rates in figures 6 and 7.

Fusion with SAFA [18]: Our goal (i.e. matching unseen

objects) being complementary to the objective of SAFA

(i.e. matching visible objects), we consider fusion of the

retrieval scores from the two systems. We use a late fu-
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Figure 6: Recall rates on CVACT-val [12] and CVUSA [26]. Integrating our approach with SAFA [18] offers better recall.

sion approach which is performed when the two systems

are operated in test mode. The final retrieval score is a

weighted combination of retrieval scores obtained from in-

dividual systems. We allow equal contribution from both

the systems and set the weight as 0.5 for our experiments.

Results on CVACT-val: As indicated in table 1, we

compare the proposed method with other existing ap-

proaches on CVACT-val. The proposed method achieves

73.19% top-1, 90.39% top-5, 93.38% top-10 and 97.45%

top-1% retrieval rates. Our method surpasses most existing

methods [12, 20, 8]. SAFA [18] when operated indepen-

dently performs best compared to all methods. We report an

increase in the top-1 retrieval rate from 81.03% to 87.21%

when combined with SAFA [18]. Recall rates in figure 6

demonstrates the performance of our system compared to

existing approaches.

Results on CVACT-test: CVACT-test [12] is a densely

sampled cross-view image geo-localization data-set and

includes 92,802 image pairs from Canberra, Australia.

This benchmark is representative of cross-view image geo-

localization at scale. In figure 7 we show recall perfor-

mance for top-K retrievals. We compare our method with

[18, 12, 20]. Integrating our approach with SAFA [18] leads

to a significant improvement in performance.

Results on CVUSA: We compare the performance of

our method with other competent methods on the CVUSA

[26] data-set in table 2. The proposed method achieves

75.95% top-1, 91.90% top-5, 95.00% top-10 and 99.42%

top-1% retrieval rates. We perform well compared to

[25, 26, 21, 8, 12, 27, 15, 3, 20]. SAFA [18] when operated

independently performs best compared to all methods. Fu-

sion of the retrieval scores from the two systems increases

the top-1 retrieval rate from 89.84% to 93.09%. Recall rates

on CVUSA [26] are indicated in figure 6.
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Figure 7: Recall rates on the large-scale CVACT-test [12]

split. Combining our approach with SAFA [18] provides

large performance gains.

4.2. Ablation Study

In this section, we provide ablation studies performed

on CVUSA [26] and CVACT [12] data-sets. In particular,

we compare our proposed object based data augmentation

method with standard data augmentation techniques. We

also highlight the importance of using multi-scaled atten-

tion modules for cross-view matching tasks.

Effects of Data augmentation: For illustrating the

effects of data augmentation methods on cross-view im-

age geo-localization performance, we consider random box

based and blur based data augmentation along with the

proposed object based data augmentation technique. Blur

based data augmentation refers to convolution of the origi-
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Figure 8: Examples of our results compared to SAFA [18] on the CVACT [12] data-set. Successful matching results are

above the center black line in Yellow, Blue and Red. Common failure cases are shown below in Grey. Our method hallucinates

unseen image regions such as occluded landscape patterns (Yellow 1st Row) and road structures (Yellow 2nd Row). We can

successfully match among portions of similar landscape regions in the aerial image database (Blue). Hallucinating unseen

objects also helps in matching aerial images with shadows (Red). Failure cases include over hallucination. Often all objects

are present in both the views and there is no need for hallucination, SAFA [18] performs well on such cases (Grey). These

examples indicate the complementary nature of the proposed approach compared to SAFA [18].
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Table 3: Ablation study on the effect of combining common data augmentation techniques with the proposed approach.

Blur based for

both views

Random box for

both views

Object based for

Ground view

Top-1 Rate

CVUSA [26]

Top-1 Rate

CVACT val [12]

- - - 67.92 65.89

X - - 69.75 66.03

- X - 70.67 67.22

- - X 74.80 70.94

- X X 75.51 71.34

X X X 75.95 73.19

Table 4: Ablation study on the effect of using multi-scale attention modules. M denotes the use of multiple such modules.

CVUSA [26] CVACT-val [12]

Approach R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

No attention 61.24 84.98 90.70 98.85 60.38 84.33 89.46 96.54

Single Scale attention 61.26 85.22 90.84 98.91 61.77 85.37 90.60 96.92

Multi-Scale attention (M = 1) 63.16 86.01 91.18 98.96 63.54 86.32 90.93 96.90

Multi-Scale attention (M = 2) 66.47 87.48 92.45 99.22 64.95 86.83 90.94 97.12

Multi-Scale attention (M = 3) 67.92 88.34 92.79 99.26 65.89 87.59 91.41 96.64

M = 3 with Data Augmentation 75.95 91.90 95.00 99.42 73.19 90.39 93.38 97.45

nal image with a kernel of fixed average blur. Random box

based data augmentation closely resembles to our keep and

remove mode of image regions, just that they are boxes of

random size and do not contain any semantic information.

Note that blur and random box based data augmentation

are applied on both views, where as our object based data-

augmentation is applied only on ground view. We decided

not to segment aerial images as we could not find a suitable

off-the-shelf image segmentation module that transferred

well on aerial images of CVACT and CVUSA. The images

used for training the baseline system (i.e. row 1 of table 3)

contains no data augmentation. All systems indicated in ta-

ble 3 are Multi-scaled attention systems (M = 3).

As shown in table 3 incorporating common data augmen-

tation techniques leads to improvement in top-1 recall rates

on CVUSA and CVACT benchmarks. Individual and joint

contribution of data augmentation techniques are also illus-

trated in table 3.

Effects of multi-scaled attention modules: We show

the effectiveness of our proposed multi-scale attention mod-

ule in table 4 and compare it with no attention and single-

scale attention equivalent models. We also show the advan-

tage of aggregating features from multiple such attention

modules. We study the behaviour of top-1, top-5, top-10

and top-1% recall rates on CVUSA and CVACT-val bench-

marks. It can be observed from table 4 that incorporating

attention at different scales and aggregating features from

multiple such modules improves top-1 retrieval rate from

61.24% to 67.92% for CVUSA and 60.38% to 65.89% for

CVACT-val data-set. Here the images used for training

are not augmented. The last row in table 4 indicates the

effectiveness of combining multi-scale attention modules

with the proposed data augmentation. Combing the two

increases top-1 retrieval rate from 67.92% to 75.95% for

CVUSA and 65.89% to 73.19% for CVACT-val data-sets.

5. Conclusion

In this work we presented a method designed to ad-

dress the challenges in cross-view image geo-localization

that arise due to temporal variation in scenes. Successful

localization of images captured at different time instants is

advantageous as it reduces the burden of storing aerial im-

ages across time. Our proposed solution involves a two step

approach. The first step uses a semantically driven data aug-

mentation technique to simulate the disappearing and newly

appearing object peculiarities in temporally varying scenes.

We then present the augmented images to train a Siamese

network with a multi-scaled attention backbone to halluci-

nate image regions that are not available for matching. Inte-

grating our proposed model into existing frameworks boosts

recall rates on standard benchmarks demonstrating the ef-

fectiveness of our proposed solution.
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