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Abstract

This paper studies the task of temporal moment local-

ization in long untrimmed videos using natural language

queries. Given a query sentence, the goal is to deter-

mine the start and end of the relevant segment within the

video. Our key innovation is to learn a video feature em-

bedding through a language-conditioned message-passing

algorithm suitable for temporal moment localization which

captures the relationships between humans, objects and ac-

tivities in the video. These relationships are obtained by a

spatial sub-graph that contextualizes the scene representa-

tion using detected objects and human features conditioned

in the language query. Moreover, a temporal sub-graph

captures the activities within the video through time. Our

method is evaluated on three standard benchmark datasets,

and we also introduce YouCookII as a new benchmark for

this task. Experiments show our method outperforms state-

of-the-art methods on these datasets, confirming the effec-

tiveness of our approach.

1. Introduction

Video analysis using natural language has been drawing

increasing attention from the computer vision and natural

language communities over the past few years, acknowl-

edging the importance of these two modalities to understand

video content. While promising results have been achieved

on the tasks of video captioning and video question answer-

ing, much work still needs to be done to help identify and

trim informative video segments in longer videos and align

them with relevant textual descriptions. For this reason,

tasks such as automatically recognizing when an activity is

happening in a video have recently become crucial for video

analysis.

Query: "person puts the books down."

Figure 1. An illustration of temporal localization of a natural lan-

guage query in an untrimmed video. Given a query and a video

the task is to identify the temporal start and end of the sentence in

the video.

Moreover, as the amount of video data continues to grow,

searching for specific visual events in large video collec-

tions has become increasingly relevant for search engines.

This search engine requirement has helped draw increased

attention to the task of activity detection in recent years.

This task is especially important, considering that manu-

ally annotating videos is laborious and error-prone, even

for a small number of videos. In this sense, it is clear that

search engines have to retrieve videos not only based on

video metadata but that they must also consider the videos’

content in order to localize a given query accurately. Ap-

plications in practical areas such as video surveillance and

robotics [31] have also helped bring interest in this task.

Regarding the issue mentioned above, in this paper we

are specifically interested in the task of temporal sentence

localization, in which given an untrimmed video and a nat-

ural language query, the goal is to identify the start and

end points of the video segment (i.e., moment) that best

corresponds to the given query. This task can be seen as

a generalization of the temporal action localization task

[37, 29, 9, 4, 11, 47].

Many of the existing approaches to the localization prob-

lem in vision-and-language, either spatial or temporal, have

focused on creating a good multi-modal embedding space
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and generating proposals based on the given query. In these

propose and rank approaches, candidate regions are first

generated by a particular method and then fed to a clas-

sifier to get the probabilities of containing target classes,

effectively ranking them. Most recently, approaches that

do not rely on proposals to tackle this task have also been

proposed, including the work of Ghosh et al. [13] and Ro-

driguez et al. [38].

Evidence shows that solving grounded language tasks

such as ours often requires reasoning about relationships

between objects in the context of the task [19]. For ex-

ample, the work of Sigurdsson et al. [41] showed that the

performance in action recognition tasks improves by a large

margin if we have a perfect object recognition oracle. More-

over, we note that the majority of the queries that are used

for this task are related to human actions. Our primary mo-

tivation is to reason about the relationship between humans

and objects with the activity that they are performing. One

can ‘read a book’ or ‘look at the mobile.’ A good way to

know what the person is doing is to make use of object

clues.

In light of this, in this paper we propose a mechanism

to obtain contextualized activity representations based on a

language-conditioned message-passing algorithm. As ac-

tivities are usually the result of the composition of several

actions or interactions between a subject and objects [23],

our algorithm incorporates both spatial and temporal depen-

dencies. Therefore, modeling the relationship between sub-

jects and objects in a scene and how these change over time,

to support the temporal moment localization task. 1

We conduct experiments on four challenging datasets,

Charades-STA [10], ActivityNet [2, 26], TACoS [39] and

YouCookII [55, 54], demonstrating the effectiveness of

our proposed method and obtaining state-of-the-art per-

formance. Our results highlight the importance of our

message-passing algorithm in modeling the relationships

between a subject and objects and their interaction to un-

derstand the activity, ultimately validating our proposed ap-

proach. To the best of our knowledge, our model is the first

to incorporate a language-conditioned message-passing al-

gorithm to obtain contextualized activity representations us-

ing the objects and subjects.

2. Related Work

Our work is related to the temporal action localization

task, which aims to recognize and determine the tempo-

ral boundaries of action instances in videos. There is ex-

tensive previous work on this task, ranging from models

that train existing video feature extractors with a localiza-

tion loss [40], to systems that generally rely on temporal

1Features, pre-trained models, and code are available in https://

github.com/crodriguezo/DORi

action proposal, as well as more sophisticated models that

perform contextual modelling, capturing objects and their

interactions [15, 14].

Since action localization is restricted to a pre-defined list

of options, Gao et al. [10] and Hendricks et al. [18] in-

troduced a variation of the task called language-driven tem-

poral moment localization, where the goal is to determine

the start and end time of the temporal video segment that

best corresponds to a given natural language query. Early

approaches for this task, including Liu et al. [30] and Ge

et al. [12], were mainly based on generating proposals or

candidate clips which could later be ranked. More recently,

Chen et al. [5], Chen and Jiang [6], and Xu et al. [47], have

worked on reducing the number of proposals by producing

query-guided or query-dependent approaches.

Despite their ability to provide coarse control over the

video snippets, proposal-based methods suffer from the

computationally expensive candidate proposal matching,

which has led to the development of methods that can di-

rectly output the temporal coordinates of the segment. In

this context, Yuan et al. [49] first proposed to use a co-

attention-based model, and soon after Ghosh et al. [13] fo-

cused directly on predicting the start and end frames using

regressions. More recently, Rodriguez et al. [38] used dy-

namic filters and modeled label uncertainty to further im-

prove performance, while Mun et al. [32] and Zeng et al.

[51] proposed more sophisticated modality matching strate-

gies. Compared to these works, although our approach is

also proposal-free, we differ in the sense that we aim at in-

corporating specific spatial information that is useful for the

localization problem.

Our work is also related to context modeling in action

recognition. In this context, structural-RNN [21] models a

spatio-temporal graph using an RNN mixture that is differ-

entiable, with applications on human motion modeling and

human activity detection. While we build on top of a con-

cept similar to this, we inject the language component into

the spatio-temporal graph and focus on the task of tempo-

ral moment localization of a natural language query. Our

method adds the language into the pipeline using an atten-

tion mechanism that captures the objects’ and subjects’ in-

teractions at the language level.

Context modeling has also been recently utilized in other

computer vision tasks, such as referring expression com-

prehension [48] and VQA [19]. In the latter, the authors

proposed a Language-Conditioned Graph Network (LCGN)

where each node represents an object and is described by a

context-aware representation from related objects through

iterative message-passing conditioned on the textual input.

Our work is fundamentally different from this as our task

requires us to model the temporal component in our graph.

Moreover, LCGN emphasizes the role of edge representa-

tions in the graph, whereas our approach is node-centric as
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Figure 2. For each activity feature ai, we create a Spatial graph to find the relationship between object and human nodes conditioned in the

query, and thus improve the activity representation to be used by the Temporal graph.

connections between two given node types share the same

edges.

Furthermore, Zeng et al. [50] used graph convolutions

to obtain contextualized representations for action localiza-

tion, while Zhang et al. [52] utilized a graph-structured

network to model temporal relationships among different

moments and thus obtain contextualized moment represen-

tations. Their approach is different from ours as they rely

on proposals to perform the task. More recent approaches,

such as SLTFNet [22], rely on attention instead of message-

passing to deal with the spatio-temporal nature of the mo-

ment localization task.

Finally, Zhang et al. [53] have recently proposed a novel

task that requires not only to perform temporal language-

driven moment localization but also to locate the objects

mentioned in the query spatially. Their approach is similar

to ours in the sense that it also utilizes a spatio-temporal

graph. However, the textual clues are incorporated after the

graph construction rather than being an explicit part of it.

3. Graph-Based Temporal Moment Localiza-

tion

In temporal moment localization the objective is to find

the temporal location of a natural language query Q in an

untrimmed video V . The video consists of a sequence of

frames V = [vt | t = 1, . . . , ℓ] and the query is a sequence

of words Q = [wj | j = 1, . . . ,m] that describes a short

moment in the video. We denote the starting and ending

times of the moment described by query Q as ts and te,

respectively.

We propose a model that explicitly captures the relation-

ship between objects and humans, as well as the activities

performed in a video, using a spatio-temporal graph. Con-

cretely, we utilize a language-conditioned message-passing

algorithm, which allows us to obtain contextualized ac-

tivity representations for better moment localization. Let

G = (V, ES ∪ ET ) represent our spatio-temporal graph,

where V , ES and ET are the set of nodes, spatial edges and

temporal edges, respectively, as can be seen in Figure 2.

We factorize our spatio-temporal graph into spatial and

temporal sub-graphs, denoted by GS = (V, ES) and GT =
(V, ET ), respectively.

The spatial graph is designed to improve the activity rep-

resentations by exploiting the relationships between objects

and humans in a given scene conditioned on an attended

language representation for each of these relationships. As

we know, actions and moments are characterized by com-

plex interactions between humans as well as human-object

interactions [42]. Our spatial sub-graph is designed to ex-

ploit these spatial relationships specifically. It is iteratively

applied through the video (Figure 2.a.)

On the other hand, the temporal sub-graph is designed

to model the relationships between the improved activity

representations at different times to more efficiently localize

the start and end points of the query in the video (Figure

2.b.)

3.1. Spatial graph

Consider the query presented in Figure 2, “a person is

throwing the bag at the light switch”. It describes what ac-

tion (verb) is performed by a subject and what objects are

involved in that action. Our spatial graph is designed to

capture the relationships between these visual entities con-

ditioned on the linguistic entities. As such, we decompose

our graph into six semantically meaningful nodes, three for

representing visual information and three for representing

linguistic information.
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3.1.1 Linguistic Nodes

We create language nodes to capture essential information

in the query related to the visual input: the subject-verb re-

lationship node SV (person-throwing), the subject-object

relation node SN (person-bag/light switch) and the verb-

object relation node VN (throwing-bag/light switch).

To obtain representations for each one of the linguis-

tic nodes, we start by encoding each of the words wj for

j = 1, . . . ,m in the query Q using a function Fw : w 7→ h,

which maps each word to a semantic embedding vector

hj ∈ R
dw , where dw defines the hidden dimension of the

word embedding. Specifically, we use GLoVe embeddings

[35] to obtain the vector representations for each word.

We then initialize a three-headed multi-head attention

module [45] using an aggregated, fixed-length query vector

q. We construct this vector using a bi-directional GRU [8]

over the word embeddings and mean pooling. This allows

us to more accurately capture the global meaning of the

input query by first contextualizing each word representa-

tion. We project each of the word embeddings using a linear

mapping to obtain the key k components of the multi-head

attention. In the case of the values v, we use the contex-

tualized word representations from the GRU. Each head at-

tends these contextualized vectors and returns a re-weighted

combination of them, using softmax(qk⊤)v, aimed at un-

derstanding a specific relation between the visual nodes at

the linguistic level.

3.1.2 Visual Nodes

As mentioned above, our spatial graph contains three se-

mantically meaningful nodes that represent visual informa-

tion, specifically an activity node A, a human node H and

an object node O. This setting allows us to share factors for

semantically similar observations taken from the video [21],

which provides several advantages. First, the model can

deal with more observations of objects and humans without

increasing the number of parameters that need to be learnt.

Second, we alleviate the problem of having jittered object

detections in videos, specially due to objects appearing and

disappearing across frames.

To capture the relationships between activity, human and

object observations, we densely connect these nodes within

a single video frame. Such relationships are commonly pa-

rameterized by factor graphs that convey how a function

over the graph factorizes into simpler functions [28]. Sim-

ilarly, we learn a non-linear mapping function for each of

the semantically alike observations that are associated with

the same semantic node. In this sense, each semantic node,

human H, object O and activity A, is considered to be a la-

tent representation of the corresponding observation. Let us

take as an example the case of the object node O, where we

observe a table in the video, represented by a feature vector

x, obtained directly from an object detector. In this case, we

use a function ΨO

.
= tanh(WOx + bO). Similar mapping

functions (with different parameters), namely ΨH and ΨA

are defined for the other semantic nodes.

Activity node: We use a video encoder that generates a

video representation summarizing spatio-temporal patterns

directly from the raw input frames. Concretely, let FV be

our video encoding function mapping a video into a se-

quence of vectors [ai ∈ R
dv | i = 1, . . . , t]. These features

capture high-level visual semantics in the video. Note that

length of the video, ℓ = |V |, and the number of output fea-

tures, t = |FV (V )|, are different due to temporal striding.

Specifically, in this work we model FV using I3D [3]. This

method inflates the 2D filters of a well-known convolutional

neural network, e.g., Inception [44, 20] or ResNet [17] for

image classification to obtain 3D filters.

Human and object nodes: Activity representations are

obtained using small clips of frames. This means that there

may be a set of many frames from where to extract spatial

information that is semantically relevant for each node. Uti-

lizing every frame is computationally expensive and given

the piece-wise smooth nature of video, this could also prove

to be redundant. As such, in this work we propose to utilize

key-frames associated to each activity representation to ex-

tract observations for human and object nodes. Since many

frames in a video are blurry due to various reasons, e.g.,

the natural movement of the objects and the camera motion,

we select the sharpest key-frame in the subset of frames.

Here we use the Laplace variance algorithm [34], which is

a well-known approach for measuring the sharpness of an

image.

While our method is agnostic to the choice of object de-

tector, in this work we use Faster RCNN [36, 1] for the de-

tection and spatial representation of the objects in all key-

frames. Our Faster RCNN detector is trained on the Vi-

sual Genome [27] dataset, which consists of 1,600 object

categories. These categories are manually assigned to ei-

ther the human and object nodes depending on the type

of object. The human node receives the set of features

H = {h1, ..., hK} corresponding to the categories associ-

ated to human body parts, clothes and subjects, while the

object node receives the set of features that are not associ-

ated to human labels O = {o1, ..., oJ}. This label-based

categorization is based on a manual analysis of the label

names supported by the Faster RCNN detector. In this way,

when taking the predicted labels for each object we can use

our categorization to re-label them as human or object and

thus assign each instance to their corresponding visual node.

3.1.3 Language-conditioned message-passing

We argue that the setting of the scene contains important

clues to improve the representation of a given activity. Ex-
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amples of these clues are human clothes, objects that are

present in the scene as well as their appearance. To the best

of our knowledge, previous work on moment localization

has not utilized this information. Therefore, we propose

to obtain an activity representation suitable for the moment

localization task, by capturing object, human and activity

relationships. Concretely, we use a mean-field like approx-

imation of the message-passing algorithm to capture such

relationships. The messages sent between nodes are condi-

tioned on the natural language query. We propose to use this

approximation instead of the standard message-passing al-

gorithm due to high demand on memory and compute, spe-

cially to process all the key-frames in a given video. The

messages are iteratively sent a total of N times, which is a

hyperparameter of our model. In the equations below, in-

dex n = 1, ..., N denotes the iteration step for each of the

nodes. Also, note that in the rest of this subsection, we

drop the temporal index i in the activity feature a since the

message-passing is done for each of the activity features in-

dependently.

First, we capture the relationship between the visual ob-

servations of the nodes human H, object O and activity A
with the corresponding language nodes SN ,SV and VN
using a linear mapping function f specific for each node.

For instance, in the case of the object observations, the map-

ping functions f have the following shape.

fSN ,O(SN , o
j,n) = Wsno[SN ; oj,n] + bsno = Φj,n

SN ,O (1)

fVN ,O(VN , o
j,n) = Wvno[VN ; oj,n] + bvno = Φj,n

VN ,O (2)

where j is the j-th object observation in the object

node O. Similarly, we have specific mapping func-

tions fSV,A(SV, a
n) = Φn

SV,A, fVN ,A(VN , an) = Φn
VN ,A,

fSN ,H(SN , hk,n) = Φk,n
SN ,H, and fSV,H(SV, hk,n) = Φk,n

SV,H

for the activity and human observations, where k is the k-th

human observation.

For clarity, we explain the message-passing algorithm

again using the object node as an example. The object

node O receives messages from the human H and the ac-

tivity A nodes. The message from the human node is con-

structed using a linear mapping function that receives as

an input the concatenation of the object-query relationship

Φj,n
SN ,O and the aggregation of all the human-query relation-

ships
∑

k Φ
k,n
SN ,H. A similar process is done for the message

received from the activity observations, as can be seen in

Equation 4, below.

Ψj,n
H,SN ,O

= fH,SN ,O(Φ
j,n
SN ,O

,
∑K

k=1
Φk,n

SN ,H) (3)

Ψj,n
A,VN ,O

= fA,VN ,O(Φ
j,n
VN ,O

,Φn
VN ,A

) (4)

oj,n+1 = σ(mo(Ψ
j,n
H,SN ,O

⊙Ψj,n
A,VN ,O

)⊙ oj,0) (5)

Finally, the new representation of the object observation

is computed using Equation 5, where oj,0 is the initial ob-

ject representation, σ is an activation function, ⊙ is the

Hadamard product and mo is a linear function with a bias

that constructs the message for the object oj . A similar pro-

cess is applied for each observation, as can be seen in Equa-

tions 6 to 9 below, where we create the message for each

edge and Equations 10 to 11 and show how these messages

are later used to contextualize the features. Note that the

parameters learnt for each specific case are shared. For in-

stance, parameters for fA,SV,H and fH,SV,A are the same.

Ψn
H,SV,A

= fH,SV,A(Φ
n
SV,A

,
∑K

k=1
Φk,n

SV,H) (6)

Ψn
O,VN ,A

= fO,VN ,A(Φ
n
VN ,A

,
∑J

j=1
Φj,n

VN ,O) (7)

Ψk,n
O,SN ,H

= fO,SN ,H(Φ
k,n
SN ,H

,
∑J

j=1
Φj,n

SN ,O) (8)

Ψk,n
A,SV,H

= fA,SV,H(Φ
k,n
SV,H

,Φn
SV,A

) (9)

an+1 = σ(ma(Ψ
n
H,SV,A

⊙Ψn
O,VN ,A

)⊙ a0) (10)

hk,n+1 = σ(mh(Ψ
k,n
O,SN ,H

⊙Ψk,n
A,SV,H

)⊙ hk,0) (11)

3.2. Temporal graph

The temporal graph is responsible for predicting the

starting and ending points of the moment in the video.

It uses the previously computed activity representations

ai,N for i = 1, . . . , t where N is the final iteration in the

message passing. The temporal graph is implemented us-

ing a 2-layer bi-directional GRU [7] which receives as input

the improved activity representation, and it is designed to

contextualize the temporal relationship between the activity

features. To obtain a probability distribution for the start

and end predicted positions, we utilize two different fully

connected layers to produce scores associated to the prob-

abilities of each output of the GRU being the start/end of

the location. Then, we take the softmax of these scores and

thus obtain vectors τ̂
s
, τ̂

e ∈ R
T containing a categorical

probability distribution. Even though we do not constrain

the starting and ending points to follow the right order in

time, this does not result in any difficulties in practice.

4. Training

Our method is trained end-to-end on a dataset consisting

of annotated tuples (V,Q, ts, te). Note that each video V

may include more than one moment and may therefore ap-

pear in multiple tuples. We treat each training sample inde-

pendently. Given a new video and sentence tuple (Vr, Qr),
our model predicts the most likely temporal localization of

the moment described by Qr in terms of its start and end

positions, ts⋆r and te⋆r , in the video. We use the Kullback-

Leibler divergence and a spatial loss proposed by Rodriguez

et al. [38]. We refer the reader to the supplementary mate-

rial for additional details. Given the predicted/ground truth

starting/ending times of the moment, we use the following
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loss function during training:

LKL = DKL(τ̂
s ‖ τ

s) +DKL(τ̂
e ‖ τ

e) (12)

where DKL is the Kullback-Leibler divergence. Moreover,

inspired by Rodriguez et al. [38], we use a spatial loss

that aims to create activity features that are good at iden-

tifying where the action is occurring. This loss receives as

input y = softmax(g(A)) where A is the matrix that results

by concatenating the improved activity representations over

time, where g is a linear mapping that gives us a score for

each activity representation. We apply the softmax function

over these and our loss penalizes if this normalized score is

large for those features associated to positions that lie out-

side the temporal location of the query. More formally,

Lspatial = −
t∑

i=1

(1− δτs≤i≤τe) log(1− yi) (13)

where δ is the Kronecker delta. The final loss for training

our method is the sum of the two individual losses defined

previously setting L = LKL + Lspatial. During inference,

we predict the starting and ending positions using the most

likely locations given by the estimated distributions, using

τ̂ s = argmax(τ̂ s) and τ̂e = argmax(τ̂ e). Since values

correspond to positions in the feature domain of the video,

so we convert them back to time positions.

5. Experiments and Results

To evaluate our proposed approach we work with three

widely utilized and challenging datasets, namely Charades-

STA [10], ActivityNet Caption [2, 26] and TACoS [39]. In

addition to these, we also consider the YouCookII dataset

[55, 54]. This decision is motivated by its activity-centric

nature as YoucookII is built upon instructional videos mak-

ing it an excellent candidate to evaluate our proposals.

Charades-STA: Collected from the Charades dataset [43]

by adding sentences that describe actions in the videos, it

consists on a total of 13,898 pairs of queries and temporal

locations. We use the predefined train and test splits [10].

Videos are 31 seconds long on average, with 2.4 moments

on average, each being 8.2 seconds long on average.

ActivityNet Captions: Introduced by [26] this dataset,

which was originally constructed for dense video caption-

ing, consists of 20k YouTube videos with an average length

of 120 seconds. The videos contain 3.65 temporally aligned

sentence descriptions on average, where the average length

of the descriptions is 13.48 words. Following previous

work, we report the performance of our approach on the

two existing validation sets combined [32].

MPII TACoS: Built on top of the MPII Compositive

dataset, it consists of videos of cooking activities with

detailed temporally-aligned text descriptions. There are

18,818 pairs of sentence and video clips in total, with the

average video length being 5 minutes. We use the same

splits as [10], consisting of 50% for training, 25% for vali-

dation and 25% for testing.

YouCookII: consists of 2,000 long untrimmed videos from

89 cooking recipes obtained from YouTube by [55]. Each

step for cooking these dishes was annotated with temporal

boundaries and aligned with the corresponding section of

the recipe. Similarly to TACoS, the average video length is

5.26 minutes. In terms of relevant moment segments, each

video has 7.73 moments on average, with each segment be-

ing 19.63 seconds long on average. Videos have a minimum

of 3 and a maximum of 16 moments.

5.1. Implementation Details

We first pre-process the videos by extracting features of

size 1024 using I3D feaures with average pooling, taking as

input the raw frames of dimension 256× 256, at 25fps. We

use the pre-trained model trained on Kinetics for TACoS,

ActivityNet and YouCookII released by [3]. For Charades-

STA, we use the pre-trained model trained on Charades. We

extract the top 15 objects detected in terms of confidence for

each of the key-frames using Faster-RCNN.

All of our models are trained in an end-to-end fashion

using ADAM [25] with a learning rate of 10−4 and weight

decay 10−3. As mentioned earlier, our temporal graph is

modeled using a two-layer BiGRU. We use a hidden size

of 256 and to prevent over-fitting we add a dropout of 0.5
between the two layers.

5.2. Evaluation

We evaluate our model using two widely used metrics

proposed by [10]. Firstly, we measure recall at various

thresholds of the temporal Intersection over Union (R@α)

obtaining the percentage of predictions that have tIoU with

ground truth larger than certain α, with threshold values 0.3,

0.5 and 0.7. In addition to that, we also compute and report

mean or averaged tIoU (mIoU).

5.3. Ablation Study

To show the effectiveness of our proposals we perform

several ablation studies each aimed at assessing the contri-

bution of different components of our model. All of our

ablative experiments are based on a segment of the train-

ing split of the Charades-STA dataset. As mIoU provides a

more comprehensive evaluation of the performance of our

model we utilized this metric to select the best model con-

figuration for the rest of the experiments in this paper.

Since feed-forwarding through our proposed spatial

graph is an iterative process, we first studied the impact on

performance of the number of iterations (N ) utilized in the

message-passing algorithm of our full model. As shown in

Table 1, we experimented setting N to a minimum value
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Table 1. Performance when using a different number of iterations

(N ) for the message-passing algorithm, on a subsection of the

training split of Charades-STA.

N R@0.3 R@0.5 R@0.7 R@0.9 mIoU

0 47.46 22.88 14.38 6.00 33.67

1 73.21 55.32 36.02 11.48 52.11

2 79.01 67.16 48.71 17.97 59.30

3 79.25 68.41 50.56 19.14 60.29

4 70.99 60.31 44.16 17.32 54.01

Table 2. Results of our ablation studies, performed on a section of

the training split of Charades-STA.

Model R@0.3 R@0.5 R@0.7 R@0.9 mIoU

(1) No Graph 44.32 13.46 7.66 2.50 31.09

(2) No Node Types 74.78 61.24 43.35 14.59 55.18

(3) No H Node 75.46 60.60 43.31 15.51 55.32

(4) No O Node 75.66 61.28 44.08 15.39 56.13

(5) No LA 76.79 66.32 49.92 20.87 58.93

(6) No Lspatial 76.79 66.60 52.54 23.57 59.95

Full Model 79.25 68.41 50.56 19.14 60.29

of 0 (where nodes are not updated at all) up to a maximum

number of 4 iterations. As expected, performance tends to

improve with larger values of N , with a saturation point at

N = 3. Based on these results, all of our models in the rest

of this paper are trained utilizing three iterations.

Table 2 summarizes the results of our ablation studies,

which include: (1) Concatenating the mean-pooling of the

features extracted by Faster RCNN directly with the activity

representation, therefore eliminating the human and object

nodes (No Graph) to assess the relevance of our graph in us-

ing the spatial information. (2) Evaluating the importance

of distinguishing between human versus object features by

testing how our model performs when assigning all the de-

tected features to one spatial node (No Node Types). In (3)

and (4) we remove the use of human (No H) and object

(No O) spatial information, respectively. (5) Assessing the

contribution of the linguistic nodes (No LA) by modifying

our graph so that it only contains a single textual node con-

nected to the rest of the graph in a way analogous to our

full model. (6) Testing the importance of the spatial loss

Lspatial which encourages our model to focus on the features

within the segment of interest. As can be seen, the impor-

tance of each one of our studied components is validated

as ablations always result in consistent performance drops

in terms of both mIoU as well as tIoU at the majority of

α thresholds. For details about our ablated models please

check Sections A.1 and A.2 in the Supplementary Material.

5.4. Comparison with the state­of­the­art

We start by presenting our results on the YouCookII

dataset, which we introduce as a baseline for this task since

so far it has not been considered by previous work. On this

dataset we consider a random baseline that simply selects

Table 3. Performance comparison on YouCookII for different tIoU

α levels.

Method R@0.3 R@0.5 R@0.7 mIoU

Random 4.84 1.72 0.60 -

TMLGA 33.48 20.65 10.94 23.07

DORi 43.36 30.47 18.24 30.46

an arbitrary video segment as the moment for each exam-

ple, and also used the official implementation of TMLGA

[38] released by its authors as an additional baseline since it

is a direct alternative to our approach also being proposal-

free. Table 3 summarizes our obtained results, where it can

be seen that DORi is able to outperform both the random

baseline and TMLGA by a large margin, specially on the

lower α bands.

Regarding benchmark datasets, we compare the perfor-

mance of our proposed approach against several prior work

selected from the literature. We consider a broad selec-

tion of models based on different approaches, specifically

proposal-based techniques including CTRL [10], SAP [6],

MAN [52] and CBP [46], as well as TripNet [16], a method

based on reinforcement learning. In addition to that, we

also compare our approach to more recent methods that do

not rely on proposals, including ABLR [49], ExCL [13],

TMLGA [38] and LGVTI [32], as well as our random base-

line.

Table 4 summarizes our results on Charades-STA, Ac-

tivityNet Captions and TACoS, while also comparing the

obtained performance to relevant prior work. It is possi-

ble to see that our method is able to outperform previous

work by a consistent margin, specially for the α = 0.7 band

and also in terms of the mean tIoU (mIoU). Comparing re-

sults across these datasets, we also see that the performance

of all models drops substantially on ActivityNet Captions

and TACoS, compared to Charades-STA. We think this is

mainly due to the nature of the dataset, which contains a

considerable amount of video moments that only span a few

seconds.

Finally, we also study the effect of using different a pre-

trained model to obtain activity representations in our pro-

posed approach. Concretely, we test the performance of our

model using VGG-16 features instead of I3D on Charades-

STA. Table 5 summarizes our obtained results and compares

them to prior work also utilizing these features. As can

be seen, although VGG features provide lower performance

than I3D in our experiments, therefore experimentally vali-

dating our choice, our model is still able to outperform ex-

isting approaches also using these features by a large mar-

gin, showing the superiority of our proposed approach.
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Table 4. Performance comparison of our approach with existing methods for different tIoU α levels. Values are reported on the validation

split of Charades-STA and ActivityNet Captions, and test splits for the TACoS datasets. † Results for ABLR are as reported by [6].

Method
Charades-STA ActivityNet TACoS

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

Random - 8.51 3.03 - 5.60 2.50 0.80 1.81 0.83 -

CTRL - 21.42 7.15 - 28.70 14.00 - 20.54 18.90 13.30 - -

ABLR † - 24.36 9.00 - 55.67 36.79 - 36.99 18.90 9.30 - -

TripNet 51.33 36.61 14.50 - 48.42 32.19 13.93 - 23.95 19.17 9.52 -

CBP 50.19 36.80 18.87 35.74 54.30 35.76 17.80 36.85 27.31 24.79 19.10 21.59

MAN - 46.53 22.72 - - - - - - - - -

EXCL 65.10 44.10 22.60 - - - - - 44.20 28.00 14.60 -

TMLGA 67.53 52.02 33.74 48.22 51.28 33.04 19.26 37.78 24.54 21.65 16.46 22.06

LGVTI 72.96 59.46 35.48 51.38 58.52 41.51 23.07 41.13 - - - -

DORi 72.72 59.65 40.56 53.28 57.89 41.35 26.41 42.79 31.80 28.69 24.91 26.42

269.0 300 GT 

Prediction

398.2

Query: "cover the dish with mashed potatoes" 

300.15 268.8

Figure 3. Visualization of a success case of our method in the YouCookII dataset. The second row shows the observations associated to the

Human node (green) and Object node (orange).

Table 5. Performance of our method with VGG-16 features, We

compared to relevant prior work that uses the same type of fea-

tures.

Model R@0.3 R@0.5 R@0.7 R@0.9 mIoU

SAP - 27.42 13.36 - -

MAN - 41.24 20.54 - -

DORi 61.83 43.47 26.37 7.63 42.52

5.5. Qualitative results

Figure 3 presents a success case of our method on

YouCookII dataset. The visualization is presenting a sub-

sample of the key-frames inside of the predicted span with

their corresponding spatial observations, with green obser-

vations associated with the human node H and orange to

the object node O. Moreover, each visualization is pre-

senting the ground-truth localization and predicted localiza-

tion of the given query. As shown in Figure 3, given the

query “cover the dish with mashed potatoes”, our method

could localize the moment at a tIoU of 98.88%. The most

relevant features extracted by Faster-RCNN to localize the

query are ’arm’, ’bowl’, ’cake’, ’hand’, ’kitchen’, ’man’,

’mug’, ’spoon’, ’stove’, ’tray’. Additional qualitative exam-

ples of success and failure cases of our method are included

in Section E of the Supplementary Material.

6. Conclusion

We have presented a novel approach to temporal moment

localization in video. Our approach consists of a spatial-

temporal graph for capturing the relationships between de-

tected humans, objects and activities over time. Condi-

tioned on a natural language query, we proposed a message-

passing algorithm that propagates information across the

graph to ultimately infer the arbitrarily long segment in the

video most likely described by the query. Using our ap-

proach we are able to achieve state-of-the-art results on sev-

eral benchmark datasets.
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