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Abstract

In this paper, we present a novel method Coarse- and

Fine-grained Attention Network (CFANet) for generating

high-quality crowd density maps and people count estima-

tion by incorporating attention maps to better focus on the

crowd area. We devise a from-coarse-to-fine progressive

attention mechanism by integrating Crowd Region Recog-

nizer (CRR) and Density Level Estimator (DLE) branch,

which can suppress the influence of irrelevant background

and assign attention weights according to the crowd den-

sity levels, because generating accurate fine-grained atten-

tion maps directly is normally difficult. We also employ a

multi-level supervision mechanism to assist the backpropa-

gation of gradient and reduce overfitting. Besides, we pro-

pose a Background-aware Structural Loss (BSL) to reduce

the false recognition ratio while improving the structural

similarity to groundtruth. Extensive experiments on com-

monly used datasets show that our method can not only out-

perform previous state-of-the-art methods in terms of count

accuracy but also improve the image quality of density maps

as well as reduce the false recognition ratio.

1. Introduction

Recently, crowd density map estimation has received

continuous attention as a challenging computer vision task.

Given a crowd image, its purpose is to estimate the den-

sity map and the total number of people. The value of each

pixel in the density map reflects the density of the corre-

sponding area in the image, and estimated people count

can be obtained by accumulating the values of all pixels.

Generally speaking, there are three major difficulties for

accurate crowd counting: (1) Different distances from the

shooting device lead to scale variation within one image

and between different images. (2) Severe occlusion in high-

density crowd scenes. (3) The influence of complex and ir-

relevant background is not conducive to recognizing crowd

areas. Existing methods[1, 28, 11, 13] mainly adopt multi-

Figure 1. An intuitive explanation of our method.

scale or multi-column architecture-based CNN models to

capture richer features. But they generally have two disad-

vantages: (1) The influence of the background is not fully

considered. Existing methods treat all the regions in one im-

age as potential crowd areas, so the convolution kernels may

extract features in the background regions that are not re-

lated to the crowd, resulting in misrecognition. In this case,

even if the estimated number of people across the whole im-

age is close to the ground truth, it may be caused by both

the underestimation of the crowd region and the misrecog-

nition of the background region. (2) All crowd regions are

treated equally. In fact, when a person observes a crowd im-

age, it is normal to pay different attention to different areas.

This is because for areas with a high degree of occlusion,

it is more difficult to distinguish the features of each per-

son, thus worth more attention. In low-density areas, it is

easier to distinguish each person, thus worth less attention.

However, most existing methods pay the same attention to

all sub-regions with in one image.

In order to solve the above two problems, we hope to

design an attention mechanism that can suppress the influ-

ence of the background and reduce misrecognition, but also

adaptively assign attention weights to regions with differ-

ent density. Therefore, we introduce the attention maps.

We expect that in one attention map, the background area

has a weight close to 0, and the low-density area has rela-

tively low weights, and the high-density area has relatively

high weights. As depicted in Fig. 1, when the human eyes

observe a picture, they will first recognize in which areas

people exist, and then identify the dense degree and count.
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Intuitively, it is natural to follow this paradigm when de-

signing a CNN. It is easier to judge whether there are peo-

ple in an area than to judge the density level of the area,

so we can get more reliable results if we start from simple

tasks. Therefore, we employ two modules, Crowd Region

Recognizer (CRR) and Density Level Estimator (DLE), to

judge whether people exist and the density level for an area

respectively.

To be more specific, CRR produces a coarse-grained at-

tention map (CAM), whose value indicating the possibil-

ity of if people exist. DLE produces a fine-grained atten-

tion map (FAM), whose value indicating the density level of

each area. In order to leverage the relatively reliable CAM,

we combine the FAM with it. Then feature maps for re-

gressing density maps are combined with FAM on multiple

scale to pay adaptive attention to different areas.

The images of crowd datasets is relatively few compared

to other datasets, e.g. Imagenet. To reduce overfitting and

facilitate the backpropagation of gradients, we introduce

multi-level supervision by adding several more output lay-

ers in internal layers and summing all the loss functions and

backpropagate.

In addition, this paper also explores the impact of differ-

ent loss functions. We propose a novel and effective loss

function named Background-aware Structural Loss (BSL)

that can take account of structural similarity, counting ac-

curacy and false recognition ratio. We evaluate the perfor-

mance on multiple datasets and models, and proposed BSL

delivers superior performance than other loss functions.

To sum up, our contribution are three-fold: (1)

We present Coarse- and Fine-grained Attention Network

(CFANet) that can produce high-quality density maps and

accurate count estimation. Crowd Region Recognizer

(CRR) and Density Level Estimator (DLE) are employed to

estimated coarse- and fine-grained attention maps respec-

tively to help pay more attention to areas with high den-

sity and less attention to areas without people or with a low

density. (2) We introduce the multi-level supervision mech-

anism to facilitate the backpropagation of gradients and re-

duce overfitting. (3) We propose a loss function named

Background-aware Structural Loss (BSL) that can improve

structural similarity and reduce false recognition. By com-

bining CFANet with BSL, we can achieve the best perfor-

mance on most mainly used datasets.

2. Related Work

We classify existing methods into two categories, one is

only using the density map as the learning objective, and the

other is combining classification, segmentation and other

tasks as the learning objectives.

Density Map as the Learning Objective. To solve

the problem that the size of the heads in the crowd

scene changes greatly, MCNN[29] designed three paral-

lel subnetworks with convolution kernels of different sizes.

CSRNet[8] found that the subnetworks introduced redun-

dant parameters, so a single-column model was proposed.

SANet[1] combined convolution kernels of different sizes

as the feature extraction part, which enhances the non-linear

expression ability of the network. CAN[14] used pooling

pyramid to extract features of different scales, and adap-

tively assigns different weights to different scales and re-

gions. TEDNet[7] proposed a lightweight hierarchical net-

work structure by combining high-level and low-level fea-

tures effectively. RR[21] used representative images in the

dataset obtained by clustering to assist regress the resid-

ual and final density map. Bayesian loss[15] was proposed

based on the Bayesian probability model. The value of each

pixel in the density map contributes to each person’s value

or the background by probability. L2SM[26] further zooms

in and re-estimates the dense area to improve the perfor-

mance in the high-density area after obtaining the initial

density map. DSSINet[11] uses conditional random fields

to enable the features of each scale to obtain information

from other scales for improvement.

Combinal Learning Objectives. CP-CNN[19] uses ex-

tra classification networks to combine global and local den-

sity level to improve model accuracy. Switch-CNN[17]

classifies the input images into three categories according

to density level, and then processes the images with corre-

sponding sub-network. DecideNet[10] constructed a model

using two sub-networks for detection and regression respec-

tively, and the outputs of the two sub-networks are fused

using attention mechanism. RAZNet[9] uses an additional

localization branch to detect the heads’ position, and adap-

tively zooms in the regions that are difficult to recognize.

SGANet[22] employs the Inception-V3 structure as the fea-

ture extraction part, and uses the penultimate layer’s feature

maps to regress an attention map.

The most similar work to ours is ADCrowdNet[13]

which uses a separate classification network to obtain the

attention map, and multiplies it with the image or feature

maps. We differ from it from three aspects: (1) We find

that single scale combination has limited influence so we

combine the attention maps on multiple scales to enhance

the attention effect. (2) Attention maps in ADCrowdNet is

similar to our coarse attention maps, but we further incorpo-

rate the density level information, which is not included in

ADCrowdNet. (3) We do not need a separate classification

network to produce attention maps, so our method is much

easier for end-to-end training.

3. Our Approach

The architecture of the proposed method is illustrated

in Figure 2. It consists of four modules: Feature map ex-

tractor is used to extract general feature maps from crowd

images and feed them into the following modules for fur-
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Figure 2. The structure of proposed CFANet.

ther processing. Crowd region recognizer (CRR) is used

to judge whether an area contains crowd, and outputs a

coarse-grained attention map (CAM). Density level estima-

tor (DLE) is used to further classify the density level of each

area, and can output a fine-grained attention map (FAM).

With the aid of FAM, density map estimator can better fo-

cus on the crowd region and produce high-quality density

maps. In addition, to assist the backpropagation and reduce

overfitting, we design a multi-level supervision mechanism.

In each stage of the density map estimator, feature maps

are upsampled and fed into Conv layers to obtain a density

map, and the loss functions of multiple stages are summed

and backpropagated.

3.1. Feature map extractor

Coarse- and fine-grained attention map and density map,

which will be detailed in the following subsections, share

a feature: having high values in the high-density area, and

low values in the low-density area and near zero in the back-

ground area. Therefore, we argue that general features can

be extracted through the same base network.

In most existing studies, the resolution of estimated den-

sity maps are lower than input, leading to the loss of spatial

details. Inspired by the success of UNet[16], we design our

model in an encoder-decoder paradigm. Following the prac-

tice of most previous work, we adopt the VGG-16’s feature

extraction part in this part. As Fig. 2 shows, we retain the

first 10 convolutional layers and 3 pooling layers. There-

fore, we can get feature maps with sizes of 1, 1/2, 1/4, and

1/8 from each stage.

3.2. Crowd region recognizer (CRR)

Because the crowd images contain different scenes, ac-

curate crowd counting may be hindered by complex back-

grounds. Even if the overall estimated number of people

is close to the groundtruth, it may be caused by the un-

derestimation of the crowd area and the false recognition

of the background area. To address this issue, estimated

coarse-grained attention maps (CAM) from CRR try to clas-

sify each pixel in feature maps into two categories: crowd

and background region. Detailed configuration of the CRR

module is: C(256,3)-U-C(128, 3)-U-C(128, 3)-U-C(64, 3)-

C(1, 3), where C means convolution layer and U means bi-

linear upsample layer with rate=2. At each stage in CRR,

the feature maps are fed into a 3×3 Conv layer to regress

a coarse-grained attention map which is then fed into cor-

responding stage in DLE. Losses calculated on multi-stage

are summed and backpropagated as the gray arrow in Fig.

2. We will describe how to generate the groundtruth CAM,

i.e., learning objective of this module, in Section 4.1.

3.3. Density level estimator (DLE)

The CRR module only implements a coarse-grained at-

tention mechanism, that is, it only distinguishes between

people and background. The goal of the DLE module is

to further classify the crowd area into different density lev-

els, because for high-density areas, we should give more

attention, and for low-density areas, we should give less

attention. Similar to CRR, this module should also try to

suppress the influence of unmanned background. To this

end, we divide all pixels into k categories according to the

threshold obtained from statistics and consider it as a k-

class classification problem. This process of the generating

groundtruth FAM, i.e., learning objective of DLE module,

is detailed in Section 4.1. After the k-class classification,

different attention weights are assigned accordingly: pixels

classified to class 0 are regarded as the background, and the

attention weight are set to 0. For other density levels, we

divide the range of (0,1] into k-1 categories to correspond.

For example, when k is 6, classes 1-5 correspond to 0.2, 0.4,

0.6, 0.8 and 1 respectively. Regarding the number of cate-

gories, we have conducted an experimental comparison, and

found that when the number of categories is set to 6, the

performance is best. Detailed experimental results can be
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Figure 3. Comparison of attention-based methods. AME means attention map estimator. DME means density maps estimator. Proposed

method is (d).

seen in section 4. Detailed configuration of the DLE mod-

ule is: C(256,3)-U-C(256, 3)-U-C(128, 3)-U-C(64, 3)-C(k,

3), where C means convolution layer and U means bilinear

upsample layer. At each stage in DLE, feature maps are fed

into a 3×3 Conv layer and regress a fine-grained attention

map. Similar to CRR, losses calculated on multi-stage are

summed and backpropagated as the green arrow in Fig. 2.

Since we already have the CAM from CRR, we can make

full use of it to refine the FAM:

FAM = FAM + CAM (1)

Then the FAM is fed into the corresponding stage in the

next part.

3.4. Density map estimator

This module’s configuration is almost symmetrical with

the feature map extractor. Since CFANet aims to estimate

high-resolution and high-quality density maps, DME is con-

structed with a set of convolutional and upsample layers:

C(512, 3)-U-C(256, 3)-U-C(256, 3)-U-C(64, 3)-C(1, 1),

where C is convolution and U bilinear upsample layer. We

set dilation rate = 2 in all convolutional layers to enlarge the

receptive field.

There have been studies using the attention map to better

focus on the crowd area. As Fig. 3 shows, (a) and (b) train

a separate network to predict the attention map. (a) multi-

plies the input image with predicted attention map and then

use it for regression. (b) multiplies feature maps extracted

by the frontend with the predicted attention map. (c) inserts

an attention branch to predict attention map before the last

convolutional layer. The density map is multiplied with the

predicted attention map as the final output. It is worth not-

ing, however, that the weights assigned to the background

area by estimated attention map is not equal to 0, so the

influence cannot be completely suppressed with one-time

combination. Therefore, we adopt a multi-scale attention

combination method, as shown in Figure 3 (d). At each

stage in this module, the feature maps (FM) are combined

with the fine-grained attention maps (FAM) from the DLE

in a residual way:

FM = FM + FAM ∗ FM (2)

In this way, the attention effects are enhanced and different

areas are paid adaptive attention with the aid of fine-grained

attention maps.

We also employ a multi-level supervision mechanism.

Feature maps in each stage will be upsampled to the size of

the input image, and fed into a 3×3 convolutional layer to

regress a density map as the blue arrow in Fig. 2 indicates.

Therefore, for each input image, CFANet will produce 4

density maps and the 4 losses of are summed and backprop-

agated. Generally, a deeper network has stronger expression

ability, so we regard the output of the last layer as the final

output.

3.5. Loss function

We first introduce a structural loss function (SL) that

considers both structural similarity and counting accuracy.

The definition is as follows:

SL =
1

K

K
∑

j=1

(1− SSIM(Poolj(DM), Poolj( ˆDM)))

(3)

SSIM(X,Y ) = 1−(
(2µXµY + C1) (2σXY + C2)

(µ2
X + µ2

Y + C1) (σ2
X + σ2

Y + C2)
)

(4)

where DM and ˆDM mean groundtruth and estimated den-

sity map and Poolj means downsampling to 1
2j−1 size with

average pooling. µ denotes the local mean and σ is the lo-

cal variance, σXY is the local covariance. C1 and C2 are

set to 0.01 and 0.03. K is set to 3. SSIM of high resolu-

tion density maps can focus on spatial details and improve

structural similarity. SSIM of downsampled density maps

can improve global counting accuracy.
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To reduce the false recognition ratio, we add a

background-aware loss item (BL):

BL =
Cbg

Ctotal

(5)

where Ctotal is the estimated total people count and Cbg

is the estimated people count in the background area.

The background area is divided in the same way as the

groundtruth CAM which is detailed in section 4.1.

The loss function (BSL) for density map optimization is

the sum of SL and BL.

To optimize the coarse- and fine-grained attention maps,

we use cross-entropy as the loss function.

The final loss function is the weighted sum of density

map and attention maps loss functions at multiple stages.

Ltotal = SL+BL+ λLCAM + µLFAM (6)
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Figure 4. Dynamic weight adjustment strategy.

Since it is the easiest task to divide the image into back-

ground and crowd, and the density multi-classification has

medium difficulty, and it is the most difficult to regress the

accurate density value of each pixel, we adopt a dynamic

weight adjusting strategy in the loss function. In the ini-

tial training stage, the network cannot accurately capture

the distribution features. Therefore, we focus more on the

easy tasks, and set the weights of binary classification and

multi-class classification large. As the training process pro-

gresses, the representative ability of the network continues

to improve, and the features can be better captured. At this

time, the weight of density map loss is adjusted to be larger.

This process is shown in the Fig. 4.

4. Experiments and Analysis

4.1. Datasets and Evaluation Criteria

We evaluate the performance of proposed CFANet on

four major crowd counting datasets: ShanghaiTech [29],

UCF CC 50 [5], UCF-QNRF [6] and Mall [2]. The detailed

comparisons are described in the following subsections.

Groundtruth Generation. We first generate

groundtruth density maps and then generate groundtruth

coarse- and fine-grained attention maps. For density maps,

following [29], each labeled head pj is substituted with

a Gaussian kernel N
(

pi, σ
2
)

, where σ is the average

distance of pj and its 3 nearest neighbors. The kernel is

normalized to 1, so the integral of the density map is equal

to the labeled people count. For CAM, we set the value

to 1 for one pixel if the value ≥ 1e − 5 for corresponding

position in density map and 0 otherwise to obtain the

groundtruth. For FAM, we categorize one pixel to class

0 if its value < 1e − 5 in density map, and then count

all the other values and divide them into k − 1 categories

from large to small, and each pixel’s class is assigned

accordingly.

We adopt Mean Absolute Error(MAE) and Root Mean

Square Error(RMSE) for evaluating the counting accuracy:

MAE =
1

N

N
∑

i=1

∣

∣Countiest − Countigt
∣

∣ (7)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Countiest − Countigt)
2 (8)

SSIM and PSNR are used for evaluating the quality of den-

sity maps.

4.2. Implementation Details

During training, each image is random cropped to 1
2

size, then horizontal flipped at possibility 0.5 to enlarge the

dataset. Pre-trained VGG-16 on ImageNet is used to initial-

ize the parameters of the feature map extractor, and other

parameters are randomly initialized by Gaussian distribu-

tion with δ = 0.01. We train our network with Adam opti-

mizer for 500 epochs and learning rate is initially set to 2e-5

and reduced by half every 100 epochs. We also multiply the

density maps by an expansion factor=50 as the directly gen-

erated pixel values are quite small.

4.3. Comparison with State­of­the­art Methods

We compare our model with state-of-the-art crowd den-

sity maps estimation methods since 2016.

ShanghaiTech dataset consists of PartA and PartB.

PartA has 300 training images and 182 testing images with

relatively high density. PartB has 400 training images and

316 testing images with relatively low density. As Table

1 shows, CFANet outperforms the state-of-the-art methods.

Specifically, we improve the MAE by 1.6% and achieve the

second best RMSE on PartA sub-dataset, and improve the

MAE by 3.0% and the RMSE by 1.0% on PartB sub-dataset.

These results suggest that our method can be well applied

in both crowded and sparse scenes.

UCF CC 50 dataset includes 50 crowd images with ex-

tremely high density. This dataset is quite challenging not
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Method
PartA PartB

MAE RMSE MAE RMSE

CSRNet[8] 68.2 115.0 10.6 16.0

SANet[1] 67.0 104.5 8.4 13.6

TEDNet[7] 64.2 109.1 8.2 12.8

ADCrowdNet[13] 63.2 98.9 7.7 12.9

AT-CSRNet[30] - - 8.1 13.5

CAN[14] 62.3 100.0 7.8 12.2

Bayesian loss[15] 62.8 101.8 7.7 12.7

DSSINet[11] 60.6 96.0 6.9 10.3

RANet[28] 59.4 102.0 7.9 12.9

S-DCNet[25] 58.3 95.0 6.7 10.7

PGCNet[27] 57.0 86.0 8.8 13.7

Ours 56.1 89.6 6.5 10.2
Table 1. Comparison of performance on ShanghaiTech dataset.

Top two performance are highlighted in bold and underline.

only because of the quite limited labeled images, but also

because the people count in each image varies from 94

to 4543 with an average of 1279.5. We follow the stan-

dard 5-fold cross-validation in [5]. As shown in Table 2,

we achieve the best MAE and the second best RMSE per-

formance. Although this dataset has very limited labeled

images, proposed CFANet can still get a promising result,

which shows its capacity when there is a training sample

shortage.

Method MAE RMSE

CSRNet[8] 266.1 397.5

ADCrowdNet[13] 257.1 363.5

CAN[14] 212.2 243.7

PGCNet[27] 244.6 361.2

Bayesian loss[15] 229.3 308.2

SANet[1] 258.4 334.9

TEDNet[7] 249.4 354.5

DSSINet[11] 216.9 302.4

RANet[28] 239.8 319.4

S-DCNet[25] 204.2 301.3

Ours 203.6 287.3
Table 2. Comparison of performance on UCF CC 50 dataset. Top

two performance are highlighted in bold and underline.

UCF-QNRF is the most up-to-date large scale crowd

image dataset. It has 1535 labeled images in total, with

1201 images for training and 334 images for testing. The

people count in each image ranges from 49 to 12865, which

makes it quite challenging and diverse. Because the resolu-

tions vary in a large range, we resize the images to ensure

that the longer side falls in [1024, 2048] in the training pro-

cess. In the testing process, we use the original images.

The comparison is summarized in Table 3, our method

delivers the best RMSE, surpassing the second best ap-

proach by 1.6%, and the second best MAE, which is quite

close to the best one.

Method MAE RMSE

CAN[14] 107 183

TEDNet[7] 113 188

RANet[28] 111 190

S-DCNet[25] 104.4 176.1

SFCN[23] 102.0 171.4

DSSINet[11] 99.1 159.2

MBTTBF-SFCB[20] 97.5 165.2

Bayesian loss[15] 88.7 154.8

Ours 89.0 152.3
Table 3. Comparison of performance on UCF-QNRF dataset. Top

two performance are highlighted in bold and underline.

Mall dataset [2] consists of 2000 frames obtained from

a stationary surveillance camera in a mall. The images have

a resolution of 320×480. Following the same setting as [2],

the first 800 frames are used as training frames and the re-

maining 1200 frames are used for testing. It can be viewed

from Table 4 that our method get the best performance in

both MAE and RMSE, improving the performance by 6.3%

and 7.1%, which demonstrates that our method also has the

superior capacity in low-density scenes.

Method MAE RMSE

ConvLSTM[24] 2.10 7.6

DRSAN[12] 1.73 2.1

DecideNet[10] 1.52 1.90

AT-CFCN[30] 2.28 2.90

E3D[31] 1.64 2.13

SAAN[4] 1.28 1.68

Ours 1.20 1.56
Table 4. Comparison of performance on Mall dataset. Top two

performance are highlighted in bold and underline.

We select representative images from each dataset and

compare the predicted density map with groundtruth in Fig.

5. It can be viewed that the distribution of crowd is very

close to the groundtruth.

Figure 5. Visualization of density maps. Three rows from top to

bottom are input image, groundtruth and estimated density maps

from CFANet respectively.

Some feature maps from internal layers are visualized in
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6. Refined feature maps in the last column retain most fea-

ture in crowd areas and discard unrelated features in back-

ground areas and help reduce false recognition ratio.

Figure 6. Feature maps before and after refined by fine-grained

attention maps. Four columns from left to right are input image,

original feature maps, fine-grained attention map (FAM) and fea-

ture maps refined by FAM. The background area is highlighted by

the mask.

We also compare the density map quality under SSIM

and PSNR criterion. The performances are summarized in

Table 5. On the ShanghaiTech PartA dataset, density maps

produced by our method have the best quality. Note that

our estimated density maps have the same resolution as the

input image. This indicates that proposed CFANet has the

capacity of improving the quality of high-resolution density

maps as well as predicting accurate people count.

Method SSIM PSNR

MCNN[29] 0.52 21.40

CSRNet[8] 0.76 23.79

ADCrowdNet[13] 0.88 24.48

TEDNet[7] 0.83 25.88

Ours 0.88 30.11
Table 5. SSIM and PSNR comparisons on ShanghaiTech PartA

dataset.

As described previously, we propose this method to sup-

press the influence of irrelevant background and reduce

false recognition. To find out if CFANet can function well

in this aspect, we set a criterion for judging the ratio of false

recognition in the background. In the testing process, we

separate the estimated people count in the background and

crowd area, and calculate the proportion of these two parts

to the total number of people. To be more specific, for each

image in the testing set, the pixels with value< 1e − 5 are

considered as in the background area, and others are con-

sidered as in the crowd area. By accumulating the pixel

values of the background area, we can obtain the corre-

sponding estimated number of people: Countbgest. The ratio

rbg = Countbgest/Countest represents the false recognition

ratio, and the lower it is, the less false recognition there is.

We compare the rbg of proposed method with two open-

source methods CSRNet1 and CAN2 and removing the BL

1https://github.com/leeyeehoo/CSRNet-pytorch
2https://github.com/weizheliu/Context-Aware-Crowd-Counting

item (Equation 5) in loss function. Results in Table 6 val-

idate the effectiveness of CFANet and background-aware

loss item in suppressing the false recognition in the back-

ground area.

Method PartA PartB

CSRNet[8] 0.0381 0.0857

CAN[14] 0.0283 0.0359

Ours w/o bg-aware loss 0.0205 0.0245

Ours w. bg-aware loss 0.0184 0.0219
Table 6. Comparison of false recognition ratio in estimated density

maps on ShanghaiTech dataset.

4.4. Ablation Study

We conduct extensive ablation studies on ShanghaiTech

PartA dataset to analyze the impact of different settings of

the network and training process.

The effectiveness of CRR and DLE. Since we have in-

troduced two new branches: CRR and DLE, we first try

to analyze the impact of branch setting and identify if they

can bring improvement to the performance. We construct

the ’baseline’ by removing the CRR and DLE. We then

add the CRR and DLE respectively to build ’w. CRR’

and ’w. DLE’. Finally, both branches are integrated as ’w.

CRR+DLE’, which is the default setting in experiments.

The results are reported in Table 7. We can see that the in-

tegration of CRR and DLE branch can both bring improve-

ment, demonstrating the effectiveness of attention mecha-

nism, and by combining them the best performance can be

achieved.

Network MAE RMSE

baseline 63.7 102.9

w. CRR 56.9 91.8

w. DLE 60.2 99.4

w. CRR+DLE 56.1 89.6
Table 7. Ablation study on CRR and DLE branch configuration.

Multi-level supervision. Table 8 reports the per-

formance of using different supervision’s setting.

Supervision i corresponds using the i-th blue arrow

in Fig. 2. We can see that the commonly used setting,

single Supervision 4, can only produce a relatively low

accuracy. The more supervision is integrated, the more

improvement it can bring to the model’s accuracy and

using all 4 supervision achieves the best performance. This

undoubtedly demonstrates the superiority of the multi-level

supervision mechanism.

Class number in DLE branch. As described previ-

ously, we need to specify a class number for the multi-class

classification problem in DLE branch. If the class number

is too small, the features of each category are not repre-

sentative enough. If the number is too big, the differences
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Supervision MAE RMSE

Supervision 4 69.5 109.1

Supervision 3 ∼ 4 64.6 106.3

Supervision 2 ∼ 4 62.0 97.1

Supervision 1 ∼ 4 56.1 89.6
Table 8. Ablation study on supervision setting.

between classes can be too little to capture. To find out an

appropriate setting, we have tried setting it to 4, 6, 8, 10,

and experimental results in Table 9 show that setting it to 6

can achieve the best performance.

Class number MAE RMSE

4 56.9 91.3

6 56.1 89.6

8 57.4 91.7

10 57.9 92.9
Table 9. Ablation study on density level class number setting.

5. The Impact of Loss Functions

Many kinds of loss functions have been proposed to im-

prove the performance of density map estimation models.

Here we firstly describe existing loss functions briefly, and

then compare proposed BSL with them.

Mean Square Error (MSE) is the most widely used loss

function which computes the average of the square error of

each pixel in density maps.

Spatial Abstraction Loss (LSA) and Spatial Correlation

Loss (LSC) are proposed by [7]. LSA computes MSE
losses on multiple abstraction levels and LSC further com-

putes global consistency.

Mean Absolute Error (MAE) is introduced by [18] to

add robustness to outliers. MAE and MSE are jointly op-

timized in training.

Multi-scale density level consistency loss (Lc) is pro-

posed by [3] which combines pixel-wise MSE with MAE
of globally averaged density maps.

Bayesian loss (LBayes+) is introduced by [15], which

constructs a density contribution probability model from the

point annotations, instead of constraining the value at every

pixel in the density map.

SSIM is firstly introduced by [1] as loss function

(LSSIM ) to improve the quality of results by incorporating

the local correlation in density maps.

Dilated Multiscale Structural Similarity (DMS-SSIM)

loss (LDS) is introduced by [11]. The DMS-SSIM network

for computing the LDS consists of m = 5 dilated convolu-

tional layers with dilation rates of 1, 2, 3, 6 and 9.

5.1. Impact on Counting Accuracy

We evaluate the impact of loss functions on counting

accuracy by training CFANet with the above existing loss

functions and proposed BSL on ShanghaiTech PartA and

UCF-QNRF datasets. As Table 10 shows, BSL achieves the

best performance on both datasets, which validate its effec-

tiveness.

Loss function
ST PartA UCF-QNRF

MAE RMSE MAE RMSE

MSE 63.6 104.5 101.9 170.4

LSA + LSC[7] 64.2 109.1 113.0 188.0

LC[3] 65.2 107.7 101.3 174.2

MSE +MAE[18] 59.7 98.2 99.4 164.8

LBayes+[15] 66.4 113.9 97.2 160.6

LSSIM [1] 64.9 107.4 108.8 179.5

LDS[11] 60.6 96.0 99.1 159.2

BSL 56.1 89.6 89.0 152.3
Table 10. Comparison of loss functions on ShanghaiTech PartA

and UCF-QNRF datasets.

In order to further validate BSL’s robustness on differ-

ent models, we replace original MSE loss function with

proposed BSL on MCNN[29], CSRNet[8] and CAN[14] on

ShanghaiTech PartA dataset. Results in Table 11 show that,

without changing the network, using BSL can improve the

performance on multiple models significantly.

Model
Using MSE/BSL

MAE RMSE

MCNN[29] 110.2/88.2↑20.0% 173.2/140.5↑18.9%

CSRNet[8] 68.2/63.1↑7.5% 115.0/102.5↑10.9%

CAN[14] 62.3/59.0↑5.3% 100.0/90.1↑9.9%

Table 11. Comparison of BSL and MSE on multiple models.

6. Conclusion

In this paper, we present a new model named Coarse- and

Fine-grained Attention Network (CFANet) for high-quality

crowd density map generation and people counting. By

incorporating Crowd Region Recognizer (CRR) and Den-

sity Level Estimator (DLE) to estimate coarse- and fine-

grained attention maps, feature maps for regressing the den-

sity maps are refined on multi-scale and the network can

better focus on the crowd region. We also adopt multi-

level supervision to help facilitate the backpropagation of

gradient and reduce overfitting. In addition, we propose a

novel and effective loss function named Background-aware

Structural Loss (BSL), which can achieve better counting

accuracy and enhance structural similarity as well as re-

duce false recognition ratio. Combining proposed CFANet

with BSL can outperform current state-of-the-art methods

on most mainly used datasets.
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