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Abstract

The detection of manufacturing errors is crucial in fabri-

cation processes to ensure product quality and safety stan-

dards. Since many defects occur very rarely and their char-

acteristics are mostly unknown a priori, their detection is

still an open research question. To this end, we propose Dif-

ferNet: It leverages the descriptiveness of features extracted

by convolutional neural networks to estimate their density

using normalizing flows. Normalizing flows are well-suited

to deal with low dimensional data distributions. However,

they struggle with the high dimensionality of images. There-

fore, we employ a multi-scale feature extractor which en-

ables the normalizing flow to assign meaningful likelihoods

to the images. Based on these likelihoods we develop a

scoring function that indicates defects. Moreover, propa-

gating the score back to the image enables pixel-wise lo-

calization. To achieve a high robustness and performance

we exploit multiple transformations in training and evalua-

tion. In contrast to most other methods, ours does not re-

quire a large number of training samples and performs well

with as low as 16 images. We demonstrate the superior per-

formance over existing approaches on the challenging and

newly proposed MVTec AD [4] and Magnetic Tile Defects

[14] datasets.

1. Introduction

In industrial manufacturing processes the quality of the

products is constantly monitored and improved. Hence,

small defects during fabrication need to be detected reliably.

However, manufacturers do not know in advance which

types of defects will occur and most of them appear so in-

frequently that no defective examples are available. Even

if some defect types are known, new types can still occur

any time due to unforeseeable events during manufacturing.

Consequently, reliable defect detection cannot be done with

supervised machine learning approaches. We propose a so-

lution for semi-supervised defect detection where only pos-
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Figure 1. DifferNet assigns likelihoods to inputs which makes it

usable to detect defects. In contrast to the top left image without

any defect, the top middle image is assigned to a high anomaly

score due to the defect (see the enlarged patch on the right side).

Additionally, DifferNet identifies the defective region by back-

propagating the likelihood loss up to the input which gives a gra-

dient map (top right image). This allows for a detailed analysis of

defect position and shape.

itive examples and no defective examples are present during

training. This is also known as anomaly detection.

In general, anomaly detection describes the problem of

determining whether a data sample differs from a set of

given normal data. There are various approaches for gen-

eral anomaly detection on images, summarized in Section 2.

Defect detection is a specific sub-problem where visually

similar normal samples and only slightly different anoma-

lous samples are present. While traditional anomaly detec-

tion methods are well-suited to data with high intra-class

variance, they are not able to capture subtle differences. We

tackle this problem by employing an accurate density esti-

mator on image features extracted by a convolutional neu-

ral network. The feature distribution of normal samples is
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captured by utilizing the latent space of a normalizing flow

[22]. Unlike other generative models such as variational au-

toencoders [17] or GANs [12], there exists a bijective map-

ping between feature space and latent space in which each

vector is assigned to a likelihood. This enables DifferNet

to calculate a likelihood for each image. From this likeli-

hood we derive a scoring function to decide if an image con-

tains an anomaly. Figure 1 visualizes the core idea behind

our method. The most common samples are assigned to

a high likelihood whereas uncommon images are assigned

to a lower likelihood. Since defects are not present during

training, they are mapped to a low likelihood. We further

improve the descriptiveness of the feature extractor by us-

ing multi-scale inputs. To derive a meaningful scoring func-

tion, we include likelihoods of several transformations of

the image. Thereby DifferNet gains flexibility and robust-

ness to detect various types of defects. We show that our

method considers even small changes in data while other

approaches struggle to detect them. Moreover, due to the

efficiency of the feature extractor and the proposed image

transformations, our approach even outperforms the state of

the art when trained with a low number of training samples.

Besides defect detection, DifferNet’s architecture allows for

localization of defects by having expressive gradients of in-

put pixels regarding the scoring functions. A high magni-

tude of the gradient in an image region signals an area with

anomalous features which helps to identify the defect.

Our work comprises the following contributions:

• Detection of anomalies via the usage of likelihoods

provided by a normalizing flow on multi-scale image

features with multi-transform evaluation.

• Anomaly localization without training labels, the ne-

cessity of any pixel-wise optimization and sub-image

detection.

• Applicability on small training sets. Even with a low

number of training examples our approach achieves

competitive results.

• State-of-the-art detection performance on MVTec AD

and Magnetic Tile Defects.

• Code is available on GitHub 1.

2. Related Work

2.1. Anomaly Detection

Existing methods for anomaly detection can be roughly

divided into approaches based on generative models and

pretrained networks. The most relevant methods to our

work are briefly presented in the following subsections.

Note that we focus on works that deal with image anomaly

1https://github.com/marco-rudolph/differnet

detection rather than anomaly localization to keep the focus

on our main problem.

2.1.1 Detection with Pretrained Networks

There are several works which use the feature space of a

pretrained network to detect anomalies. In most cases sim-

ple traditional machine learning approaches are used to ob-

tain an anomaly score. Andrews et al. [2] apply a One-

Class-SVM on VGG [28] features of the training images.

Nazare et al. [21] evaluated different normalization tech-

niques to have a 1-Nearest-Neighbor-classifier on a PCA-

reduced representation of the feature space. Localization

of the anomalies is achieved by evaluating the method on

many overlapping patches. However, this is very costly.

Sabokrou et al. [25] models the anomaly-free feature dis-

tribution as an unimodal Gaussian distribution. Therefore,

they cannot capture multimodal distributions as opposed to

our method.

These techniques only work for particular classes in de-

fect detection. In contrast to our proposed DifferNet, ex-

isting approaches do not appear to be robust and power-

ful enough for defect detection. None of the above tech-

niques take advantage of the flexibility of another neural

network on top of the pretrained model. Another benefit of

our method compared to these approaches is being able to

compute gradients w.r.t. the inputs which can be utilized to

compute anomaly maps.

2.1.2 Generative Models

Generative models, such as autoencoders [19, 17, 23] and

GANs [12], are able to generate samples from the manifold

of the training data. Anomaly detection approaches using

these models are based on the idea that the anomalies cannot

be generated since they do not exist in the training set.

Autoencoder-based approaches try to detect anomalies

by comparing the output of an autoencoder to its input.

Thus, a high reconstruction error should indicate an anoma-

lous region. Bergmann et al. [5] proposes SSIM-loss to

make the reconstruction error dependent on visual similar-

ity. In many cases autoencoder-based methods fail because

they generalize too strongly, i.e. anomalies can be recon-

structed as good as normal samples. Gong et al. [11] tackle

the generalization problem by employing memory modules

which can be seen as a discretized latent space. Zhai et al.

[30] connect regularized autoencoders with energy-based

models to model the data distribution and classify samples

with high energy as an anomaly.

GAN-based approaches assume that only positive sam-

ples can be generated. Schlegl et al. [26] propose a two-

stage training method: The GAN is learned first and an en-

coder is optimized as an inverse generator. Using the gen-

erator as decoder enables the calculation of a reconstruc-
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Figure 2. Overview of our pipeline: Multiple scales of a transformed input image are fed into a feature extractor. The distribution of its

concatenated outputs is captured by transforming it via a normalizing flow (NF) into a normal distribution by maximum likelihood training.

tion loss alongside the difference in discriminator features

of original and reconstructed image to obtain an anomaly

score. Akcay et al. [1] make use of adversarial training by

letting an autoencoder directly act as generating part of the

GAN. This enforces the property of the decoder to only gen-

erate normal-like samples which can be measured by the

difference between the embedding of the original and the

reconstructed data.

We argue that generative models are appropriate for a

wide range of defect detection scenarios since they strongly

depend on the anomaly type. For example, the size and

structure of the defective area heavily influence the anomaly

score. If the region of interest shows high frequency struc-

tures, they cannot be represented accurately. Often, other

instance-specific structures influence the reconstruction er-

ror more than the anomaly. In contrast, we show that Dif-

ferNet handles significantly more and various defect types.

Additionally, our method does not rely on a large number

of training samples compared to generative models.

2.2. Normalizing Flows

Normalizing Flows (NF) [22] are neural networks that

are able to learn transformations between data distributions

and well-defined densities. Their special property is that

their mapping is bijective and they can be evaluated in both

directions. First, they assign likelihoods to a given sample.

Second, data is generated by sampling from the modeled

distribution. The bijectivity is ensured by stacking layers

of affine transforms which are fixed or autoregressive. A

common class of such autoregressive flows is MADE (Ger-

main et al. [9]) which makes use of the Bayesian chain rule

to decompose the density. These models can learn distribu-

tions of large datasets containing of mostly small images. In

contrast, we capture the distribution of a comparably small

number of images at a high resolution. Autoregressive flows

compute likelihoods fast, but are slow at sampling. Inverse

autoregressive flows, proposed by Kingma et al. [16], show

the exact opposite behavior. Real-NVP [8] can be seen

as a special inverse autoregressive flow which is simplified

such that both forward and backward pass can be processed

quickly. Similar to Ardizzone et al. proposed for Invertible

Neural Networks [3], we integrate a parametrized clamping

mechanism to the affine transformation of the Real-NVP-

layers to obtain a more stable training process. Details to

the so-called coupling layers and the clamping mechanism

of Real-NVP are explained in Section 3.1.

The property of normalizing flows as an adequate esti-

mator of probability densities to detect anomalies has not

raised much attention yet, although some works present

promising results using Real-NVP and MADE [24, 27, 7].

However, none of the works deal with visual data.

3. Method

Figure 2 shows an overview of our pipeline. Our method

is based on density estimation of image features y ∈ Y from

the anomaly-free training images x ∈ X . Let fex : X −→ Y

be the mapping of a pretrained feature extractor which is

not further optimized. The estimation of pY (y), provided

by fex(x), is achieved by mapping from Y to a latent space

Z – with a well-defined distribution pZ(z) – by applying

a normalizing flow fNF : Y −→ Z. Likelihoods for im-

age samples are directly calculated from pZ(z). Features of

anomalous samples should be out of distribution and hence

have lower likelihoods than normal images. Likelihoods of

multiple transforms on the image are maximized in training

and used in inference for a robust prediction of the anomaly

score. To capture structures at different scales and thus hav-

ing a more descriptive representation in y, we further define

fex as the concatenation of features at 3 scales.

3.1. Normalizing Flow

The normalizing flow acts as a bijector between feature

space Y and latent space Z by using affine transformations.

Likelihoods are computed from Z according to the mod-

elled distribution. We model z ∼ N (0, I) in our latent

space which gives us a well-defined density pZ(z) for z.

Following from bijectivity, for every feature input there is a

unique z of the same dimension and vice versa.

3.1.1 Architecture

We use an architecture of coupling layers as proposed in

Real-NVP [8]. The detailed structure of one block is shown

in Figure 3. The design of fNF is a chain of such blocks,
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Figure 3. Architecture of one block inside the normalizing flow: After a fixed random permutation, the input is split into two parts that

regress scale and shift parameters to transform their respective counterpart. Symbols ⊙ and ⊕ denote element-wise multiplication and

addition, respectively. Numerical operations are symbolized by grey blocks. White blocks contain variable names.

consisting of permutations followed by scale and shift op-

erations.

To apply the scale and shift operations, the input yin is

split into yin,1 and yin,2 that manipulate each other by re-

gressing multiplicative and additive components in subnet-

works s and t; these manipulations are applied to their re-

spective counterpart successively. The scale and shift oper-

ations are described by

yout,2 = yin,2 ⊙ es1(yin,1) + t1(yin,1)

yout,1 = yin,1 ⊙ es2(yout,2) + t2(yout,2),
(1)

with ⊙ as the element-wise product. Using an exponential

function before scaling preserves the affinity property by

ensuring non-zero coefficients. The internal functions s and

t can be any differentiable function, which in our case is im-

plemented as a fully-connected network that regresses both

components by splitting the output (see Figure 3). Similar

to Ardizzone et al. [3], we apply soft-clamping to the val-

ues of s to preserve model stability which is crucial in our

case for better convergence. This is achieved by using the

activation

σα(h) =
2α

π
arctan

h

α
(2)

as the last layer of s. This prevents large scaling compo-

nents by restricting s(y) to the interval (−α, α).

Each block first performs a predefined random permu-

tation on the features to allow each dimension to affect all

other dimensions at some point. The output of one coupling

block is given by the concatenation of yout,1 and yout,2.

3.1.2 Training

The goal during training is to find parameters for fNF that

maximize likelihoods for extracted features y ∈ Y which

are quantifiable in the latent space Z. With the mapping z =
fNF(y) and according to the change-of-variables formula

Eq. 3, we describe this problem as maximizing

pY (y) = pZ(z)

∣

∣

∣

∣

det
∂z

∂y

∣

∣

∣

∣

. (3)

This is equivalent to maximizing the log-likelihood, which

is more convenient here, since the terms simplify when in-

serting the density function of a standard normal distribu-

tion as pZ(z). We use the negative log-likelihood loss L(y)
to obtain a minimization problem:

log pY (y) = log pZ(z) + log

∣

∣

∣

∣

det
∂z

∂y

∣

∣

∣

∣

L(y) =
‖z‖22
2

− log

∣

∣

∣

∣

det
∂z

∂y

∣

∣

∣

∣

.

(4)

Intuitively, we want fNF to map all y as close as possible to

z = 0 while penalizing trivial solutions with scaling coeffi-

cients close to zero2. The latter in ensured by the negative

log determinant of the Jacobian ∂z
∂y

in L(y). In our case

the log determinant of the Jacobian is the sum of scaling

coefficients before exponentiation.

During Training, L(y) is optimized for features y of dif-

ferent transformations of an input image for a fixed epoch

length. Section 4.2 describes the training in more detail.

3.2. Scoring Function

We use the calculated likelihoods as a criterion to clas-

sify a sample as anomalous or normal. To get a ro-

bust anomaly score τ(x), we average the negative log-

likelihoods using multiple transformations Ti(x) ∈ T of

an image x:

τ(x) = ETi∈T [− log pZ(fNF(fex(Ti(x))))]. (5)

As T we choose rotations and manipulations of bright-

ness and contrast. An image is classified as anomalous if the

anomaly score τ(x) is above the threshold value θ. Thus,

the decision can be expressed as

A(x) =

{

1 for τ(x) ≥ θ

0 for τ(x) < θ
, (6)

where A(x) = 1 indicates an anomaly. In Section 4 θ is

varied to calculate the Receiver Operating Characteristic

(ROC).

2The exponentiation inhibits the coefficients from being zero.
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Figure 4. Samples of defect-free and defective images from Mag-

netic Tile Defects [14].

3.3. Localization

In contrast to several other approaches, ours is not op-

timized for localizing the defects on the image. Neverthe-

less, our method localizes areas where anomalous features

occur. Our method allows for propagating the negative log-

likelihood L back to the input image x. The gradient ∇xc

of each input channel xc is a value indicating how much

the pixels influence the error which relates to an anomaly.

For better visibility we blur these gradients with a Gaussian

kernel G and sum the absolute values over the channels C

according to

gx =
∑

c∈C

|G ∗ ∇xc|, (7)

with ∗ as 2D convolution and | · | as the element-wise abso-

lute value, which results in the gradient map gx. Averaging

the maps of multiple rotations of one single image – after

rotating back the obtained maps – gives a robust localiza-

tion.

4. Experiments

4.1. Datasets

In this paper, we evaluate our approach on real-world de-

fect detection problems. We use the challenging and newly

proposed datasets MVTec AD [4] and Magnetic Tile De-

fects (MTD) [14]. The difficulty in these datasets lies in the

similarity of anomalies and normal examples.

To the best of our knowledge, MVTec AD is the only

publicly available multi-object and multi-defect anomaly

dataset. It contains 5354 high-resolution color images of

10 object and 5 texture categories. The number of train-

ing samples per category ranges from 60 to 320, which is

challenging for the estimation of the distribution of normal

samples. Several defect types per category, such as little

cracks, deformations, discolorizations and scratches are oc-

curring in the test set. Some of which are shown in Figure 8.

In total, the dataset includes 70 defect types. The anomalies

differ in their size, shape and structure and thus cover sev-

eral scenarios in industrial defect detection.

Magnetic Tile Defects [14] comprises grayscale images

of magnetic tiles under different illuminations with and
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Figure 5. ROC-Curve for different methods for detecting defects

in MTD. DifferNet is significantly more accurate in detecting the

defects compared to other approaches. Best viewed in color.

without defects. Such tiles should provide a constant mag-

netic potential in engines. We split the 952 defect-free im-

ages randomly into a train and a test set, where the test set

contains 20% of the data. All 392 defect images are used for

testing. These show frayed or uneven areas, cracks, breaks

and blowholes as anomalies, as shown in Figure 4. A lot

of defect-free images contain variations that are similar to

anomalies.

4.2. Implementation Details

For all experiments, we use the convolutional part of

AlexNet [18] as the feature extractor and apply global aver-

age pooling on each feature map at each scale. We tested

more complex topologies, for instance ResNet [13] and

VGG [28], but did not observe better performance. We pre-

fer the smaller AlexNet since it is sufficient for our purpose.

The feature extractor is pretrained on ImageNET and re-

mains fixed during training. We use features at 3 scales with

input image sizes of 448 × 448, 224 × 224 and 112 × 112
pixels - resulting in 3 ·256 = 768 features. The normalizing

flow consists of 8 coupling blocks with fully connected net-

works as internal functions s and t. These include 3 hidden

dense layers with a size of 2048 neurons and ReLU activa-

tions. We set the mentioned clamping parameter α = 3. For

training, we use the Adam Optimizer [15] with the author-

suggested β- parameters and a learning rate of 2 · 10−4. As

transformations T , random rotations, which are uniformly

distributed in the interval [0, 2π], are applied. In addition,

we manipulated the contrast and brightness of the magnetic

tiles with an uniformly distributed random factor in the in-

terval [0.85, 1.15]. In each case of training and inference

the same transformations are applied. We train our models

for 192 epochs with a batch size of 96.
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Category GeoTrans GANomaly DSEBM OCSVM 1-NN DifferNet DifferNet

[10] [1] [30] [2] [21] (ours) (16 shots)

Grid 61.9 70.8 71.7 41.0 55.7 84.0 65.8

Leather 84.1 84.2 41.6 88.0 90.3 97.1 92.9

Tile 41.7 79.4 69.0 87.6 96.9 99.4 98.9

T
ex

tu
re

s

Carpet 43.7 69.9 41.3 62.7 81.1 92.9 77.0

Wood 61.1 83.4 95.2 95.3 93.4 99.8 99.2

Bottle 74.4 89.2 81.8 99.0 98.7 99,0 98.5

Capsule 67.0 73.2 59.4 54.4 71.1 86.9 61.4

Pill 63.0 74.3 80.6 72.9 83.7 88.8 65.1

Transistor 86.9 79.2 74.1 56.7 75.6 91.1 76.6

Zipper 82.0 74.5 58.4 51.7 88.6 95.1 88.3

O
b

je
ct

s

Cable 78.3 75.7 68.5 80.3 88.5 95.9 86.4

Hazelnut 35.9 78.5 76.2 91.1 97.9 99.3 97.3

Metal Nut 81.3 70.0 67.9 61.1 76.7 96.1 77.7

Screw 50.0 74.6 99.9 74.7 67.0 96.3 75.9

Toothbrush 97.2 65.3 78.1 61.9 91.9 98.6 92.3

Average 67.2 76.2 70.9 71.9 83.9 94.9 87.3

Table 1. Area under ROC in % for detected anomalies of all categories of MVTec AD [4] grouped into textures and objects. Best results

are in bold, second best underlined. OCSVM and 1-NN are calculated on the same feature extractor outputs our NF is trained on. 16 shots

denotes a model trained on only 16 images.
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Figure 6. Normalized histogram of DifferNet’s anomaly scores for

the test images of MTD. As can be seen, the score is a reliable

indicator for defects except for a narrow range of some borderline

cases. Note that the rightmost bar summarizes all scores above 3.

4.3. Detection

For reporting the performance of our method regarding

the detection of anomalies, we follow [1] and compute the

Area Under Receiver Operator Characteristics (AUROC)

depending on the scoring function which we obtained as

described in Section 3. It measures the area under the true

positive rate as a function of the false positive rate. The

AUROC metric is not sensitive to any threshold or the per-

centage of anomalies in the test set. Besides other anomaly

detection methods, we compare our method to the base-

lines one-class SVM (OCSVM) [2] and the distance to the

nearest neighbor (1-NN) after PCA reduction to 64 dimen-

sions and z-score normalization [21]. Note that both meth-

ods OCSVM and 1-NN are adapted to our setting: We

used every technique of our pipeline (see Figure 2) but re-

placed the normalizing flow with them. We evaluate several

transformations and used the mean respective score. Apart

from these approaches and some state-of-the-art models,

we compare our method with GeoTrans [10] which cannot

be assigned to generative and pretrained methods described

in Section 2. GeoTrans computes an anomaly score based

on the classification of conducted transformations. Table 1

shows the results for MVTec AD. Compared to other ap-

proaches, our method outperforms existing methods in al-

most every category, up to a large margin of 15%. In all

of the 15 categories our method achieves an AUROC of at

minimum 84%, which shows that our approach is not lim-

ited to a specific set of defects or features. The fact that 1-

NN outperforms other competitors except us, demonstrates

that our feature extraction and evaluation is well-suited for

the problem.

We can observe similar characteristics on MTD, seen in

Table 2. The ROC-Curve in Figure 5 shows that our method

provides a much higher true positive rate for any false pos-

itive rate. DifferNet achieves a recall of about 50% with-

out any false positive among 191 defect-free test images.

The histogram of anomaly scores is visualized in Figure 6.

There is a large subset of defective samples whose scores

differ significantly from all scores of non-defective samples.
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Method AUROC [%]
GeoTrans[10] 75.5

GANomaly[1] 76.6

DSEBM [30] 57.2

ADGAN [6] 46.4

OCSVM [2] 58.7

1-NN [21] 80.0

DifferNet (ours) 97.7

Table 2. Area under ROC in % for detecting anomalies on MTD

1 16 64 128 256
# Training Samples

50
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100

AU
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C 
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]

Wood
Zipper
Carpet
Transistor
Magnets

Figure 7. Detection performance of DifferNet, measured by AU-

ROC, depending on the training set size of MTD and of some cat-

egories of MVTec AD. Best viewed in color.

The assignment of extremely high scores without any false

positive is a characteristic of our method and can be simi-

larly observed for other evaluated product categories.

4.4. Localization

Results of the localization procedure described in Sec-

tion 3.3 are shown in Figure 8. The localizations are ac-

curate for many types, sizes and shapes of anomalies; de-

spite the average pooling of feature maps before being pro-

cessed by the normalizing flow. Our architecture produces

meaningful gradients which can be explained by the mod-

els architecture: First, AlexNet is relatively shallow such

that noisy or vanishing gradients are prevented. Second, the

bijectivity of the normalizing flow causes a direct relation

between all image features y and all values of z with non-

zero gradients. The gradients tend to appear speckled for

larger anomalous regions. We conject the reason is that pix-

els, leading to features influencing the anomaly score, are

usually not located evenly distributed in the corresponding

region. However, our method enables the human to perceive

the defective region and interpret which areas influenced the

networks decision to what extent.

Config. A B C D E F G

multi-scale ✗ ✗ X X X X X

train transf. ✗ X ✗ X X X X

# test transf. 1 64 1 1 4 16 64

AUROC [%] 84.4 90.2 86.6 86.5 91.6 94.1 94.9

Table 3. Average detection performance for all categories of

MVTec AD when modifying our proposed training and evaluation

strategy. The columns show parameter configurations named from

A to F. Parameters that differ from our proposed configuration are

underlined.

4.5. Ablation Studies

To quantify the effects of individual strategies used in

our work, we performed an ablation study by comparing

the performance on MVTec AD [4] when modifying the

strategies. In addition, the model’s behavior for different

characteristics of the training set is analyzed.

Preprocessing Pipeline and Evaluation. Table 3 compares

the detection performance on MVTec AD for different con-

figurations regarding multi-scaling, the usage of transfor-

mations in training and the number of used transformations

Ti for evaluation. Having one test transformation means

that only the original image was used for evaluation. Note

that we outperform existing methods even without the pro-

posed transformations and multi-scale strategy. Since rele-

vant features could appear at any scale, it is beneficial to in-

clude features at multiple scales which is shown by an AU-

ROC improvement of 4.7%. Having transformed samples in

training is crucial as it enables multi-transform evaluation

and helps for generalization and data augmentation. The

similar performances of configuration C and D reflect that

applying transformations in training is only useful if they

are performed in inference as well. The more of these trans-

formations are then used, the more meaningful the score is,

as the rising performance of configurations D to G shows.

Number of Training Samples. We investigate the effect of

the training set size on the detection performance as shown

on Figure 7 and on the right of Table 1. The reported re-

sults are the average over three runs with different random

subsets per training set size. It can be seen that our model

and training procedure allows for a stable training even on

small training sets. This can be explained by the usage of

multiple transformations and the averaging of feature maps.

Our model profits from this strategy which is a mixture of

augmentation and compression. DifferNet requires only 16

training samples to outperform existing approaches that use

the whole training set with 369 samples per class on av-

erage. For some classes, the subsets cannot represent the

feature variation of normal samples.

Multimodality. The feature distributions of the evaluated

categories are unimodal. We also investigated the perfor-

mance on multimodal distributions. Therefore, we also ob-
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Figure 8. Localization of anomalous regions of different categories in MVTec AD. The upper rows shows the original anomaly images, the

mid rows the localizations provided by DifferNet and the lower rows the superimposition of both. They were generated by backpropagating

the negative log-likelihood loss to the input image.

served the detection performance when using all 15 cate-

gories of MVTec as training data. To capture this more com-

plex distribution, we used 12 coupling blocks. The result is

a mean AUROC of 90.2% which shows that our method is

able to handle multimodal distributions well. The regress-

ing sub-blocks inside the NF appear to capture the modes

and switch between them depending on their input.

5. Conclusion

We presented DifferNet to detect defects in images by

utilizing a normalizing-flow-based density estimation of

image features at multiple scales. Likelihoods of several

transformations of a single image are used to compute a ro-

bust anomaly score. Therefore, there is no need for a large

amount of training samples. The design and scoring func-

tion is chosen such that image gradients can be exploited to

localize defects. As shown, the method also scales to mul-

timodal distributions which resembles real-world settings.

In the future we plan to refine the concept in order to find

anomalies in video data comparable to [29, 20].
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