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Abstract

Not all supervised learning problems are described by a

pair of a fixed-size input tensor and a label. In some cases,

especially in medical image analysis, a label corresponds

to a bag of instances (e.g. image patches), and to clas-

sify such bag, aggregation of information from all of the

instances is needed. There have been several attempts to

create a model working with a bag of instances, however,

they are assuming that there are no dependencies within the

bag and the label is connected to at least one instance. In

this work, we introduce Self-Attention Attention-based MIL

Pooling (SA-AbMILP) aggregation operation to account for

the dependencies between instances. We conduct several

experiments on MNIST, histological, microbiological, and

retinal databases to show that SA-AbMILP performs better

than other models. Additionally, we investigate kernel vari-

ations of Self-Attention and their influence on the results.

1. Introduction

Classification methods typically assume that there exists

a separate label for each example from a dataset. However,

in many real-life applications, there exists only one label

for a bag of instances because it is too laborious to label

all of them separately. This type of problem, called Multi-

ple Instance Learning (MIL) [7], assumes that there is only

one label provided for the entire bag and that some of the

instances associate to this label [9].

MIL problems are common in medical image analysis

due to the vast resolution of images and the weakly-labeled

small datasets [4, 21]. Among others, they appear in the

whole slide-image classification of biopsies [2, 3, 34], clas-

sification of dementia based on brain MRI [28], or the dia-

betic retinopathy screening [22, 23]. They are also used in

computer-aided drug design to identify which conformers

are responsible for the molecule activity [26, 36].

Recently, Ilse et al. [13] introduced the Attention-based

MIL Pooling (AbMILP), a trainable operator that aggre-

gates information from multiple instances of a bag. It is

based on a two-layered neural network with the attention

weights, which allows finding essential instances. Since

the publication, this mechanism was widely adopted in the

medical image analysis [18, 20, 32], especially for the as-

sessment of whole-slide images. However, the Attention-

based MIL Pooling is significantly different from the Self-

Attention (SA) mechanism [35]. It perfectly aggregates in-

formation from a varying number of instances, but it does

not model dependencies between them. Additionally, the

SA-AbMILP is distinct from other MIL approaches devel-

oped recently because it is not modeling the bag as a graph

like in [30, 33], it is not using the pre-computed image

descriptors as features as in [30], and it models the depen-

dencies between instances in contrast to [8].

In this work, we introduce a method that combines self-

attention with Attention-based MIL Pooling. It simulta-

neously catches the global dependencies between the in-

stances in the bag (which are beneficial [37]) and aggre-

gates them into a fixed-sized vector required for the suc-

cessive layers of the network, which then can be used in

regression, binary, and multi-class classification problems.

Moreover, we investigate a broad spectrum of kernels re-

placing dot product when generating an attention map. Ac-

cording to the experiments’ results, using our method with

various kernels is beneficial compared to the baseline ap-

proach, especially in the case of more challenging MIL

assumptions. Our code is publicly available at https:
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//github.com/gmum/Kernel_SA-AbMILP.

2. Multiple Instance Learning

Multiple Instance Learning (MIL) is a variant of induc-

tive machine learning belonging to the supervised learning

paradigm [9]. In a typical supervised problem, a separate

feature vector, e.g. ResNet representation after Global Max

Pooling, exists for each sample: x = h,h ∈ R
L×1. In MIL,

each example is represented by a bag of feature vectors of

length L called instances: x = {hi}
n
i=1,hi ∈ R

L×1, and

the bag is of variable size n. Moreover, in standard MIL as-

sumption, label of the bag y ∈ {0, 1}, each instance hi has

a hidden binary label yi ∈ {0, 1}, and the bag is positive if

at least one of its instances is positive:

y =







0, iff
n
∑

i=1

yi = 0,

1, otherwise.

(1)

This standard assumption (considered by AbMILP) is

stringent and hence does not fit to numerous real-world

problems. As an example, let us consider the digestive track

assessment using the NHI scoring system [19], where the

score 2 is assigned to a biopsy if the neutrophils infiltrate

more than 50% of crypts and there is no epithelium damage

or ulceration. Such a task obviously requires more challeng-

ing types of MIL [9], which operate on many assumptions

(below defined as concepts) and classes.

Let Ĉ ⊆ C be the set of required instance-level concepts,

and let p : X × C → K be the function that counts how

often the concept c ∈ C occurs in the bag x ∈ X . Then,

in presence-based assumption, the bag is positive if each

concept occurs at least once:

y =

{

1, iff for each c ∈ Ĉ : p(x, c) ≥ 1,

0, otherwise.
(2)

In the case of threshold-based assumptions, the bag is

positive if concept ci ∈ C occurs at least ti ∈ N times:

y =

{

1, iff for each ci ∈ Ĉ : p(x, ci) ≥ ti,

0, otherwise.
(3)

In this paper, we introduce methods suitable not only for

the standard assumption (like it was in the case of AbMILP)

but also for presence-based and threshold-based assump-

tions.

3. Methods

3.1. Attentionbased Multiple Instance Learning
Pooling

Attention-based MIL Pooling (AbMILP) [13] is a type

of weighted average pooling, where the neural network de-

termines the weights of instances. More formally, if the bag

x = {hi}
n
i=1,hi ∈ R

L×1, then the output of the operator is

defined as:

z =
n
∑

i=1

aihi, where ai =
exp

(

wT tanh(Vhi)
)

∑N

j exp (wT tanh(Vhj))
,

(4)

w ∈ R
M×1 and V ∈ R

M×L are trainable layers of neural

networks, and the hyperbolic tangent prevents the exploding

gradient. Moreover, the weights ai sum up to 1 to wean

from various sizes of the bags and the instances are in the

random order within the bag to prevent the overfitting.

The most important limitation of AbMILP is the assump-

tion that all instances of the bag are independent. To over-

come this limitation, we extend it by introducing the Self-

Attention (SA) mechanism [35] which models dependen-

cies between instances of the bag.

3.2. SelfAttention in Multiple Instance Learning

The pipeline of our method, which applies Self-

Attention into Attention-based MIL Pooling (SA-

AbMILP), consists of four steps. First, the bag’s images are

passed through the Convolutional Neural Network (CNN)

to obtain their representations. Those representations

are used by the self-attention module (with dot product

or the other kernels) to integrate dependencies of the

instances into the process. Feature vectors with integrated

dependencies are used as the input for the AbMILP module

to obtain one fixed-sized vector for each bag. Such a vector

can be passed to successive Fully-Connected (FC) layers of

the network. The whole pipeline is presented in Fig. 1. In

order to make this work self-contained, below, we describe

self-attention and particular kernels.

Self-Attention (SA). SA is responsible for finding the de-

pendencies between instances within one bag. Instance rep-

resentation after SA is enriched with the knowledge from

the entire bag, this is important for the detection of the num-

ber of instances of the same concept and their relation. SA

transforms all the instances into two feature spaces of keys

ki = Wkhi and queries qj = Wqhj, and calculates:

βj,i =
exp (sij)

∑N

i=1
exp (sij)

, where sij = 〈k(hi),q(hj)〉, (5)

to indicate the extent to which the model attends to the ith

instance when synthesizing the jth one. The output of the

attention layer is defined separately for each instance as:

ĥj = γoj + hj, where oj =

N
∑

i=1

βj,iWvhi, (6)

Wq,Wk ∈ R
L̄×L, Wv ∈ R

L×L are trainable layers, L̄ =
L/8, and γ is a trainable scalar initialized to 0. Parameters

L̄ and γ were chosen based on the results presented in [35].
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Figure 1: The pipeline of self-attention in deep MIL starts with obtaining feature space representation for each of the instances

from the bag using features block of Convolutional Neural Network (CNN). In order to model dependencies between the

instances, their representations pass trough the self-attention layer and then aggregate using AbMILP operator. The obtained

fixed-size vector goes trough the Fully Connected (FC) classification layer.

Kernels in self-attention. In order to indicate to which

extent one instance attends on synthesizing the other one,

the self-attention mechanism typically employs a dot prod-

uct (see sij in Eq. 5). However, dot product can be replaced

by a various kernel with positive results observed in Support

Vectors Machine (SVM) [1] or Convolutional Neural Net-

works (CNN) [31], especially in the case of small training

sets.

The Radial Basis Function (RBF) and Laplace kernels

were already successfully adopted to self-attention [14, 29].

Hence, in this study, we additionally extend our approach

with the following standard choice of kernels (with α as a

trainable parameter):

• Radial Basis Function (GSA-AbMILP):

k(x, y) = exp (−α‖x− y‖22),

• Inverse quadratic (IQSA-AbMILP):

k(x, y) = 1

α‖x−y‖2

2
+1

,

• Laplace (LSA-AbMILP):

k(x, y) = −‖x− y‖1,

• Module (MSA-AbMILP):

k(x, y) = ‖x− y‖α − ‖x‖α − ‖y‖α.

We decided to limit to those kernels because they are com-

plementary regarding the shape of tails in their distributions.

4. Experiments

We adopt five datasets, from which four were adopted

to MIL algorithms [13, 30], to investigate the performance

of our method: MNIST [17], two histological databases of

colon [25] and breast [10] cancer, a microbiological dataset

DIFaS [38], and a diabetic retinopathy screening data set

called “Messidor” [5]. For MNIST, we adapt LeNet5 [17]

architecture, for both histological datasets SC-CNN [25] is

applied as it was in [13], for microbiological dataset we

use convolutional parts of ResNet-18 [12] or AlexNet [16]

followed by 1 × 1 convolution as those were the best fea-

ture extractor in [38], and for the "Messidor" dataset we

used the ResNet-18 [12] as most of the approaches that

we compare here are based on the handcrafted image fea-

tures like in [30]. The experiments, for MNiST, histolog-

ical and "Messidor" datasets, are repeated 5 times using

10 fold cross-validation with 1 validation fold and 1 test

fold. In the case of the microbiological dataset, we use the

original 2 fold cross-validation which divides the images by

the preparation, as using images from the same preparation

in both training and test set can result in overstated accu-

racy [38]. Due to the dataset complexity, we use the early

stopping mechanism with different windows: 5, 25, 50 and

70 epochs for MNIST, histological datasets, microbiologi-

cal, and "Messidor" datasets, respectively. We compare the

performance of our method (SA-AbMILP) and its kernel

variations with instance-level approaches (instance+max,

instance+mean, and instance+voting), embedding-level ap-

proaches (embedding+max and embedding+mean), and

Attention-based MIL Pooling, AbMILP [13]. The instance-

level approaches in the case of MNIST and histological

database compute the maximum or mean value of the in-

stance scores. For the microbiological database, instance

scores are aggregated by voting due to multiclassification.

The embedding-level approaches calculate the maximum

or mean for feature vector of the instances. For "Mes-

sidor" dataset we are comparing to the results obtained

by [30, 8]. We run a Wilcoxon signed-rank test on the re-

sults to identify which ones significantly differ from each

other, and which ones do not (and thus can be considered

equally good). The comparison is performed between the

best method (the one with the best mean score) and all the

other methods, for each experiment separately. The mean

accuracy is obtained as average over 5 repetitions with the

same train/test divisions used by all compared methods.

The number of repetitions is relatively small for statistical

tests. Therefore we set the p-value to 0.1. For computations,

we use Nvidia GeForce RTX 2080.
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(a) (b) (c)

Figure 2: Results for MNIST dataset with bags generated using standard (a), presence-based (b), and threshold-based (c)

assumption. In all cases, our approach, either with dot product (SA-AbMILP) or the other kernels (GSA-AbMILP, IQSA-

AbMILP, LSA-AbMILP, and MSA-AbMILP) obtains statistically better results than the baseline method (AbMILP). See

Section 3 for description of the shortcuts.

4.1. MNIST dataset

Experiment details. As in [13], we first construct vari-

ous types of bags based on the MNIST dataset. Each bag

contains a random number of MNIST images (drawn from

Gaussian distributions N (10, 2)). We adopt three types of

bag labels referring to three types of MIL assumptions:

• Standard assumptions: y = 1 if there is at least one

occurrence of “9”,

• Presence-based assumptions: y = 1 if there is at least

one occurrence of “9” and at least one occurrence of

“7”,

• Threshold-based assumptions: y = 1 if there are at

least two occurrences of “9”.

We decided to use “9” and “7” because they are often con-

fused with each other, making the task more challenging.

We investigated how the performance of the model de-

pends on the number of bags used in training (we consider

50, 100, 150, 200, 300, 400, and 500 training bags). For

all experiments, we use LeNet5 [17] initialized according

to [11] with the bias set to 0. We use Adam optimizer [15]

with parameters β1 = 0.9 and β2 = 0.999, learning rate

10−5, and batch size 1.

Results. AUC values for considered MIL assumptions are

visualized in Fig. 2. One can observe that our method

with a dot product (SA-AbMILP) always outperforms other

methods in case of small datasets. However, when the

number of training examples reaches 300, its kernel exten-

sions work better (Laplace in presence-based and inverse

quadratic in threshold-based assumption). Hence, we con-

clude that for small datasets, no kernel extensions should be

applied, while in the case of a larger dataset, a kernel should

be optimized together with the other hyperparameters. Ad-

ditionally, we analyze differences between the weights of

instances in AbMILP and our method. As presented in

Fig. 3, for our method, “9”s and “7”s strengthen each other

in the self-attention module, resulting in higher weights in

the aggregation operator than for AbMILP, which returns

high weight for only one digit (either “9” or “7”).

4.2. Histological datasets

Experiment details. In the second experiment, we con-

sider two histological datasets of breast and colon cancer

(described below). For both of them, we generate instance

representations using SC-CNN [25] initialized according

to [11] with the bias set to 0. We use Adam [15] optimizer

with parameters β1 = 0.9 and β2 = 0.999, learning rate

10−4, and batch size 1. We also apply extensive data aug-

mentation, including random rotations, horizontal and ver-

tical flipping, random staining augmentation [13], staining

normalization [27], and instance normalization.
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 AbMILP 0.01 0.04 0.26 0.02 0.08 0.00 0.02 0.21 0.37
SA-AbMILP 0.12 0.19 0.06 0.15 0.07 0.04 0.08 0.09 0.20

True label: 1; Prediction from AbMILP: 0; Prediction from SA-AbMILP: 1

True label: 0; Prediction from AbMILP: 1; Prediction from SA-AbMILP: 0

SA-AbMILP     0.06      0.10      0.09      0.10      0.23      0.05     0.09      0.12     0.07      0.09

      AbMILP     0.08      0.12      0.09      0.01      0.10      0.04     0.04      0.04     0.38      0.09

Figure 3: Example of instances’ weights for a positive (top) and negative (bottom) bag in a presence-based assumption (where

positive is at least one occurrence of “9” and “7”) for AbMILP and our method. One can observe that for SA-AbMILP, “9”s

and “7”s strengthen each other in the self-attention module, resulting in higher weights in the aggregation operator than for

AbMILP.

Breast cancer dataset. Dataset from [10] contains 58
weakly labeled H&E biopsy images of resolution 896×768.

The image is labeled as malignant if it contains at least one

cancer cell. Otherwise, it is labeled as benign. Each image

is divided into patches of resolution 32×32, resulting in 672
patches per image. Patches with at least 75% of the white

pixels are discarded, generating 58 bags of various sizes.

Colon cancer dataset. Dataset from [25] contains 100
images with 22444 nuclei manually assigned to one of the

following classes: epithelial, inflammatory, fibroblast, and

miscellaneous. We construct bags of 27 × 27 patches with

centers located in the middle of the nuclei. The bag has

a positive label if there is at least one epithelium nucleus in

the bag. Tagging epithelium nuclei is essential in the case of

colon cancer because the disease originates from them [24].

Results. Results for histological datasets are presented in

Table 1. For both of them, our method (with or without

kernel extension) improves the Area Under the ROC Curve

(AUC) comparing to the baseline methods. Moreover, our

method obtains the highest recall, which is of importance

for reducing the number of false negatives. To explain

why our method surpasses the AbMILP, we compare the

weights of patches in the average pooling. Those patches

contribute the most to the final score and should be inves-

tigated by the pathologists. One can observe in Fig. 4 that

our method highlights fewer patches than AbMILP, which

simplifies their analysis. Additionally, SA dependencies ob-

tained for the most relevant patch of our method are justi-

fied histologically, as they mostly focus on nuclei located

in the neighborhood of crypts. Moreover, in the case of the

colon cancer dataset, we further observe the positive aspect

of our method, as it strengthens epithelium nuclei and weak-

ens nuclei in the lamina propria at the same time,. Finally,

we notice that kernels often improve overall performance

but none of them is significantly superior.

4.3. Microbiological dataset

Experiment details. In the final experiment, we consider

the microbiological DIFaS database [38] of fungi species. It

contains 180 images for 9 fungi species (there are 2 prepara-

tions with 10 images for each species and it is a multi-class

classification). As the size of images is 5760×3600×3 pix-

els, it is difficult to process the entire image through the net-

work so we generate patches following method used in [38].

Hence, unlike the pipeline from Section 3.2, we use two

separate networks. The first network generates the represen-

tations of the instances, while the second network (consist-

ing of self-attention, attention-based MIL pooling, and clas-

sifier) uses those representations to recognize fungi species.

Due to the separation, it is possible to use deep architec-

tures like ResNet-18 [12] and AlexNet [16] pre-trained on

ImageNet database [6] to generate the representations. The

second network is trained using Adam [15] optimizer with

parameters β1 = 0.9 and β2 = 0.999, learning rate 10−5,
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Table 1: Results for breast and colon cancer datasets (mean and standard error of the mean over 5 repetitions). See Section 3

for description of the acronyms.

breast cancer dataset

method accuracy precision recall F-score AUC

instance+max 61.4± 2.0 58.5± 3.0 47.7± 8.7 50.6± 5.4 61.2± 2.6
instance+mean 67.2± 2.6 67.2± 3.4 51.5± 5.6 57.7± 4.9 71.9± 1.9

embedding+max 60.7± 1.5 55.8± 1.3 54.6± 7.0 54.3± 4.2 65.0± 1.3
embedding+mean 74.1± 2.3 74.1± 2.3 65.4± 5.4 68.9± 3.4 79.6± 1.2

AbMILP 71.7± 2.7 77.1± 4.1 68.6± 3.9 66.5± 3.1 85.6± 2.2
SA-AbMILP 75.1± 2.4 77.4± 3.7 74.9± 3.7 69.9± 3.0 86.2± 2.2

GSA-AbMILP 75.8± 2.2 79.3± 3.3 74.7± 3.4 72.5± 2.5 85.9± 2.2
IQSA-AbMILP 76.7± 2.3 78.6± 4.2 75.1± 4.2 66.6± 4.3 85.9± 2.2
LSA-AbMILP 65.5± 2.9 62.5± 3.7 89.5± 2.6 68.5± 2.6 86.7± 2.1
MSA-AbMILP 73.8± 2.6 78.4± 3.9 73.8± 3.6 69.4± 3.4 85.8± 2.2

colon cancer dataset

method accuracy precision recall F-score AUC

instance+max 84.2± 2.1 86.6± 1.7 81.6± 3.1 83.9± 2.3 91.4± 1.0
instance+mean 77.2± 1.2 82.1± 1.1 71.0± 3.1 75.9± 1.7 86.6± 0.8

embedding+max 82.4± 1.5 88.4± 1.4 75.3± 2.0 81.3± 1.7 91.8± 1.0
embedding+mean 86.0± 1.4 81.1± 1.1 80.4± 2.7 85.3± 1.6 94.0± 1.0

AbMILP 88.4± 1.4 95.3± 1.5 84.1± 2.9 87.2± 2.1 97.3± 0.7
SA-AbMILP 90.8± 1.3 93.8± 2.0 87.2± 2.4 89.0± 1.9 98.1± 0.7

GSA-AbMILP 88.4± 1.7 95.2± 1.7 83.7± 2.8 86.9± 2.1 98.5± 0.6
IQSA-AbMILP 89.0± 1.9 93.9± 2.1 85.5± 3.0 86.9± 2.5 96.6± 1.1
LSA-AbMILP 84.8± 1.8 92.7± 2.7 71.1± 4.6 73.4± 4.3 95.5± 1.7
MSA-AbMILP 89.6± 1.6 94.6± 1.5 85.7± 2.7 87.9± 1.8 98.4± 0.5

(a) (b) (c) (d)

Figure 4: An example image from the breast cancer dataset (a), weights of patches obtained by AbMILP (b) and SA-

AbMILP (c), and SA dependencies obtained for the most relevant patch in SA-AbMILP (d). One can observe that SA-

AbMILP highlights fewer patches than AbMILP, which simplifies their analysis. Additionally, SA dependencies are justified

histologically, as they mostly focus on nuclei located in the neighborhood of crypts.

and batch size 1. We also apply extensive data augmen-

tation, including random rotations, horizontal and vertical

flipping, Gaussian noise, and patch normalization. To in-

crease the training set, each iteration randomly selects a dif-

ferent subset of image’s patches as an input.

Results. Results for DIFaS database are presented in Ta-

ble 2. Our method improves almost all of the scores for

both feature pooling networks. The exception is the preci-

sion for ResNet-18, where our method is on par with max-

imum and mean instance representation. Moreover, we ob-

serve that while non-standard kernels can improve results

for representations obtained with ResNet-18, they do not
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Table 2: Results for DIFaS dataset (mean and standard error of the mean over 5 repetitions). See Section 3 for description of

the shortcuts.

DIFaS (ResNet-18)

method accuracy precision recall F-score AUC

instance+voting 78.3± 2.0 78.0± 1.4 76.0± 1.7 75.8± 2.0 N/A
embedding+max 77.1± 0.7 83.1± 0.5 77.1± 0.7 75.5± 0.9 95.3± 0.2
embedding+mean 78.1± 0.8 83.3± 0.5 78.1± 0.8 76.4± 1.0 95.2± 0.2

AbMILP 77.5± 0.6 82.6± 0.5 77.5± 0.6 75.6± 0.8 96.1± 0.3
SA-AbMILP 80.1± 0.6 84.6± 0.6 80.1± 0.6 78.4± 0.8 96.8± 0.3

GSA-AbMILP 79.1± 0.4 83.5± 0.7 79.1± 0.4 77.2± 0.5 97.0± 0.3
IQSA-AbMILP 79.4± 0.4 83.7± 0.7 79.4± 0.4 77.6± 0.6 96.8± 0.3
LSA-AbMILP 77.6± 0.5 82.5± 0.5 77.6± 0.5 75.7± 0.7 96.2± 0.3
MSA-AbMILP 79.2± 0.4 83.5± 0.4 79.2± 0.4 77.5± 0.6 96.9± 0.3

DIFaS (AlexNet)

method accuracy precision recall F-score AUC

instance+voting 77.3± 1.9 78.4± 0.8 76.6± 1.2 76.2± 1.0 N/A
embedding+max 82.9± 1.2 87.1± 0.9 82.9± 1.2 82.3± 1.4 98.4± 0.2
embedding+mean 82.3± 0.7 87.2± 0.4 82.3± 0.7 81.5± 1.0 98.1± 0.3

AbMILP 83.6± 1.2 87.8± 0.7 83.6± 1.2 82.9± 1.5 98.6± 0.2
SA-AbMILP 86.0± 1.0 89.6± 0.6 86.0± 1.0 85.7± 1.3 98.9± 0.1

GSA-AbMILP 84.6± 1.0 89.1± 0.6 84.6± 1.0 84.2± 1.3 98.8± 0.2
IQSA-AbMILP 84.1± 1.2 88.4± 0.6 84.1± 1.2 83.4± 1.4 98.9± 0.2
LSA-AbMILP 83.9± 1.3 88.0± 0.7 83.9± 1.3 83.2± 1.6 98.6± 0.2
MSA-AbMILP 83.1± 0.8 87.8± 0.4 83.1± 0.8 82.4± 1.0 98.7± 0.2

(a) (b) (c) (d) (e)

Figure 5: An example image from the colon cancer dataset (a) with annotated nuclei (b) and epithelium nuclei (c), as well

as, the weights of patches obtained by AbMILP (d) and SA-AbMILP (e). One can observe that SA-AbMILP strengthens

epithelium nuclei and, at the same time, weakens nuclei in the lamina propria.

operate well with those generated with AlexNet. Addition-

ally, to interpret the model outputs, we visualize patches

with the lowest and highest weights in the average pooling.

As shown in Figure 6, our method properly [38] assigns

lower weights to blurred patches with a small number of

cells. Also, in contrast to the baseline method, it assigns

high weight to clean patches (without red artifacts).

4.4. Retinal image screening dataset.

Experiment details. Dataset "Messidor" from [5] con-

tains 1200 images with 654 positive (diagnosed with dia-

betes) and 546 negative (healthy) images. The size of each

image is 700 × 700 pixels. Each image is partitioned into

patches of 224× 224 pixels. Patches containing only back-

ground are dropped. We are using ResNet18 [12] pretrained

on the ImageNet [6] as an instance feature vectors genera-

tor and SA-AbMILP to obtain the final prediction, which

is trained in an end to end fashion. The model is trained

using Adam [15] optimizer with parameters β1 = 0.9 and

β2 = 0.999, learning rate 5 ∗ 10−6, and batch size 1. We

also apply data augmentation as in Section 4.3.
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Figure 6: Example patches from the DIFaS dataset with the lowest and highest weights in the average pooling. One can

observe that SA-AbMILP properly [38] assigns lower weights to blurred patches with a small number of cells. Moreover, in

contrast to the AbMILP, it assigns high weight to clean patches (without red artifacts).

Table 3: Retinal image screening dataset results. *Results

with asterisk are sourced from [30].

Retinal image screening dataset

method accuracy F-score

LSA-AbMILP 76.3% 0.77
SA-AbMILP 75.2% 0.76

AbMILP 74.5% 0.74
GSA-AbMILP 74.5% 0.75
IQSA-AbMILP 74.5% 0.75
MSA-AbMILP 73.5% 0.74

MIL-GNN-DP* 74.2% 0.77
MIL-GNN-Att* 72.9% 0.75

mi-Graph* 72.5% 0.75
MILBoost* 64.1% 0.66

Citation k-NN* 62.8% 0.68
EMDD* 55.1% 0.69

MI-SVM* 54.5% 0.70
mi-SVM* 54.5% 0.71

Results. Results for "Messidor" database are presented in

Table 3 alongside results of other approaches which are

used for comparison and were taken from [30]. Our method

improves accuracy and the highest scores are achieved using

Laplace kernel variation, which obtains F1 score on par with

the best reference approach. This is the only database for

which Laplace kernel obtains the best results, which only

confirms that the kernel should be optimized together with

the other hyperparameters when applied to new problems.

5. Conclusions and discussion

In this paper, we apply Self-Attention into Attention-

based MIL Pooling (SA-AbMILP), which combines the

multi-level dependencies across image regions with the

trainable operator of weighted average pooling. In contrast

to Attention-based MIL Pooling (AbMILP), it covers not

only the standard but also the presence-based and threshold-

based assumptions of MIL. Self-Attention is detecting the

relationship between instances, so it can embed into the in-

stance feature vectors the information about the presence

of similar instances or find that a combination of specific

instances defines the bag as a positive. The experiments

on five datasets (MNIST, two histological datasets of breast

and colon cancer, microbiological dataset DIFaS, and reti-

nal image screening) confirm that our method is on par or

outperforms current state-of-the-art methodology based on

the Wilcox pair test. We demonstrate that in the case of

bigger datasets, it is advisable to use various kernels of the

self-attention instead of the commonly used dot product.

We also provide qualitative results to illustrate the reason

for the improvements achieved by our method.

The experiments show that methods covering a wider

range of MIL assumptions fit better for real-world prob-

lems. Therefore, in future work, we plan to introduce meth-

ods for more challenging MIL assumptions, e.g. collective

assumption, and apply them to more complicated tasks, like

digestive track assessment using the Nancy Histological In-

dex. Moreover, we plan to introduce better interpretability,

using Prototype Networks.
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