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Abstract

Monocular depth prediction is ill-posed by nature; hence

successful approaches need to exploit the available cues to

the fullest. Yet, real-world training data with depth ground-

truth suffers from limited variability and data acquired from

depth sensors is also sparse and prone to noise. While

available datasets with semantic annotations might help to

better exploit semantic cues, they are not immediately us-

able for depth prediction. We show how to leverage panop-

tic segmentation maps to boost monocular depth predic-

tors in stereo training setups. In particular, we augment

a self-supervised training scheme through panoptic-guided

smoothing, panoptic-guided alignment, and panoptic left-

right consistency from ground truth or inferred panoptic

segmentation maps. Our approach incurs only a minor

overhead, can easily be applied to a wide range of depth

estimation methods that are trained at least partially using

stereo pairs, providing a substantial boost in accuracy.

1. Introduction

Recent improvements in deep learning-based computer

vision coupled with real-life applications, have driven the

focus of attention to the general problem of 3D scene un-

derstanding. Depth estimation from a single RGB image

(a.k.a. monocular depth prediction) is a challenging sub-

problem in that domain, which has received considerable

attention in recent years [6, 8, 11, 12, 42].

What makes monocular depth prediction challenging is

not only its ill-posed nature, i.e. the fact that 3D needs to be

predicted based on semantic cues, texture gradients, and the

like in the absence of accurate 3D information, but also the

lack of large quantities of suitable training data. Available

ground-truth depth data is often rather noisy and sparse, ow-

ing to the limitations of the method for providing ground

truth depth [6, 10]. Human annotation of depth values is

also not an alternative since the distance is difficult to gauge,

but it is nearly impossible for human annotators to assign

a depth value to each image pixel in any large quantity as

needed for supervised CNN training. Using synthetic data

for training is one remedy, but domain-specific bias limits

the benefits gained from training on this type of data when

tested on real images. These limitations have spurred the

development of various self-supervised monocular depth

prediction methods, e.g. [11, 12], which exploit geometrical

correspondence in stereo setups or video sequences. Note

that these methods are still considered monocular as they

only use auxiliary views in training, while test-time infer-

ence is performed using a single RGB image only. The

benefit of such self-supervised methods is that they can

be trained on large and varied datasets without any depth

ground truth.

However, even with ample data to train using self-

supervision, not all of the inherent ill-posedness of monoc-

ular depth estimation can be remedied. Van Dijk and Croon

[31] show in a recent paper that such trained networks rely

heavily on the vertical position of objects to estimate their

depth, and changing this vertical location can easily disrupt

the network performance. Our human visual system relies

on a stereo setup to predict depth, but even with one eye

closed, it is still possible to estimate the depth of most ob-

jects reasonably well while relying on scene parsing.

To bring a more precise notion of such scene seman-

tics into monocular depth prediction and overcome some of

the encountered difficulties, several recent works have pro-

posed using semantic segmentation to improve monocular

depth prediction [3, 13, 28].

We argue that semantic segmentation is not the ideal task

to boost monocular depth prediction since it mostly focuses

on stuff categories. While things categories (e.g., pedestri-

ans, and cars) are also present in a semantic segmentation

map, the various instances are all lumped into a single re-

gion yet often have different depth w.r.t. the camera. We

instead propose to leverage panoptic segmentation, which

was recently introduced by Kirillov et al. [19] to unify two

previously separate tasks – semantic segmentation and in-

stance segmentation. Panoptic segmentation assigns a class

ID to every pixel of an image and an object ID to those be-

longing to things classes. The benefit of panoptic segmen-

tation maps in the context of monocular depth estimation

is that depth discontinuities tend to occur at boundaries of
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Figure 1. An example from the Synscapes dataset [36]. The edges

in the depth map (thresholded relative strength dRel > 0.05) show

a strong visible correlation with the edges of the panoptic map.

both stuff and things, which are much better captured with

a panoptic segmentation map.

Figure 1 shows an example of a typical urban scene from

the Synscapes [36] dataset, which illustrates qualitatively

that the boundaries of depth and panoptic maps demonstrate

high spatial coincidence. I.e. strong depth edges often coin-

cide with panoptic edges (see also supplemental material).

We propose to use a mixed supervision scheme for train-

ing monocular depth estimation, which builds on a self-

supervised backbone leveraging stereo images, but adds a

so-called panoptic depth boost, leveraging ground truth or

inferred panoptic segmentation maps as shown in Fig. 2.

We specifically make the following contributions: (1)

We adapt the semantic alignment term of [28] to panop-

tic segmentation maps, yielding a panoptic-guided align-

ment term in the loss; (2) we propose a panoptic-guided

smoothing term, which exploits the panoptic maps to al-

low for edge-aware smoothing of the depth maps without

the ill effects of propagating image texture into the depth

prediction; (3) we propose a panoptic left-right consistency

term, which makes sure that left and right disparity maps are

consistent regarding the panoptic segmentation labels. Our

experimental results show that each of these terms benefits

the accuracy of monocular depth estimation, outperform-

ing the corresponding variants of various recent baselines

[3, 11, 28] while adding no additional memory or computa-

tional overhead during inference and only negligible over-

head during training.

2. Related Work

Monocular depth prediction. Predicting depth from a

single image based on supervised learning has first been

considered by Saxena et al. [29], and has received renewed

interest in recent years, initiated by Eigen et al. [7], fol-

lowing the (re-)emergence of deep learning. A recent ex-

ample is [8], which shows that supervised monocular depth

prediction in multiple scales performs better when using a

mixture of L1 and L2 losses. However, actual (sufficiently

dense) depth ground truth in varied real-world settings is a

relatively rare commodity, limiting the applications.

A more recent line of research has focused on self-

supervising the depth prediction to sidestep the reliance on

depth ground truth. These self-supervised methods gener-

ally rely on two possible sources of information: The first

uses stereo images for training [9, 21, 24, 37, 40], and gen-

erally relies on the geometrical similarities of two images

in a fixed stereo setup. Godard et al. [11] gain an advantage

over other contemporary methods by proposing a network

that leverages left-right consistency and warps the RGB im-

ages to match them to the other view. A second class of

self-supervised methods relies on monocular temporal in-

formation and pose estimation [1, 16, 25, 32, 39]. Finding

large amounts of video sequences for training is often eas-

ier than stereo image pairs, but these methods often trail in

accuracy compared to the first group.

Godard et al. [12] recently proposed a method that com-

bines depth prediction, pose estimation, and appearance

losses to achieve excellent results in monocular depth es-

timation. However, this network is considerably more com-

plicated compared to the original Monodepth [11].

Improving depth prediction using semantics. The heavy

reliance on geometry ground truth has motivated many

works to use semantics in the depth prediction pipeline.

Prior works [6, 22, 27, 34] focused on leveraging seman-

tic segmentation to improve supervised depth prediction

based on various architectures such as hierarchical net-

works, CRFs, and sharing latent features. However, be-

ing supervised, these methods require ground truth depth

information alongside the semantic segmentation data to be

available for training. Meng et al. [26] proposed to use se-

mantic and instance maps and instance edges to improve

depth prediction but require these additional maps as inputs

to the network alongside the monocular RGB image. Other

works such as [4, 17, 30] have studied the mutual benefits of

training for depth and segmentation in the context of multi-

task learning. These methods mainly focus on optimization

and balanced training methods to gain acceptable results on

a multitude of tasks such as depth, semantic segmentation,

and instance segmentation, rather than explicitly using the

mutual benefits between depth and semantics.

More recently, Ramirez et al. [28] proposed a network

called Semantic Monodepth, which consists of supervised

semantic segmentation and self-supervised depth prediction

using stereo inputs. They introduced a cross-domain dis-

continuity term in the loss for aligning predicted dispari-

ties and the ground truth semantic segmentation. Seman-

tic Monodepth shows that there can be an additional bene-

fit from predicting semantic segmentation alongside depth

with a second decoder. The outputs of this new branch are

left unused in the depth prediction procedure. While this

could optionally be added to our setup as well, we refrain

from adding an extra head for predicting panoptic segmen-

tation here in the spirit of keeping the computational costs

limited. Chen et al. [3] proposed SceneNet, which uses

a conditional decoder to train at every pass, either for su-

pervised semantic segmentation or for depth prediction us-

ing stereo supervision. They used left-right semantic con-

sistency and semantics-guided edge alignment in the depth
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loss. Since SceneNet uses only information from semantic

segmentation, the potential of using instance-level informa-

tion is left unused.

Finally, some recent approaches [2, 13, 20] rely on

monocular video during training. This training setup re-

quires dealing with problems such as moving-object iden-

tification, which often requires ego-motion and 3D object

motion estimation as an auxiliary task with significant com-

putational overhead. Instead, we use a stereo setup during

training, which does not suffer from such ambiguities. Zhu

et al. [43] proposes to use additional proxy depth hints dur-

ing training to assist its training procedure.

To sum up, previous work focuses primarily on depth

prediction and treats segmentation as an auxiliary task to

improve the depth. However, incorporating the segmenta-

tion branch in the network makes training slower and incurs

a memory overhead. We, too, focus on depth prediction but

propose a very lean network that only predicts depth and has

no extra head or layers compared to the underlying back-

bone. Rather than simultaneously predicting semantics, we

only use ground truth or pre-computed panoptic segmenta-

tion maps to provide better training signals for depth, along-

side self-supervision in the form of stereo images.

3. Method

Our goal in this paper is to improve the generalization

abilities of networks for predicting per-pixel depth from

monocular RGB input images. In contrast to networks with

the prevalent purely supervised [6] or self-supervised train-

ing schemes [11], we propose a mixed supervision strat-

egy, which we term panoptic depth boost. Our approach

does not rely on depth ground truth for supervised train-

ing and instead follows previous work [11, 12] to exploit

stereo pairs for self-supervision. However, since it is chal-

lenging to learn a generic monocular depth predictor us-

ing a (depth-)supervised or self-supervised training strat-

egy based on geometrical matching alone, we propose to

boost our training scheme with semantic information, par-

ticularly panoptic segmentation maps. While semantic and

instance segmentation annotations from human annotators

are also challenging to obtain, they are currently more read-

ily available for scenes of significant variability than accu-

rate ground truth depth maps. Furthermore, as opposed to

monocular depth estimation, panoptic segmentation is not

an ill-posed problem and intuitively generalizes better to

different camera setups. In the absence of panoptic segmen-

tation ground truth maps, one can use a pre-trained network

to predict panoptic maps that can then be used to provide

supervision during depth training.

Specifically, our training procedure requires panoptic

segmentation information to be available, at least for one

of the two views of an image pair. We focus on the scenario

where only the left view holds this data (to be compatible

with Cityscapes [5]) but note that this is not a necessity.

An extension to the case with panoptic information for both

stereo images is straightforward.

Panoptic segmentation maps. If we want to exploit se-

mantic information to aid training monocular depth pre-

dictors, we could rely on standard semantic segmentation

maps [28], which assign a class ID to every pixel in the im-

age. However, partially overlapping objects that belong to

the same class are often located at different depths w.r.t. the

camera but are not distinguishable in the semantic segmen-

tation maps (see white lines in Fig. 3, top right). Another

alternative could be instance segmentation maps, which, be-

ing a descendant of the object detection problem, assign an

object ID to all pixels of each instance of individual classes.

This annotation type resolves overlapping instances from

the same category (red lines in Fig. 3, top right). However,

large parts of the scene are ignored, specifically everything

considered background by the instance annotations. Fur-

thermore, most instance segmentation methods allow ob-

ject masks to overlap. As scene depth varies significantly

in these background regions, the potential use of instance

information is also limited. For this reason, we build nei-

ther upon semantic nor instance segmentation, but rather on

their fusion – panoptic segmentation [19]. In a panoptic

segmentation, every pixel is assigned a class ID, and pix-

els belonging to instances of foreground objects are also

assigned an object ID, which distinguishes them from the

other instances of the same class. In dealing with the holis-

tic parsing, panoptic segmentation further refines the sepa-

rate tasks of semantic and instance segmentation to resolve

instance-instance and class-instance border disputes. In the

following, we thus rely on panoptic segmentation maps and

use them to coordinate better loss functions for training a

monocular depth network.

3.1. Overview and network architecture

Our network as shown in Fig. 2 is comprised of a stan-

dard encoder/decoder architecture with skip connections

akin to Monodepth [11]. As is usual in monocular depth es-

timation, we predict the disparity instead of the depth. The

decoder outputs the predicted disparity corresponding to the

input view on four different spatial scales.

Godard et al. [11] showed that a network that outputs

disparity maps that align with the input rather than the target

yields better results. Despite this observation, they predict

the left disparity map from the left image (aligns with the

input) and the right disparity map (aligns with the target),

which is then used in further steps in training.

As a result, one of the predicted disparities is system-

atically inferior to the other, which results in asymmetrical

left-right errors. Similar to [3], we predict each disparity

map separately after feeding the respective view to the depth

prediction network. To achieve this goal using a single net-
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Figure 2. Architectural diagram of our panoptic-boosted monocular depth architecture at training (top) and test time (bottom). During

training, our network takes both views as input and produces the corresponding left and right disparity maps in the decoder’s output. We

train the network using two different sets of loss terms – depth loss terms relying on self-supervision from the stereo geometry alone and

panoptic boost loss terms, which leverage supervision from panoptic segmentation maps. At test time, our network uses only a single-view

RGB image for prediction.

work, we flip the right view horizontally in the input and

flip the predicted disparity back in the output.

The pyramid of predicted disparities is used to calculate

two different sets of loss terms, the depth loss terms and our

novel panoptic boost loss terms. The former uses geometry

matching between the left and the right view and yields our

geometric baseline, whereas the panoptic boost loss terms

leverage panoptic segmentation maps to further enrich the

training procedure.

Note that at test time, only the left RGB view is used

as the input for the network to predict the disparity map,

given as the output disparity of the highest resolution in

the decoder’s output pyramid. We apply the disparity map

post-processing of Monodepth [11]. This post-processing

step predicts the disparity for the image and its horizontally

flipped version and combines them to generate smoother

disparity predictions.

3.2. Depth loss with geometry self­supervision

To take advantage of stereo pairs at training time, we

apply a self-supervised training scheme based on [11]. We

reconstruct the RGB images of the left and the right views

by warping the other view according to the corresponding

output disparity. The appearance matching loss matches

this predicted and the original view and is defined as

Ls
ap = D(Isl , I

s
r→l) +D(Isr , I

s
l→r). (1)

Here, Isl and Isr are the left and the right RGB images at

scale s, respectively; Isl→r ≡ warp(Isl , d
s
r) and Isr→l ≡

warp(Isr , d
s
l ) are the left RGB image, warped with the dis-

parity output dsr at scale s to predict the right view, and vice

versa. We use a differentiable sampler similar to spatial

transformer networks [15] for warping. D(·) is a distance

function, which following [11] is taken as a combination of

L1 and single-scale SSIM [35] losses

D(a, b) = α · ‖a− b‖1+(1− α) ·
1− SSIM(a, b)

2
(2)

with α = 0.85. If the predicted disparity maps are accurate,

the reconstructed and the original RGB images should be

similar. Hence the appearance matching loss is low. How-

ever, specific effects such as specular reflections that vary

between the two views make perfect appearance matching

of the original and the reconstructed RGB images nearly

impossible.

To address this, each predicted disparity map is also

warped (using the predicted disparity map again) to predict

a secondary version of each of the disparity maps and then

matched with the original prediction using the left-right dis-

parity consistency loss

Ls
lr = ‖dsl − dsr→l‖1 + ‖dsr − dsl→r‖1. (3)

Here, dsl and dsr are the predicted left and right disparity

maps and an L1 error is used. In analogy to Eq. (1), dsl→r ≡
warp(dsl , d

s
r) and dsr→l ≡ warp(dsr, d

s
l ) denote the disparity

maps warped with each other.

The total loss of the depth loss branch (cf . Fig. 2) is the
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Figure 3. Our panoptic-guided smoothness loss exploits the ob-

servation that the major discontinuities in depth tend to happen

at the boundaries of the panoptic map. This becomes apparent

when comparing a typical scene (top left) and the boundaries of

the panoptic map (top right). The boundaries depicted in red be-

long exclusively to instance segmentation maps, which are ignored

if only semantic segmentation is considered. When comparing

the depth map predicted without (bottom left) and with (bottom

right) panoptic-guided smoothness, the benefit becomes immedi-

ately visible, e.g. from the silhouettes of the cars on the left.

weighted sum of the above two losses

LDepth =

4
∑

s=1

(

Ls
ap + wlrL

s
lr

)

, (4)

where the sum is taken over the scales s in the pyramid.

3.3. Panoptic supervision boost for depth

Intuitively, prior information about the semantics and

the placement of objects in a scene is valuable for improv-

ing the quality and accuracy of depth prediction. Our pro-

posed panoptic boost loss incorporates this (supervised) in-

formation in the form of panoptic ground truth segmen-

tation maps, which are directly obtained from the seman-

tic and instance segmentation ground truths of our training

dataset. We apply three different loss components.

Panoptic left-right consistency. The appearance match-

ing loss in Eq. (1) operates on RGB images, but as already

argued, RGB images in a stereo setup are susceptible to

photometric differences, e.g. from the amount of light re-

flected from surfaces and their relative position w.r.t. the

light source. This has motivated the left-right depth consis-

tency loss in Eq. (3). Having access to panoptic segmen-

tation maps, we can go further and exploit that these maps

are not susceptible to such photometric discrepancies be-

tween the two views either. To that end, we introduce a new

panoptic left-right consistency defined as

Ls
pan-lr = H(psl , p

s
l→r→l). (5)

Here, H(·, ·) is the Hamming distance, and psl is the (left)

panoptic map at scale s, obtained by assigning a cardinal

number to pixels in different classes and instances in an-

notations. Since we do not have panoptic segmentation

maps available for the right view, we warp the left panoptic

map to predict the right view and then warp it back to the

left view using the predicted right disparity, i.e. psl→r→l ≡
warp(warp(psl , d

s
r), d

s
l ). The difference between the origi-

nal and doubly warped panoptic map captures the cumula-

tive error in both predicted disparities, which we penalize.

Panoptic-guided alignment. We add a panoptic-guided

alignment term to the loss, which builds on the observa-

tion that locations in an image where there is a boundary of

the panoptic map (indicating a change of class, instance, or

both between neighboring pixels) are likely to also have a

relatively strong edge in the depth map (cf . Fig. 1). This

loss term is similar to the cross-domain discontinuity term

in [28], but the difference is that our panoptic-guided align-

ment uses the edges of panoptic maps and not just the se-

mantic segmentations.

Fig. 3 (top) illustrates how the edges of the panoptic map

line up with discontinuities in the image. To align the edges

of the depth map with the boundaries of the ground truth

panoptic maps, we define the panoptic-guided alignment as

Ls
pga =

1

|N |

∑

(i,j)∈N

(1− δ(psl (i)−psl (j)))·e
−α

∥

∥

∥

∥

ds
l
(i)−ds

l
(j)

ds
l
(i)

∥

∥

∥

∥

,

(6)

where N is the set of all neighboring pixels in the maps.

The parameter α adjusts the shape of the loss curve and is

determined using the validation set. Higher values of α re-

sult in a greater penalty for edge mismatch. Note that the

first term (Kronecker delta) ensures that the second term is

only active for neighboring pixels with differing panoptic

IDs, for which it encourages broad (relative) disparity dif-

ferences between these pixels.

Panoptic-guided smoothing. Typical self-supervised

monocular depth approaches use some form of depth

smoothness loss. Monodepth [11], for example, applies

a standard form of contrast-sensitive smoothing, which is

based on the underlying assumption that the spatial location

of the edges of the disparity/depth maps is often a subset of

the image edges. Such a loss term is typically formulated as

Lds =
1

N

∑

v∈(l,r)

∑

i

‖∇dv(i)‖e
−‖∇Iv(i)‖, (7)

where ∇ indicates the gradient and i sums over all pixels.

However, since the RGB images include considerably

more edges in addition to those that arise from depth

changes in the scene, using Lds results in residual wrinkle-

like patterns on the depth maps stemming from surfaces tex-

tures in the image. These residual patterns are typical for the

disparity maps predicted by Monodepth [11]; Fig. 3 (bottom

left) shows one such example. Note that even when using

ample data for training, this effect does not seem to be elim-

inated as it visibly exists in the output even after training on

tens of thousands of images, such as the KITTI dataset [10].
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Since the panoptic maps have no trace of the surface tex-

tures, they can be used for an edge-aware smoothness term

to remove these unwanted edges. To this end, we instead

introduce the panoptic-guided smoothness term defined as

Lpgs =
1

|N |

∑

(i,j)∈N

δ (psl (i)− psl (j)) ‖d
s
l (i)−dsl (j)‖. (8)

This term replaces the typical image-adaptive loss Lds in

our architecture.

Discussion. The difference between the panoptic-guided

smoothness and panoptic-guided alignment is that the align-

ment term encourages the disparity maps to have large

edges at the panoptic boundaries. Simultaneously, the

smoothness term dissuades the presence of any such large

edges when they do not coincide with panoptic boundaries.

It should be noted that panoptic-guided smoothing imposes

a much stronger assumption than the panoptic-guided align-

ment and is only sensible in conjunction with panoptic label

boundaries. Using either semantic label maps or instance la-

bel maps alone would result in over-smoothed edges at the

disparities’ boundaries.

Overall loss. Our entire panoptic boost loss term consists

of a weighted sum of the individual losses from Eqs. (5), (6)

and (8) across all scales:

LPanopticBoost =

4
∑

s=1

(

wpga · L
s
pga + wpgs · L

s
pgs + wplr · L

s
plr

)

.

(9)

The total loss for training with mixed supervision is cal-

culated as the sum of these two sets of losses

Ltot = LPanopticBoost + LDepth. (10)

Sensitivity to resolution. Severe downscaling of panoptic

maps, which are then used in calculating the loss, can result

in serious side effects, such as loss of accuracy at the re-

gion boundaries or the unwanted elimination of smaller ob-

jects. Figure 4 shows the semantic information in the lowest

and highest resolutions of our training pyramid. The object

boundaries at these low resolutions are very unreliable and

defeat the purpose of accurate localization.

Instead of downsampling the panoptic maps to be used in

the prediction pyramid’s lower-resolution levels, we upsam-

ple the prediction to the input resolution before calculating

the panoptic boost loss. We observed that this step results in

faster convergence of the network and overall better results,

as depicted in Fig. 4.

4. Experiments

4.1. Basic setup

Datasets. We train and evaluate our method on the

Cityscapes [5] and KITTI datasets [10]. Cityscapes [5] is

Figure 4. Comparison of the depth maps for the SGM “ground

truth” (top right), our monocular approach with (middle left) and

without (middle right) downscaling of the panoptic maps during

training. The network using downscaled panoptic maps during

training fails to accurately predict the depth of objects that are

usually small (e.g., signs) or in certain regions (head of the cy-

clist). Semantic information in various resolutions, as seen by the

network with downscaling (bottom row). Best viewed on screen.

a stereo dataset, with Cityscapes fine consisting of 5k pairs

of 1024 × 2048px images (2975 train, 500 val, 1525 test).

The left views are annotated finely to include 11 stuff and 8

instance classes. Accurate depth ground truth does not exist

in Cityscapes. Instead, pre-computed disparity maps using

SGM are provided.

The Eigen split [6] of the KITTI dataset includes 39810

and 4424 pairs of images for training and validation. The

test set consists of 697 images with ground truth depth. For

200 images, the KITTI dataset provides the semantic and

instance segmentation ground truths separately. Ramirez et

al. [28] suggests a split where for 160 of the images, rich

annotations are used for training and the remaining 40 for

testing. We refer to this 160/40 setup as the Ramirez split in

the rest of this paper.

Training. In order to remain comparable to related methods

[3, 28], we primarily apply our panoptic boost to [11] (de-

noted as M). Monodepth2 [12] in the stereo setup improves

directly upon Monodepth by improving the multi-scale im-

age reconstruction loss. We also augment this setup (de-

noted as M2) with our panoptic boost and refer to them as

M + panoptic and M2 + panoptic, respectively. We train

the former on images with 256 × 512px and the latter on

375 × 1024px following the setup in the underlying meth-

ods. We use the Adam optimizer [18] with the initial learn-

ing rate set to 1e-4 for a batch of size 8 images, β1 = 0.9,

β2 = 0.999, and ǫ = 10−8. For Cityscapes, we use ground-

truth panoptic maps for the boost, but since KITTI does not

include these annotations, we predict panoptic maps using

Seamseg [23] with ResNet50 as the backbone, trained on

Cityscapes.

The depth network is trained for 200 epochs on

Cityscapes and 20 epochs on KITTI; the learning rate is cut
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in half at the 60% and 80% landmarks. We used the same

input resolutions and Resnet [14] encoders as the geometric

baselines in all the experiments.

During training, we flip images horizontally with a prob-

ability of 0.5. Our photometric data augmentation includes

randomly shifting gamma in the range [0.8, 1.2], as well as

scaling brightness in [0.5, 2.0] and color in [0.8, 1.2]. In

Cityscapes, we crop the bottom 20% of the images, includ-

ing the car bonnet. The relative weight of the loss terms is

determined using the validation set. In all the experiments

we set wpgs, wpga, and wplr to 2.0, 0.5, and 1.0. α was set to

1.0 for Cityscapes and 0.5 for the KITTI dataset. All the ex-

periments were done on Nvidia TITAN X GPUs using the

PyTorch framework.1

Evaluation. We measure the quality of depth maps quan-

titatively using the depth metrics of [6], specifically the

absolute relative error, as well as percentages of relative

deviations from the ground truth within some threshold

(δ < 1.25, 1.252, 1.253). Please see the supplemental ma-

terial for additional metrics. Our quantitative evaluation is

done using the KITTI dataset’s depth ground truths and the

SGM disparity maps on Cityscapes.

4.2. Qualitative results

We train our M + panoptic network on the training set of

Cityscapes fine using the stereo images and ground truths

for semantic and instance segmentation. The results are

shown in Fig. 5, which are visibly better than the purely

geometric baseline. The presence of undesired surface tex-

tures from the RGB images in the disparity maps is strongly

suppressed. Furthermore, the monocular depth trained with

the added panoptic-guided smoothness and alignment terms

improves the overall quality of the predicted maps, particu-

larly apparent at and around the boundaries of objects (see

also Fig. 3, bottom). Compared to the case where only se-

mantic segmentation maps are used in training (denoted as

Semantic baseline), our network shines particularly in re-

gions with more complex image edges (see the first and the

third image in Fig. 5).

4.3. Quantitative results

Cityscapes. Cityscapes offers pre-computed disparity

maps for the images using the SGM algorithm. In the ab-

sence of real disparity/depth ground truth, we follow the

experimental setup of Wang et al. [33] and train our model

based on Monodepth only on the image pairs of the training

set of Cityscapes fine and evaluate on the test set. The re-

sults are shown in Table 1. We did not use post-processing

to keep the comparison as fair as possible. All methods

shown use semantic segmentation to elevate their depth pre-

diction, and Wang et al. [33] (SDC-Depth) use instance seg-

1Code at https://github.com/visinf/panoptic-boost-monodepth.

Method Abs. Rel. δ < 1.25 δ < 1.252 δ < 1.253

Xu et al. [38] 0.246 0.786 0.905 0.945

Zhang et al. [41] 0.234 0.776 0.903 0.949

Wang et al. [33] 0.227 0.801 0.913 0.950

Ours 0.178 0.771 0.922 0.971

Table 1. Evaluation of depth prediction on the test set of

Cityscapes. All methods use semantic segmentation as auxiliary

information. Wang et al. [33] uses instance segmentation addi-

tionally during training to train category-specific decoders. Our

method outperforms all these methods using a single decoder.

Method Abs. Rel. δ < 1.25 δ < 1.252 δ < 1.253

Godard (M) [11] 0.141 0.809 0.928 0.969

Chen [3] 0.118 0.839 0.945 0.977

M + panoptic 0.111 0.849 0.951 0.979

Godard (M2) [12] 0.107 0.874 0.953 0.977

M2 + panoptic 0.103 0.879 0.958 0.980

Table 2. Results of training on the Eigen split of KITTI using

the predicted panoptic maps from [23], where applicable. Our

method outperforms both Monodepth and [3] using the same back-

bone and input resolution as the underlying methods. Adding our

panoptic boost to the very potent method of [12] (denoted as M2

+ panoptic) results in further improvement in the depth accuracy

and demonstrates that our method can complement learning based

of geometry in a variety of settings.

Method Abs. Rel. δ < 1.25 δ < 1.252 δ < 1.253

Monodepth [11] 0.148 0.839 0.936 0.972

Ramirez et al. [28] 0.144 0.849 0.940 0.975

Geometric baseline 0.147 0.835 0.936 0.973

+Lpgs 0.142 0.848 0.940 0.976

+Lplr 0.138 0.842 0.930 0.977

+Lpga (Final) 0.135 0.848 0.939 0.976

Table 3. Ablation study on the Ramirez split, showing the cumu-

lative effect of different loss elements.

mentation additionally to train category-specific depth de-

coders with direct supervision. SDC-Depth relies on the

depth ground truth of all instances for training; such data is

hard to come by for real-world outdoor datasets. Our ap-

proach, on the other hand, does not rely on depth ground

truth and clearly outperforms all other methods in Table 1.

KITTI. Godard et al. [12] showed that ImageNet pre-

training has a positive effect on the accuracy of a network

that is then trained on KITTI. We train our M + panoptic

and M2 + panoptic networks, which both use an ImageNet

pre-trained encoder, on the Eigen split of the KITTI dataset

for 20 epochs, as suggested by [12]. The results are shown

in Table 2. Our networks outperform Monodepth (M), Mon-

odepth2 (M2), and SceneNet [3].

4.4. Ablation study

For a quantitative study of our method’s details, we train

on the Ramirez split of KITTI, which has sparse depth
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Figure 5. Qualitative results of our network trained on Cityscapes: Examples from the validation set, the SGM pre-computed disparities,

the geometric baseline predictions based on Monodepth [11] (M), and the semantic baseline predictions (ours without instance data), and

our predicted disparity maps. Compared to the baseline depth network (Geometric), our final results (Ours) are visibly sharper at the edges

and smoother in the object surface areas. The semantic segmentation-based baseline (G+semantic) falls short at predicting complex regions

with several instances present, such as the scene with parked motorcycles in the third image.

Segmentation Abs. Rel. δ < 1.25 δ < 1.25
2

δ < 1.25
3

Geometric 0.147 0.835 0.936 0.973

G+semantic 0.141 0.840 0.939 0.975

G+panoptic 0.135 0.848 0.939 0.976

Table 4. Comparison of the effect of the panoptic boost loss with

various types of segmentation maps on the Ramirez split of the

KITTI dataset. Using panoptic segmentation maps is clearly supe-

rior to both semantic and geometric baselines.

ground truth. We pre-train all models on Cityscapes fine

first and then continue training on the 160 KITTI images

for 5k iterations. The results are shown in Table 3 for Mon-

odepth and Semantic Monodepth [28] and compared to our

method with various loss terms added gradually. The en-

try denoted as Ld corresponds to our geometric baseline,

which is built on Monodepth (M). Adding Lpgs, Lpanl+r
,

and Lpga further improves the quality of the depth maps.

Overall, our approach clearly shows a lower absolute rela-

tive error.

This gain in accuracy is achieved by modifying the loss

function, which means the underlying network architecture

is left untouched. As far as memory or computation over-

head costs during training are concerned, our network is ex-

ceedingly lean. At test time, there is zero overhead.

Figure 5 studies the effect of the panoptic boost loss

when only semantic segmentation information is used com-

pared to when panoptic maps are available.

5. Conclusion

In this paper, we proposed a novel mixed supervision

scheme for monocular depth estimation, which builds on

stereo images for self-supervised training. To incorporate

a more explicit notion of the semantics, we leveraged in-

formation from panoptic segmentation maps. We proposed

a panoptic boost loss, consisting of panoptic-guided align-

ment, panoptic-guided smoothness, and panoptic-guided

left-right consistency, allowing us to incorporate informa-

tion on object discontinuities in the depth maps. The result-

ing architecture is lean, yet outperforms other recent meth-

ods, which use more complex architectures. More impor-

tantly, the incorporated semantics are versatile and can be

added to a wide array of stereo-based training schemes for

monocular depth estimation.
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Scharwächter, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The Cityscapes

dataset for semantic urban scene understanding. In CVPR,

pages 3213–3223, 2016.

[6] David Eigen and Rob Fergus. Predicting depth, surface nor-

mals and semantic labels with a common multi-scale convo-

lutional architecture. In ICCV, 2015.

[7] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In NIPS*2014, pages 2366–2374.

[8] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In CVPR, 2018.

[9] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian

Reid. Unsupervised CNN for single view depth estimation:

Geometry to the rescue. In ECCV, 2016.

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? The KITTI vision benchmark

suite. In CVPR, 2012.

[11] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, 2017.

[12] Clement Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J. Brostow. Digging into self-supervised monocular

depth prediction. In ICCV, 2019.

[13] Vitor Guizilini, Rui Hou, Jie Li, Rareş Ambruş, and Adrien
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[22] L’ubor Ladický, Jianbo Shi, and Marc Pollefeys. Pulling

things out of perspective. In CVPR, 2014.

[23] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid.

Seamless scene segmentation. In CVPR, 2019.

[24] Yue Luo, Jimmy Ren, Mude Lin, Jiahao Pang, Wenxiu Sun,

Hongsheng Li, and Liang Lin. Single view stereo matching.

In CVPR, 2018.

[25] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Un-

supervised learning of depth and ego-motion from monocu-

lar video using 3d geometric constraints. In CVPR, 2018.

[26] Yue Meng, Yongxi Lu, Aman Raj, Samuel Sunarjo, Rui Guo,

Tara Javidi, Gaurav Bansal, and Dinesh Bharadia. SIGNet:

Semantic instance aided unsupervised 3D geometry percep-

tion. In CVPR, 2019.

[27] Arsalan Mousavian, Hamed Pirsiavash, and Jana Kosecka.

Joint semantic segmentation and depth estimation with deep

convolutional networks. In 3DV, 2016.

[28] Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano

Mattoccia, and Luigi Di Stefano. Geometry meets semantic

for semi-supervised monocular depth estimation. In ACCV,

volume 11363, pages 298–313, 2018.

[29] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng.

Learning depth from single monocular images. In

NIPS*2006, pages 1161–1168.

[30] Ozan Sener and Vladlen Koltun. Multi-task learning as

multi-objective optimization. In NeurIPS*2018.

[31] Tom van Dijk and Guido de Croon. How do neural networks

see depth in single images? In ICCV, 2019.

[32] Chaoyang Wang, Jose Miguel Buenaposada, Rui Zhu, and

Simon Lucey. Learning depth from monocular videos using

direct methods. In CVPR, 2018.

[33] Lijun Wang, Jianming Zhang, Oliver Wang, Zhe Lin, and

Huchuan Lu. SDC-Depth: Semantic divide-and-conquer

network for monocular depth estimation. In CVPR, 2020.

[34] Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian

Price, and Alan Yuille. Towards unified depth and seman-

tic prediction from a single image. In CVPR, 2015.

[35] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.

Simoncelli. Image quality assessment: From error visibility

to structural similarity. IEEE T. Image Process., 13(4):600–

612, Apr. 2004.

3861



[36] Magnus Wrenninge and Jonas Unger. Synscapes: A

photorealistic synthetic dataset for street scene parsing.

arXiv:1810.08705, 2019.

[37] Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3D: Fully

automatic 2D-to-3D video conversion with deep convolu-

tional neural networks. In ECCV, 2016.

[38] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe.

Pad-net: Multi-tasks guided prediction-and-distillation net-

work for simultaneous depth estimation and scene parsing.

In CVPR, 2018.

[39] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram

Nevatia. Lego: Learning edge with geometry all at once by

watching videos. In CVPR, 2018.

[40] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,

Kejie Li, Harsh Agarwal, and Ian Reid. Unsupervised learn-

ing of monocular depth estimation and visual odometry with

deep feature reconstruction. In CVPR, 2018.

[41] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Zequn Jie, Xiang

Li, and Jian Yang. Joint task-recursive learning for semantic

segmentation and depth estimation. In ECCV, 2018.

[42] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G.

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, 2017.

[43] Shengjie Zhu, Garrick Brazil, and Xiaoming Liu. The edge

of depth: Explicit constraints between segmentation and

depth. In CVPR, 2020.

3862


