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Abstract

Real-world data is predominantly unbalanced and long-

tailed, but deep models struggle to recognize rare classes in

the presence of frequent classes. Often, classes can be ac-

companied by side information like textual descriptions, but

it is not fully clear how to use them for learning with unbal-

anced long-tail data. Such descriptions have been mostly

used in (Generalized) Zero-shot learning (ZSL), suggesting

that ZSL with class descriptions may also be useful for long-

tail distributions.

We describe DRAGON, a late-fusion architecture for

long-tail learning with class descriptors. It learns to

(1) correct the bias towards head classes on a sample-

by-sample basis; and (2) fuse information from class-

descriptions to improve the tail-class accuracy. We also

introduce new benchmarks CUB-LT, SUN-LT, AWA-LT for

long-tail learning with class-descriptions, building on ex-

isting learning-with-attributes datasets and a version of

Imagenet-LT with class descriptors. DRAGON outperforms

state-of-the-art models on the new benchmark. It is also a

new SoTA on existing benchmarks for GFSL with class de-

scriptors (GFSL-d) and standard (vision-only) long-tailed

learning ImageNet-LT, CIFAR-10, 100, and Places365-LT.

1. Introduction

Real-world data is predominantly unbalanced, typically

following a long-tail distribution. From text data (Zipf’s

law), through acoustic noise (the 1-over-f rule) to the long-

tail distribution of classes in object recognition [45], few

classes are frequently observed, while the many remaining

ones are rarely encountered.

Long-tail data poses two major challenges to learning:

data paucity and data imbalance. First, at the tail of the

distribution, classes are poorly sampled and one has to use

few-shot and zero-shot learning techniques. Second, when

training a single model for both richly-sampled classes

and poorly-sampled classes, the common classes dominate

training, and as we show below, this skews prediction con-

(a) (b) (c)

Figure 1: Training with unbalanced data leads to a “famil-

iarity bias”, where models are more confident and more

over-confident about frequent classes [48, 47, 6]. (a) Class

distribution of a long-tailed ImageNet [12]. Classes are or-

dered from left to right by decreasing number of samples.

(b) When training a ResNet-10 on ImageNet-LT, validation

(and test) predictions tend to have low confidence for tail

classes. We show the mean output of softmax for each class,

conditioned on samples from that class. (c) A reliability

graph for the model in b. Predictions are grouped based

on confidence. The model has larger confidence gaps (pink

boxes) for more confident predictions, which usually come

from head classes. This result suggests that overconfidence

is strongly affected by class frequency, and we can learn to

correct it if the number of samples is known.

fidence towards rich-sampled classes.

To address data paucity of tail classes, note that visual

examples can very often be augmented with class descrip-

tors. Namely, semantic information about classes given as

text or attributes [26, 36, 4, 52]. This approach, learning

with class-descriptors has been studied mostly for zero-

shot and generalized zero-shot learning [38, 32, 43, 52, 53].

Here, we propose to adapt it to generalized few-shot learn-

ing (GFSL) by fusing information from two modalities. A

visual classifier, expected to classify correctly head classes,

and a semantic classifier, trained with per-class descriptors

and is expected to classify correctly tail classes. We ex-

plain the subtleties of GZSL and GFSL in Section 2 (Re-

lated work).

To address data imbalance, we first note that learning

with unbalanced data leads to a familiarity effect, where

models become biased to favor the more familiar, rich-
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sampled classes [48, 6]. Since deep models tend to be

overly confident about high-confidence sample predictions

[17, 25], they become over-confident about head classes

[48, 47, 6]. Figure 1 illustrates this phenomenon. It shows

that a model trained on unbalanced data (Figure 1a), has

higher confidence for head classes (Figure 1b). It is also an

over-estimate of the true accuracy (Figure 1c), especially

for head classes. See further analysis in Appendix B. 1

A natural way to correct the familiarity bias would be

to penalize high-frequency classes, either during training

using a balanced loss, or post-training [23]. However, it

would be a grave mistake to penalize all samples from rich

classes, because confidence is sometimes justified, as in the

case of ”easy” prototypical examples of a class. Indeed,

we show below that addressing the familiarity bias benefits

from per-sample debiasing, going beyond class-based debi-

asing. To summarize, model overconfidence is affected by

class frequency. It can be estimated by observing the full

vector of predictions to correct for overconfidence. Not

all samples of a class should be penalized for belonging

to a frequent class.

Importantly, the familiarity effect caused by data im-

balance has a crippling effect on model accuracy and on

aggregating predictions from multiple modalities. Several

approaches attempted calibrating predictions of deep net-

works to remedy the above biases (see e.g. a survey in

[17]) and some became common practice. Unfortunately,

the problem is still far from being solved.

We propose to address both the data-imbalance and the

data paucity learning challenges, using a single late-fusion

architecture. We describe an easy-to-implement debiasing

module that offsets the familiarity effect by learning to pre-

dict the magnitude of the bias for any given sample. It fur-

ther improves learning at the tail by learning to fuse infor-

mation from visual and semantic modalities. It can easily be

reduced to address long-tail learning with a single modality

(vision only), where it improves over current baselines.

The paper has three main novel contributions:

(1) A new late-fusion architecture (DRAGON) that learns

to fuse predictions based on vision with predictions based

class descriptors.

(2) A module that rebalances class predictions across

classes on a sample-by-sample basis.

(3) New benchmarks CUB-LT, SUN-LT, and AWA-LT for

evaluating long-tail learning with textual class descriptors

(LT-d). DRAGON is SoTA on these datasets, and also on

ImageNet-LT augmented with class descriptors and on ex-

isting two-level benchmarks.

1As an interesting side note, studies of human decision making and

preference learning show a similar bias towards familiar samples. This ef-

fect is widely observed and has been connected to the availability heuristic

studied by Tversky and Kahneman [44].

2. Related methods

Long-tail learning: Learning with unbalanced data causes

models to favor head classes [6]. Previous efforts to ad-

dress this effect can be viewed as either algorithmic or data-

manipulations approaches.

Algorithmic approaches encourage learning of tail

classes using a non-uniform cost per misclassification func-

tion. A natural approach is to rescale the loss based on

class frequency [19]. [27] proposed to down-weigh the

loss of well-classified examples, preventing easy negatives

from dominating the loss. [37] dynamically rescaled the

cross-entropy loss based on the difficulty to classify a sam-

ple. [7] proposed a loss that encourages larger margins for

rare classes. [23] decoupled the learning procedure into rep-

resentation learning and classification and studied four ap-

proaches. Among them, LWS L2-normalizes the last-layer,

since the weight magnitude correlates with class cardinal-

ity. The effect of this approach is similar to that presented

in this paper, but here we apply recalibration dynamically

on a sample-by-sample basis.

Data-manipulation approaches aim to flatten long-tail

datasets to correct the bias towards majority classes. Pop-

ular techniques employ over-sampling of minority classes

(more likely to overfit) [10, 18] , under-sampling the ma-

jority classes (wastes samples) [13] , or generating samples

from the minority classes (can be costly to develop)[5].

Another approach is to transfer meta-level-knowledge

from data-rich classes to data-poor classes. [49] gradually

transfer hyperparameters from rich classes to poor classes

by representing knowledge as trajectories in model space

that capture the evolution of parameters with increasing

training samples. [29] first learns representations on the

unbalanced data and then fine-tunes them using a class-

balanced sampling and a memory module.

Learning with class descriptors: Learning with class de-

scriptors is usually applied to zero-shot learning (ZSL) [52,

26, 4], where a classifier is trained to recognize (new) un-

seen classes based on their semantic description, which can

include a natural-language textual description or predefined

attributes. In several ZSL studies, attributes detected in

a test image are matched with ground-truth attributes of

each class, and several studies focused on this matching

[26, 4, 42, 56, 55, 8].

A series of papers proposed to learn a shared representa-

tion of visual and text features (class-descriptors). As one

example, [43] learns such a shared latent manifold using au-

toencoders and then minimizes the MMD loss between the

two domains. Another recent line of work synthesizes fea-

ture vectors of unseen classes using generative models like

VAE of GAN, and then use them in training a conventional

classifier [32, 51, 14, 1, 31, 59, 38, 53]. The major base-

line we compare our approach with is CADA-VAE [38],

the current SoTA for Generalized FSL with class descrip-

287



tors. CADA-VAE uses a variational autoencoder that aligns

the distributions of image features and semantic (attribute)

class embedding in a shared latent space. A recent work,

[53], uses a mixture of VAEs and GANs. We could not di-

rectly compare with [53] because their FSL protocol devi-

ates from the standard benchmark of [38, 52] by fine-tuning

the CNN features. Without fine-tuning, their reported met-

rics for GZSL are similar to CADA-VAE.

Some studies fused information from vision and per

sample descriptors (e.g., [58]). This is outside the scope

of this paper because it may require extensive labeling.

Generalized ZSL (GZSL) and Generalized FSL:

GZSL extends ZSL to the scenario where the test data

contains both seen and unseen classes [9, 52, 40]. Re-

cently, GZSL extended to Generalized Few-Shot-Learning

with class descriptors (GFSL-d), where the unseen classes

are augmented with a fixed number of few training sam-

ples [38, 43]. Namely, the distribution of samples across

classes is a 2-level distribution, with many “head” classes

and a smaller set of “tail” classes all having the same (small)

number of samples per class. Both GZSL and GFSL-d can

be viewed as special cases of long-tail learning with class-

descriptors, but with a short-tailed unnatural distribution.

Most related GZSL approaches are [3, 40, 54]. They use

a gating mechanism to weigh the decisions of seen-classes

experts and a ZSL expert. The gating module is modeled

as an out-of-distribution estimator. The current paper dif-

fers from their work by (1) The problem setup is different.

Here, all samples are in-distribution and the distribution of

classes is smooth and long-tail with a much smaller number

of head classes. (2) DRAGON architecture first quantifies

and corrects the (smooth) familiarity effect. Then it learns

how to fuse the debiased decision of the two experts.

Early vs late fusion: When learning from multiple

modalities, one often distinguishes between early and late

fusion models [28]. Early fusion models combine features

from multiple modalities to form a joint representation.

Late fusion methods combine decisions of per-modality

models [22, 2, 35]. Our approach addresses the long-tail

setup, by leveraging the information in the familiarity bias

to debias experts predictions.

3. Long-tail learning with class descriptors

We start with a formal definition of the problem of learn-

ing over unbalanced distributions with class descriptors.

We are given a training set of n labeled (image) samples:

{(x1, y1), . . . , (xn, yn)}, where each xi is a feature vector

and yi is a label in {1, 2, . . . k}. Samples are drawn from a

distribution D = p(x, y) such that the marginal distribution

over the classes p(y) is strongly non uniform. For example,

p(y) may be exponential p(y) ∼ exp(−ky).
As a second supervision signal, each class y is also ac-

companied with a class-description vector aj , j = 1, .., k,

Figure 2: The DRAGON architecture for long-tail learn-

ing with class-descriptors. The visual-expert and semantic-

expert each outputs a prediction vector fed to a fusion mod-

ule. The fusion module combines expert predictions and

debias them. Blue, network components. Yellow, input to

the fusion module. Green, the outputs of the fusion module.

in the form of semantic attributes [26] or natural-language

embedding [36, 59, 40]. For example, classes in CUB [46]

are annotated with attributes like Head-color:red.

At test time, a new set of m test samples

{xn+1, . . . ,xn+m} is given from the same distribution D.

We wish to predict their correct classes.

4. Our approach

Our approach is based on two observations: (1) Seman-

tic descriptions of classes are easy to collect and can be very

useful for tail (low-shot) classes, because they allow mod-

els to recognize classes even with few or no training sam-

ples [26, 52, 4, 56]. [56] (Figure 4) shows visualization

of the class descriptors: Classes form compact clusters and

are near their corresponding class descriptors. This allows

a model to make correct classifications, based on class de-

scriptors, even with few samples or no samples at all. For

more details see Appendix C. (2) The average prediction

confidence over samples of a class is correlated with the

number of training samples of that class (Figure 1).

Our architecture leverages these observations and learns

to (1) Combine predictions of two expert classifiers: A

conventional visual expert which is more accurate at head

classes and a semantic expert which excels at tail classes;

(2) Reweigh the scores of each class prediction, taking into

account the number of training samples for that class.

4.1. The architecture

The DRAGON architecture follows two design consider-

ations: modularity and low-complexity. First, modularity;

DRAGON allows to plug-in existing multi-modal experts,

each trained for its own modality. Below we show exper-

iments with language-based experts and a visual expert, but

other modalities can be considered (e.g., mesh, depth, mo-

tion, or multi-spectral information). Second, limiting the

model to have a small number of parameters is important

because tail classes only have few training samples and the

model must perform well at the tail.
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Figure 3: Architecture of the fusion-module for long-tail

learning with class-descriptors. In blue, network compo-

nents. In yellow, inputs to the fusion-module and in green,

activations or outputs of the fusion-module. The inputs PV

denote the softmax prediction vector of the Visual Expert,

and PS that of the Semantic Expert. The outputs WV , WS

and λ are used in Eq. (1) for re-weighting the inputs. See

Section 4.2 for more details.

Our general architecture (Figure 2) takes a late fusion

approach. It consists of two experts modules: A visual ex-

pert and a semantic expert. Each expert outputs a prediction

vector which is fed to a fusion module. The fusion module

combines the expert predictions and learns to debias the fa-

miliarity effect, by weighing the experts and re-scaling their

class predictions.

4.2. A fusionmodule

The fusion module takes as input the prediction vectors

of two experts pV , pS for a given image, and a vector con-

taining the number of training samples per class. It has three

outputs: λ ∈ (0, 1) is a scalar to trade-off the visual expert

against the semantic expert. wV ∈ (0, 1)k is a vector that

weighs the predictions of the visual expert. Similarly, wS

weighs the semantic expert predictions. Given these three

outputs, a debiased score is computed for a class y:

S(y) = λwV (y)pV (y) + (1− λ)wS(y)pS(y). (1)

Figure 3 describes the architecture of the fusion-module. It

has two main parts. The first part maps the prediction scores

to a meaningful joint space, by first aligning the prediction

of both classifiers, and then sorting according to confidence.

In more detail, the first part has four steps. (a) Stacking

together the predictions of two experts to a Y × 2 vector.

This makes the following convolution meaningful across

the 2 experts axis. (b) To make convolution meaningful

also along the classes axis, and since classes are categori-

cal, we reorder classes by their prediction score according

to one of the experts. Section 4.3 explains the rationale of

this reordering . (c) Now that predictions are sorted, feed

the sorted scores to a Nfilters × 2 × 2 convolutional net-

work. (d) Follow with an average-pooling layer (per class),

yielding a (Y − 1)-dimensional vector h.

The goal of the second part is simply to predict a debias-

ing coefficient for each prediction, namely, learn a function

from ny to (0, 1)k. We know from Figure 1 that the bias

is inversely related to the number of samples. Aiming for a

simple model, we train a polynomial regression that takes as

input the number of samples and outputs a debiasing weight

(wV (y)). The coefficients of this polynomial v0, ..., vd−1

are learned as a deep function over h. Similarly for fS(y).
More formally, let ny be the number of training samples

of class y, and let n̄y = ny/maxy ny be the normalized

counts, then we have

wV (y) = σ
[

d−1
∑

j=0

vj(h)n̄
j
y

]

, wS(y) = σ
[

d−1
∑

j=0

sj(h)n̄
j
y

]

,

(2)

where d is the polynomial degree and σ denotes a sigmoid

that ensures that the resulting scale is in [0, 1].
Finally, the fusion module also predicts the trade-off

scalar λ to control the relative weight of the visual and se-

mantic experts. This is achieved using a fully connected

layer over h. Section 9 analyzes the contribution of each

component of the approach with an ablation study.

4.3. Architecture design decision

DRAGON is designed with a small number of model pa-

rameters so it can improve predictions at the tail, where very

few samples are available.

Debiasing based on all expert predictions. To achieve

the above goals, DRAGON implicitly learns how frequent

is a class of a given sample. Namely, when the model re-

ceives a new test sample, it predicts if it is from a head class,

a tail class, or somewhere between, and adjusts the confi-

dence of the experts accordingly. To do this, it has been

shown in the context of zero-shot learning that profile of

confidence values are a good predictor if a sample comes

from a seen or unseen class [3]. DRAGON generalizes this

idea to long-tail distributions. To do this it takes as input all

class predictions from both experts (Figure 3a).

Using order statistics over predictions. To process

expert prediction, we point out that order statistics over

the prediction vector – the maximum confidence, 2nd max,

etc. . . – provides a strong signal about confidence calibra-

tion. Using the maximum of a vector is a very common op-

erator in deep learning, known as max pooling. Here how-

ever, there is additional important information the gap be-

tween subsequent order statistics, like max−2nd max. As

an intuitive example, a maximal prediction of 0.6 should be

interpreted differently if the 2nd max is 0.4 or 0.1.

Order statistics can be easily computed by sorting the

vector of predictions (Figure 3b). Sorting also increases

the sample efficiency for learning, because later layers have

each order statistic located at a fixed position in their in-

put regardless of class. The function learned over order-

statistics gaps is therefore shared across all classes.

The 2 × 2 convolution (Figure 3c) works well with the
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sorted expert predictions. Its filters capture two signals: (1)

the confidence gaps between the two experts for each class;

and (2) the confidence gaps between order-statistics for each

expert alone.

5. Experiments

We evaluate DRAGON in three unbalanced benchmark

scenarios. (1) “Smooth-Tail”, the long-tailed distribution of

classes decays smoothly (Figure 4) and each class is accom-

panied with textual class descriptors. (2) “Two-Level”, the

distribution has a step-shape as in [38]; Most classes have

many samples and the rest have few samples (Figure 5).

(3) ”Vision-only”, a long-tail setup, as in Smooth-Tail, but

without class descriptors.

We compare DRAGON with SoTA approaches on stan-

dard benchmarks for each of these three scenarios. See Ap-

pendix E for implementation details.

5.1. Overview of main results

For Smooth-Tail distributed data, we evaluated

DRAGON on four benchmarks that we created from exist-

ing datasets. We added textual descriptors to ImageNet-LT

[29], and generated long-tail versions of CUB, SUN and

AWA. Dragon outperforms all baselines on various metrics.

For Two-Level distributed data, DRAGON surpasses

the current SoTA [38], tested using their experimental setup.

For Vision-only long-tail data, we tested the calibration

component of DRAGON (without fusion). It achieves a new

SoTA on ImageNet-LT [29], Places365-LT [29], Unbal-

anced CIFAR-10/100 [7] and comparable results on iNat-

uralist2018 [20]. Details and results in Appendix A .

6. Smooth-Tail distribution

6.1. Datasets

To evaluate long-tail learning with class descriptors,

we created benchmark datasets in two ways. First, we

created long-tail versions of existing learning-with-class-

descriptors benchmarks. Second, we augmented existing

long-tail benchmark (ImageNet-LT) with class descriptors.

Specifically, we created new long-tail variants of

the 3 main learning-with-class-descriptors benchmarks:

CUB [46], SUN [33] and AWA [26], illustrated in Figure 4.

We ranked classes by the number of samples in each class

after assigning tail classes to be consistent with those in the

Two-Level benchmark [51, 38] (See Appendix E.2 for more

details). We then computed a frequency level for each class

following an exponentially decaying function of the form

f(class) = ab−rank(class). a and b were selected such that

the first class has the maximum number of samples, and the

last class has 2 or 3 samples depending on the dataset. We

then drew a random subset of samples from each class based

Figure 4: Long-tailed versions of CUB, SUN, AWA and Im-

ageNet. Number of samples for the training, validation and

test sets are shown respectively by blue, yellow and green.

CUB-LT SUN-LT AWA-LT

TRAIN # SAMPLES 2,945 4,084 6,713

VAL # SAMPLES 600 1,434 1,250

TEST # SAMPLES 2,348 2,868 6,092

TRAIN SET PROPERTIES

MAX # SAMPLES 43 12 720

MIN # SAMPLES 3 2 2

MEAN # SAMPLES 14.725 5.696 123.460

MEDIAN # SAMPLES 11 5 35

Table 1: Properties of CUB-LT, SUN-LT and AWA-LT.

on their assigned frequency f(class) . To create the vali-

dation set, we randomly drew a constant number of samples

per class, while keeping an overall size of 20% of the train-

ing set. See dataset statistics in Table 1.

As a second type of benchmark, we used the existing

long-tailed ImageNet [29] and augmented it with class de-

scriptors. Specifically, we used the word2vec embeddings

provided by [8], which are widely used in the literature .

Their word embeddings were created by training a skip-

gram language model on a Wikipedia corpus to extract a

500-dimensional word vector for each class.

Together, this process yielded the following datasets:

1. CUB-LT, based on [46], consists of 2,945 training vi-

sual images of 200 bird species. Each species is described

by 312 attributes (like tail-pattern:solid, wing-color:black).

Classes have between 43 and 3 images per class.

2. SUN-LT, based on [33], consists of 4,084 training im-

ages, from 717 visual scene types and 102 attributes (like

material:rock, function:eating, surface:glossy). Classes

have between 12 and 2 images per class.

3. AWA-LT, based on [26], consists of 6,713 training

images of 50 animal classes and 85 attributes (like tex-

ture:furry, or color:black). Classes have between 720 and

2 images per class.

4. ImageNet-LT-d, based on [29], consists of 115.8K im-

ages from 1000 categories with 1280 to 5 images per class.
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CUB-LT SUN-LT AWA-LT

METHOD AccPC AccLT AccPC AccLT AccPC AccLT

VISION-ONLY

CE LOSS* (VE) 53.0 65.5 33.7 40.0 73.7 93.4

FOCAL LOSS [27]* 46.4 61.3 30.1 37.4 73.5 91.8

ANCHOR LOSS [37]* 48.3 64.7 28.2 36.2 69.1 93.2

RANGE LOSS [57]* 48.5 65.3 27.9 36.0 68.9 93.5

LDAM LOSS [7]* 50.1 64.1 29.8 36.4 69.1 93.5

CB LWS [23]* 53.1 65.7 33.9 40.2 73.4 93.6

MULTI-MODAL

LAGO [4]* (SE) 54.8 66.0 18.2 18.3 74.0 93.0

CADA-VAE [38]* 48.3 57.4 32.8 35.1 73.5 89.5

LATE FUSION

MIXTURE 54.8 66.0 34.0 40.3 74.0 93.7

DRAGON (OURS) 57.8 67.7 34.8 40.4 74.1 94.1

DRAGON + BAL. (OURS) 60.1 66.5 36.1 38.5 76.2 92.2

IMAGENET-LT-D RESNET-10 RESNEXT-50

METHOD AccPC AccMS AccMED AccFS AccPC

VISION-ONLY

CE LOSS* (VE) 34.8 65.9 37.5 7.7 44.4

FSLWF [16] 28.4 - - - -

FOCAL LOSS [27] 30.5 - - - -

RANGE LOSS [57] 30.7 - - - -

OLTR [29] 35.6 - - - 37.7

CB LWS [23] 41.4 60.2 47.2 30.3 49.9

MULTI-MODAL

DEM [56]* (SE) 18.1 16.5 13.0 50.8 19.5

CADA-VAE [38]* 42.1 57.4 43.7 27.0 49.3

LATE FUSION

MIXTURE 40.7 63.8 36.3 23.9 45.1

SHARMA ET AL. [39] 39.2 - - - -

DRAGON (OURS) 43.1 66.0 38.3 47.6 51.2

DRAGON + BAL. (OURS) 46.5 62.0 47.4 50.2 53.5

Table 2: Smooth-tail distribution: Rows with * denote results reproduced by us. The rest were taken from [23, 29]. VE and

SE refer to the visual-expert and semantic-expert that were used to train DRAGON. Bal. refers to training DRAGON with a

balanced loss. Left: Comparing DRAGON with baselines on the long-tailed versions of datasets with attributes. We report

Per-Class Accuracy AccPC and Long-Tail Accuracy AccLT . Right: Comparing DRAGON with baselines on the long-tailed

ImageNet with word embeddings.

We use Word2Vec [30] class embedding features provided

by [8], as textual descriptors.

6.2. Training scheme

The familiarity effect is substantial in the validation and

test data, but not in the training data, where models may

actually become more confident on rare classes. We ob-

served this effect in CUB-LT, SUN-LT, and AWA-LT. Since

we wish to train the fusion module using data that exhibits

the familiarity bias, we hold-out a subset of the training data

and use it to simulate the response of experts to test sam-

ples. Note that in large-scale datasets, like ImageNet-LT-d,

no hold-out set is needed and DRAGON is trained on the

training set. There, the familiarity bias is also present in the

training data, as the models did not overfit the tail classes.

Appendix D illustrates this effect in more detail.

6.3. Baselines and variants

We compared DRAGON with long-tail learning and

unbalanced data approaches: Focal Loss [27], Anchor

Loss [37], Range Loss [57], and LDAM Loss [7] are

loss manipulation approaches for long-tail distributions.

FSLwF [16], OLTR [29] and Classifier-Balancing (CB)

[23] are algorithmic approaches in the long-tail learning

benchmarks. Mixture and Class Balanced Experts [39]

are late fusion approaches. Mixture resembles mixture-of-

experts (MoE) [21] without EM optimization. It fuses the

raw outputs of the two experts by a gating module. As with

standard MoE models, the gating module is trained with

visual-features as inputs.

For CUB-LT, SUN-LT, and AWA-LT, the visual expert

was a linear layer over a pre-trained ResNet from [52, 50],

which we trained with a balanced xent loss (CE Loss). The

semantic expert was LAGO [4]. For ImageNet-LT-d, we

followed [23] and set the visual expert to be ResNet-10 or

ResNeXt-50. The semantic expert was DEM [56].

6.4. Evaluation metrics and protocol

Evaluation Protocol: The experiments for CUB-LT,

SUN-LT, and AWA-LT follow the standard protocols set

by [38, 52, 50], including their ResNet-101 features. Their

split ensures that none of the test classes appear in the

training data used to train the ResNet-101 model. For

ImageNet-LT-d we used the protocols in [29, 23] with the

pre-trained ResNet-10 and ResNeXt-50 provided by [23].

We extracted their features to train the semantic expert.

Evaluation metrics: We evaluated DRAGON on the

Smooth-Tail benchmark with the following metrics:

(a) Per-Class Accuracy (AccPC): Balanced accuracy met-

ric that uniformly averages the accuracy of each class
1
k

∑k

y=1 Acc(y), where Acc(y) is the accuracy of class y.

(b) Long-Tailed Accuracy (AccLT ): Test accuracy, where

the distribution over test classes is long-tailed like the train-

ing distribution. This is expected to be the typical case in

real-world scenarios. See Appendix E.1 for more details.

(c) Many-Shot, Medium-shot and Few-Shot accuracies:

For ImageNet-LT-d, we follow [29] and report accuracy for:

AccMS (>100 training images), AccMED (20-100 images)

and AccFS (< 20 images).

6.5. Results with smoothtail distribution

Table 2 (Left) provides the test accuracy for three long-

tail benchmark datasets and compares DRAGON to base-

lines and individual components of the DRAGON model.

DRAGON achieves higher accuracy compared with all com-

peting methods, both with respect to class-balanced accu-
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CUB-LT AccPC AccLT

MAX. 57.3 70.8

AVG. 57.0 70.0

PRODUCT 56.9 70.3

MIXTURE 53.7 66.5

DRAGON (OURS) 60.0 70.9

Table 3: Comparing

DRAGON against com-

mon late fusion ap-

proaches on the validation

set of CUB-LT.

racy (AccPC) and to test-distribution accuracy (AccLT ).

Improving AccLT indicates that DRAGON effectively

classifies head classes, which are heavily weighted in

AccLT . At the same time, improving AccPC indicates that

DRAGON also effectively classifies tail classes, which are

up-weighted in AccPC .

Table 2 (Right) provides the AccPC accuracy for

ImageNet-LT-d. We can directly see the benefit of fusion

information between modalities - the visual expert excels

on many-shot classes, AccMS , while the semantic expert

excels only on few-show classes, AccFS . DRAGON recali-

brate and fuse both experts to excel in all classes.

We further trained DRAGON with a balanced cross-

entropy loss (Bal.). This strategy has a synergistic effect

with DRAGON (last row in Table 2): It improves tail accu-

racy AccPC for all benchmarks while only marginally hurt-

ing head accuracy AccLT .

Table 3 compares DRAGON against common late fusion

strategies, on the validation set of CUB-LT: AVG (averag-

ing expert predictions), Max (taking the largest prediction),

Product (multiplying expert predictions) and Mixture. We

show that those approaches, which late fuse predictions of

the two experts, are usually better at head classes (AccLT )

while giving less accurate results for tail classes (AccPC).

DRAGON achieves better results on both metrics because it

also calibrates expert predictions. In the ablation study (Ta-

ble 5) we compare our fusion module to more ablated fusion

components.

7. Two-Level (GFSL-d) benchmark

We follow the protocol of [38] on the original CUB,

SUN, and AWA (Figure 5), to compare DRAGON in a Two-

Level setting.

For those datasets, many-shot classes are kept as in the

original train-set, while few-shot classes have an increasing

number of shots: 1,2,5,10 and 20 (in SUN up to 10 shots).

7.1. Baselines and variants

We compared DRAGON with LDAM Loss [7] and with

SoTA multi-modal GFSL-d approaches: ReViSE [43], CA-

VAE [38], DA-VAE [38] and CADA-VAE [38]. Their re-

sults were obtained from the authors of [38], while LDAM

results were reproduced by us.

The visual expert was a linear layer over a pre-trained

ResNet from [52, 50], which we trained with a balanced

Figure 5: Two-level variants of CUB, SUN and AWA as in

[38]. Blue: training set, green: test set.

TWO-LEVEL CUB SUN AWA

# SHOTS 1 5 10 20 1 5 10 1 5 10 20

LDAM [7]* 2.4 36.0 52.2 61.5 4.3 26.6 37.0 12.4 41.1 57.0 68.6

REVISE [43] 36.3 44.6 50.9 - 27.4 37.4 40.8 56.1 64.1 67.8 -

CA-VAE [38] 50.6 59.6 62.2 - 37.8 44.2 45.8 64.0 76.6 79.0 -

DA-VAE [38] 49.2 58.8 60.8 - 37.8 43.6 45.1 68.0 75.6 76.8 -

CADA-VAE [38] 55.2 63.0 64.9 66.0 40.6 46.0 47.6 69.6 78.1 80.2 80.9

CE LOSS* (VE) 1.2 30.2 50.2 60.9 1.8 25.1 38.3 11.0 47.8 69.9 73.9

LAGO* (SE) 23.0 49.0 58.6 64.8 19.5 25.6 27.8 20.2 59.0 68.7 75.8

DRAGON (OURS) 55.3 63.5 67.8 69.9 41.0 46.7 48.2 67.1 76.7 81.9 83.3

Table 4: Two-Level distributions: Comparing DRAGON

on Two-Level CUB, SUN and AWA with SoTA GFSL mod-

els and baselines and with increasing number of few-shot

training samples. Values denote the Harmonic mean AccH .

VE and SE refer to the visual-expert and semantic-expert

that were used to train DRAGON.

cross-entropy loss. The semantic expert was LAGO [4].

7.2. Evaluation metrics

Following [38], we evaluated the Two-Level benchmark

with the Harmonic mean metric (AccH ): It quantifies the

overall performance of head and tail classes, by AccH =
2(AccmsAccfs)/(Accms + Accfs). Where, Accms is the

per-class accuracy over many-shot classes and Accfs is the

per-class accuracy over few-shot classes.

7.3. Results with twolevel distribution

Table 4 compares DRAGON with SoTA baselines on the

Two-Level setup. Our model wins in CUB and SUN on all

shots but loses on AWA for fewer than 10 samples. Fur-

thermore, DRAGON gains better results when the number

of shots increases in contrast to complex generative models

like CADA-VAE [38]. Appendix F.1 provides results for

Accfs and Accms with 1,2,5,10,20 shots.

8. Vision-only long-tail learning

The approach presented in this paper focuses on learn-

ing from two modalities, vision and language. Learning to

remove the bias predictions can also be useful when learn-

ing with a single modality, as in standard long-tail learning

[23, 7, 27, 29]. Due to a lack of space, results are provided

separately in Appendix A.
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AccPC AccLT #params

F.C. 54.0 67.1 403

F.C. & 1/ny RESCALE 56.7 60.3 403

F.C. & NON-PARAMETRIC RESCALE 58.2 68.0 81,406

CONV. & NON-PARAMETRIC RESCALE 58.7 68.2 40,612

CONV. & SINGLE PARAMETRIC RESCALE 59.0 67.5 613

DRAGON (OURS) 60.0 70.9 1,015

Table 5: Ablation study, comparing different fusion and re-

scaling approaches. The results show the contribution of

the convolutional backbone and the re-scaling method for

the two experts (validation set, CUB-LT).

9. Ablation study

To understand the contribution of individual components

of DRAGON, we carried ablation experiments. We report

results on the validation set, which were consistent with the

test set (Appendix F.2).

Fusion-Module Architecture: Table 5 compares the

performance of various components of the fusion-module

on CUB-LT. (1) F.C.: predicts λ using a fully-connected

layer over pV ,pS , no re-balancing (wV (y) = wS(y) =
1, ∀y). (2) F.C. & 1/ny rescale: learns λ as in F.C., rescales

experts predictions by ny . (3) F.C. & non-parametric

rescale: learns λ as F.C. and rescales both experts predic-

tions by a learned non-parametric weight for each class in-

stead of a polynomial. (4) Conv. & non-parametric rescale:

like (3), then applies sorting and convolution (Section 4.2).

(5) Conv. & single parametric rescale replaces the non-

parametric re-scaling weights by a single polynomial of

parametrized weights. (6) DRAGON is our full approach de-

scribed in Section 4. The comparison shows that rescaling

expert predictions significantly improves AccPC and that

reducing the number of parameters using the convolutional

layer is important.

To quantify the contribution of per-sample weighting,

Table 6 compares it against per-class weighting on three

long-tail benchmarks: ImageNet-LT, Places365-LT and

CIFAR100-LT. To keep the comparison fair, this was done

using vision-only (λ = 1), and sweeping over the same set

of hyper parameters. To gain more intuition on how per-

sample weighting helps, Fig. 6 plots the per-sample weights

of four images from a ImageNet-LT head class (mouse-

trap). Per-sample weighs more strongly ”easy” samples

(low entropy) than non-typical samples. This illustrates that

per-sample weighting does not penalize “justified” high-

confidence predictions if they happen to arrive from a head

class. At the same time, per-sample weighting gives more

chance to tail classes, reducing the familiarity bias .

Sharing order statistics (sorting): Table 7 quantifies

the benefit of sorting expert predictions. As discussed in

Section 4.3, sorting enables sharing of information across

classes by fixing the input location of each order statistic.

Places365-LT ImageNet-LT CIFAR100-LT

ResNet-50 ResNet-10 ResNeXt-50 ResNet-32

CE Loss (VE) 30.2 34.8 44.4 38.3

Per-class 36.9 40.0 49.2 40.5

Per-sample 38.1 42.0 50.1 42.0

Table 6: Ablation of per-sample weighting on vision-only

benchmarks. VE refers to visual-expert.

Figure 6: Using per-sample weighting, images typical for

the class Mousetrap (softmax has low-entropy) are weighed

more strongly than non-typical images (softmax has high-

entropy). Per-class weighting reweighs all samples for that

class the same (0.7), hurting recognition of typical images.

SORTING AccPC AccLT

NO SORTING 58.7 68.2

SORTING BY VISUAL EXPERT 60.0 70.9

SORTING BY SEMANTIC EXPERT 60.0 70.8

Table 7: Ablation study, quantifying the contribution of

sorting the fusion-module inputs (validation set, CUB-LT).

10. Conclusion

We discuss two key challenges for learning with long-tail

unbalanced data: A “familiarity bias”, where models favor

head classes, and low accuracy over tail classes due to lack

of samples. We address these challenges with DRAGON,

a late-fusion architecture for visual recognition that learns

with per-class semantic information.

This is achieved by performing per-sample debiasing

that is based on the full vectors of predictions from a vi-

sual module and a semantic module. It outperforms existing

methods on new long-tailed versions of ImageNet, CUB,

SUN, and AWA. It further sets new SoTA on a Two-Level

benchmark [38].

DRAGON was designed as a late-fusion modular archi-

tecture, where one can easily plug-in new pretrained experts

as they are developed. As a potential drawback, earlier shar-

ing of information between visual and semantic experts may

improve performance even further.

Strongly unbalanced data with a long-tail is ubiquitous in

numerous domains and problems. The results in this paper

show that a light-weight late-fusion model can be used to

address many of the challenges posed by class imbalance.
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