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Abstract

We propose a deep learning method to automatically de-

tect personal protective equipment (PPE), such as helmets,

surgical masks, reflective vests, boots and so on, in images

of people. Typical approaches for PPE detection based on

deep learning are (i) to train an object detector for items

such as those listed above or (ii) to train a person detector

and a classifier that takes the bounding boxes predicted by

the detector and discriminates between people wearing and

people not wearing the corresponding PPE items. We pro-

pose a novel and accurate approach that uses three com-

ponents: a person detector, a body pose estimator and a

classifier. Our novelty consists in using the pose estimator

only at training time, to improve the prediction performance

of the classifier. We modify the neural architecture of the

classifier by adding a spatial attention mechanism, which is

trained using supervision signal from the pose estimator. In

this way, the classifier learns to focus on PPE items, using

knowledge from the pose estimator with almost no compu-

tational overhead during inference.

1. Introduction

In many workplace environments, such as construction

sites or oil and gas factories, there are potentially haz-

ardous materials, dangerous chemicals or dangerous equip-

ment (large moving parts, operating cranes), that present

health or safety risks for the workers. In order to protect

workers against accidents caused in hazardous or danger-

ous areas, the workers may be required to wear personal

protective equipment (PPE). The personal protective equip-

ment may include, but is not limited to, helmets, masks,

glasses, uniforms, safety vests, boots, gloves, etc. In many

countries, there are governmental regulations that require

certain employees to be trained in the proper and effective

use of PPE in hazardous or dangerous working environ-

ments. Nevertheless, in many cases, the workers choose

not to wear PPE items because these items are uncomfort-

able, potentially causing sweat or skin irritations, or because

these items prevent the workers from executing their tasks

with precision, for example screwing or unscrewing a small

screw with gloves on. Managing such risks is of utter im-

portance to employers that aim at preventing unnecessary

health or safety accidents. In this context, a system, such

as the one proposed in this work, to automatically monitor

the workers and verify if they are permanently wearing the

mandatory personal protective equipment is extremely use-

ful. We also recognize a broader application of our system

in the context of the COVID-19 pandemic, which forced

governments to impose new regulations requiring people to

wear surgical masks in public places in order to reduce the

spread of the SARS-CoV-2 virus. Our system could also

be used to check for compliance with such regulations, as

shown in our experiments.

Typical deep learning approaches for PPE detection are

(i) to train an object detector [9, 12, 28, 30, 31, 32], re-

sulting in a single-stage pipeline, or (ii) to train a per-

son detector and a classifier that takes the bounding boxes

predicted by the detector and discriminates between peo-

ple wearing and people not wearing the corresponding PPE

items [3, 6, 21], resulting in a two-stage pipeline. A re-

cent work [21] demonstrated that the latter methodology

produces more accurate results, mainly due to the poor abil-

ity of object detectors of detecting small objects. Another

advantage of the two-stage approach is that it eliminates

the necessity to annotate PPE items with bounding boxes.

Given an accurate pre-trained person detector, we only need

binary labels for each detected person with respect to each

PPE item. This significantly reduces the annotation labor,

allowing us to easily construct large data sets typically re-

quired for training deep learning models.

We propose a novel and accurate approach that uses three

components: a person detector, an articulated body pose es-

timator and a classifier. Our novelty consists in employing

the pose estimator only at training time, providing pseudo-

ground-truth attention maps to improve the performance

of the classifier. We modify the neural architecture of the

classifier by adding a spatial attention mechanism (SAM),

which is trained using supervision signal from the pose

estimator (SuPEr), as shown in Figure 1. In this way, the

classifier learns to focus on PPE items, using knowledge
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Figure 1. A neural network classifier based on SuPEr-SAM, trained with classification loss and attention loss to discriminate people wearing

helmets from people not wearing helmets. The supervision signal for the attention loss is provided by an articulated body pose estimator.

from the pose estimator. At inference time, the pose esti-

mator is removed from our processing pipeline, since it is

only required during training to provide supervision to the

attention module. Hence, the only computational overhead

during inference is due to the spatial attention module. We

term our approach SuPEr-SAM.

We conduct experiments on three data sets, comparing

our approach with two baselines, namely the standard two-

stage approach and a two-stage approach that integrates a

standard spatial attention module. Each data set includes

people wearing a certain PPE item type, namely helmets,

masks or boots. We show that our approach significantly

outperforms both baselines, irrespective of the PPE type.

The rest of this paper is organized as follows. We present

the related works on PPE detection in Section 2. Our ap-

proach based on spatial attention trained with supervision

signal from a pose estimator is described in Section 3. The

comparative experiments are presented in Section 4. Fi-

nally, we draw our conclusion in Section 5.

2. Related Work

Some of the first systems developed for PPE detec-

tion [1] are based on radio-frequency identification (RFID).

Workers have to carry RFID devices or similar sens-

ing devices which are programmed to identify the equip-

ment based on proximity. For example, Barro-Torres et

al. [1] presented an architecture formed of a wireless lo-

cal area network and a body area network. Workers carry

a microcontroller-based device that detects the presence of

the PPE, sending reports to a central unit where alerts are

generated. We note that such systems fail if the workers

decide not to carry the RFID sensors, just as they would

do with the personal protective equipment. Another prob-

lem with systems based on sensing devices is that they are

costly to implement, since every piece of protective equip-

ment needs to be tagged with a transmitting device. Unlike

such systems, our approach employs a computer vision sys-

tem that detects and recognizes PPE items in images cap-

tured by surveillance cameras. Since one surveillance cam-

era can cover an area with multiple workers, a system based

on image analysis is more cost effective than a system based

on RFID sensors. Furthermore, the workers cannot trick the

system by not wearing the sensing devices. Other than be-

ing applied for the same task, our method has no connection

to works such as [1].

Before deep learning [13] was widely-adopted outside

the computer vision community, researchers developed sys-

tems for PPE detection based on conventional machine

learning or statistical methods [5, 7, 14, 16, 17, 18, 19, 20,

27, 29]. It seems that the majority of systems, even from

the recent literature [14, 16, 17, 18, 29], still rely on hand-

crafted methods. In order to detect helmets, Shrestha et al.

[27] employed a standard face detector. The detected faces

are passed to a contour extraction method, which checks

that the contour forms a semi-circle to confirm the presence

of a helmet. The method is not reliable under low-resolution

or blurry images or when the faces or helmets are par-

tially occluded. Dahiya et al. [5] compared three methods

based on handcrafted feature extraction: Histogram of Ori-

ented Gradients (HOG), Scale-Invariant Feature Transform

(SIFT) and Local Binary Patterns (LBP). Their method is

designed to detect bike or motorbike riders without helmet.

Wu et al. [29] and Mneymneh et al. [16] also employed a

set of handcrafted image descriptors, which are combined

together instead of being used independently. Neverthe-

less, these methods are tested on very few images, mak-

ing it hard to draw generic conclusions. Moohialdin et al.

[18] employed decision trees for PPE and posture detec-

tion. Decision trees are part of the standard machine learn-

ing methods, which cannot model the complexity of data af-

fected by large variations. Li et al. [14] used a background

subtraction algorithm to detect people. Their system is not
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reliable when objects other than people enter the analyzed

scene, because these objects belong to the foreground. An-

other system based on background subtraction and hand-

crafted features is proposed in [17]. The system is trained

and tested on a few hundred images collected in ideal con-

ditions, which raises questions about the robustness of the

system with respect to illumination changes, pose variation

and occlusion. Mosberger et al. [19] handcrafted a method

to detect reflective safety garments. The method is specifi-

cally designed to detect the reflective patterns using thresh-

olding and contour extraction. This limitation makes the

method inapplicable to other PPE items that are not reflec-

tive, e.g. glasses or masks. Moreover, their system requires

an expensive camera mount, thus being less cost effective

than our approach. Mosberger et al. [20] enhanced their

previous method by employing multi-band Hough Forests.

While being more accurate than their former system [19],

their latter system [20] suffers from the same limitations in-

dicated above.

We note that, in general, the systems based on conven-

tional machine learning methods, e.g. Support Vector Ma-

chines [14] or decision trees [18], and handcrafted fea-

ture extraction, e.g. HOG [7, 16, 29], SIFT [5] or LBP

[5, 16, 29], exhibit poor modeling capacity. Such systems

do not cope well under illumination changes, aspect varia-

tions or occlusion, among other factors of variation in im-

ages. To this end, researchers and engineers turned their

attention to deep learning methods, which provide superior

results due to their capacity to learn a hierarchy of features

from large amounts of data [13]. Our system is based on

deep learning, thus being able to achieve much better ac-

curacy rates than systems based on conventional machine

learning or handcrafted features. Our method is fundamen-

tally different from [5, 7, 14, 16, 17, 18, 19, 20, 27, 29],

since, in our case, the features are automatically learned in-

stead of being designed by hand.

The PPE detection approaches based on deep learning

are divided into two categories: (i) training an object de-

tector for PPE item detection or (ii) training a person de-

tector and a classifier that takes the bounding boxes pre-

dicted by the person detector as input. The majority of deep

learning systems [9, 12, 28, 30, 31, 32] perform PPE detec-

tion in a single step, by training an object detector for the

corresponding object classes. For example, Fang et al. [9]

trained a Faster R-CNN object detector [24] on more than

100,000 images to detect people not wearing helmets. An-

other approach for helmet detection based on Faster R-CNN

is presented in [32]. In other works [12, 31], the authors

approached the task of helmet detection using the YOLO

object detector [22]. Another approach based on a fast deep

object detector is that of Wang et al. [28]. For a fast pro-

cessing time, their detector relies on a lightweight convo-

lutional neural network as backbone. Wu et al. [30] pro-

posed a deep object detector based on multi-level features

to detect people wearing helmets. To progressively encode

the multi-level features, the authors employed reverse pro-

gressive attention. Their attention mechanism is trained in

a conventional way. Unlike Wu et al. [30], we train the

attention mechanism in a novel and different way. While

they use attention in the detector, we employ attention in

the classifier. Our novelty consists in training the attention

maps by minimizing the mean absolute error with respect

to a pseudo-ground-truth attention mask provided by a pose

estimator. By using supervision from a pose estimator, our

method is able to obtain better accuracy rates compared to

attention mechanisms based on conventional training (with-

out additional components added to the loss).

Methods that detect PPE items in a single stage [9, 12,

28, 30, 31, 32] are typically less accurate than two-stage

methods performing people detection and PPE recognition

[3, 6, 21]. The main issue with methods based solely on

object detectors is the inability of object detectors to detect

small objects, e.g. helmets or boots, from a far range. In-

stead of trying to detect these small objects relative to the

entire scene, two-stage methods detect people, which are

proportionally larger. For this reason, the latter approaches

have superior accuracy rates. This statement is confirmed

by the experimental results presented in [21]. Our method is

based on a two-stage approach, hence it is substantially dif-

ferent from methods performing detection in a single stage

[9, 12, 28, 30, 31, 32]. Some recent works [3, 6] focused on

helmet detection of bike or motor riders. These systems use

the YOLO object detector to detect people. Then, the au-

thors trained convolutional neural networks to classify the

detected people in two classes: violation (without helmet)

or non-violation (with helmet). Different from such meth-

ods, our approach relies on an additional system, namely an

articulated body pose estimator, that provides supervision

to a spatial attention module inserted in the neural network

classifier. This leads to accuracy improvements with an im-

perceptible computational time increase. To our knowledge,

we are the first to train a spatial attention mechanism with

supervision signal from a pose estimator.

3. Method

3.1. Overview of Processing Pipelines

The training and inference pipelines of the proposed

method are slightly different, since the pose estimator is not

employed during inference. We next present the steps in-

volved in each of the two pipelines of our method.

Training pipeline. During training, the input images are

processed by three neural models: a person detector, a pose

estimator, one or more PPE classifiers. The number of clas-

sifiers is determined by the number of distinct types of PPE

that need to be detected. We assume that the person de-

tector and the body pose estimator are pre-trained models.
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We still need a set of labeled images to train our classifiers.

First, we provide the training images to the person detec-

tor that outputs bounding boxes enclosing the detected peo-

ple. Second, we apply the pose estimator on each image re-

gion (bounding box), providing as output a skeleton of the

body indicating the location of body parts. From an entire

bounding box, we automatically crop out a sub-region that

can potentially contain a specific PPE item, e.g. a helmet,

and provide it to the corresponding classifier, e.g. the helmet

classifier. From the corresponding skeleton, we construct a

pseudo-ground-truth attention mask indicating the location

of the body part of interest inside the crop. For example, the

body part of interest for the helmet classifier is the head. In

summary, the input for a classifier is formed of an image,

for example representing the upper body, and an attention

mask, typically indicating the location of the body part of

interest, for example the head. We process the input im-

age through a series of convolutional blocks, as illustrated

in Figure 1. We pass the activation maps from the last con-

volutional layer to a spatial attention module. We train each

classifier by jointly minimizing an objective composed of a

classification loss and an attention loss.

Inference pipeline. During inference, we apply the per-

son detector on test images, obtaining a set of bounding

boxes. From each bounding box, we crop out sub-regions

that can potentially contain certain PPE items and provide

them to the corresponding classifiers. We process each im-

age crop through the corresponding convolutional neural

network (CNN) classifier and its spatial attention module.

The classifier provides a binary prediction for each input

image, indicating whether the (partially-truncated) person

in the image wears the corresponding PPE item or not. Ad-

ditionally, the predicted attention map can be used to ex-

plain the model’s decision for a given input image.

3.2. Neural Models

Person detector. To detect people in images, we employ

the YOLOv3 [23] object detector, which is pre-trained on

the MS COCO data set [15]. YOLOv3 [23] is a single-stage

object detector that offers superior detection performance

and high speed (more than 30 frames per second on a single

GPU). For each input frame, the object detector returns the

bounding boxes of the objects together with the correspond-

ing class labels. From these, we are only interested in the

bounding boxes from the person category.

Pose estimator. To obtain the body pose of each detected

person, we apply a pre-trained pose estimator based on Part

Affinity Fields [2]. The chosen pose estimator relies on

global context, jointly learning part locations and their as-

sociations by using two branches in the same sequential es-

timation process. For each input image, the pose estimator

processes the image to recover the pose of the articulated

bodies depicted in the image, representing the pose as a

skeleton. The skeleton is a tree-structured chain with nodes

representing body joints and edges representing rigid body

segments. Each edge is associated with a specific body part,

enabling us to build pseudo-ground-truth attention maps for

the body parts of interest to the PPE classifiers. We note

that the computational time of the pose estimator is not of

utter importance, as it is used only at training time.

PPE classifier. Our PPE classifier is a lightweight CNN

based on the MobileNetV2 architecture [26], which is

equivalent with AlexNet [11] in terms of accuracy, yet of-

fers faster processing times, thus being suitable even for

mobile devices. In the standard MobileNetV2 model, which

is pre-trained on ImageNet [25], we integrate SuPEr-SAM,

a spatial attention module that receives supervision signal

from the pose estimator. As illustrated in Figure 1, the spa-

tial attention module is introduced after the last convolu-

tional layer. Since the activation maps from the last convo-

lutional layer are passed to the spatial attention module, the

neural network is forced to focus on the body part of interest

with respect to the classification task. The proposed spatial

attention module is composed of two depth-wise reduction

layers. The goal of each reduction layer is to reduce the

depth of the input tensor (a set of activation maps) to one,

while preserving the spatial dimensions. Each reduction

layer applies a different rule for the depth-wise reduction

operation, i.e. one selects the maximum value and the other

computes the average. Each reduction layer produces a 2D

activation map as output. The activation maps from the two

reduction layers are stacked in the third dimension to form

a 3D tensor. The tensor is then provided as input to a con-

volutional layer with a single 7×7 filter. Being formed of a

single filter, the output of the convolutional layer is a single

2D activation map. The resulting activation map is passed

through a sigmoid gate, scaling the values inside the map to

the interval [0, 1]. The final activation map is interpreted as

an attention mask denoted by Â. The attention mask is mul-

tiplied element-wise with each activation map that was pro-

vided as input to the attention module. The result is a set of

activation maps with high filter responses only in the region

indicated by the attention mask. To focus on the correct re-

gion, the attention mask Â is trained in order to minimize

an attention loss with respect to a pseudo-ground-truth at-

tention mask A, which is automatically computed with the

help of the pose estimator. Since each classifier’s goal is to

detect a specific kind of PPE covering a certain body part,

the ground-truth activation mask is generated such that it

contains a region of interest in the location where the pose

estimator found the body part of interest. The region of

interest is indicated as a rectangle filled with the value 1

in the ground-truth attention mask, the rest of the attention

mask being filled with the value 0. Since the size of the

ground-truth attention mask does not match the size of the

predicted attention mask coming out of the spatial attention
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module, the ground-truth attention mask is rescaled such

that the masks have the same size.

3.3. Loss Function

Let X ∈ R
h×w be an input image of h × w pixels, e.g.

representing the upper body of a person, and y ∈ {0, 1} a

ground-truth label associated to the input image. The clas-

sifier acts as a function f : Rh×w → [0, 1] with parameters

(weights) θ, providing as output a class probability ŷ indi-

cating whether the input X belongs to the class y. Then,

the parameters θ are optimized such that the classifier f is

minimizing a classification loss function. In our case, the

classification loss is the binary cross-entropy:

Lclass = −

n∑

i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi), (1)

where ŷi = f(θ,Xi), S = {(Xi, yi)|Xi ∈ R
h×w, yi ∈

{0, 1}, ∀i = 1, n} is a training set of images and n is the

size of the training set. In addition to the classification loss

function, our method optimizes the classifier towards mini-

mizing an attention loss function. Since our attention mask

A contains binary values, we opt to train the attention mod-

ule using binary cross-entropy:

Lattention = −

n∑

i=1

h′∑

j=1

w′∑

k=1

Ai,j,k· log(Âi,j,k)+

+(1−Ai,j,k)· log(1− Âi,j,k),

(2)

where n is the size of the training set, h′ and w′ are the

height and the width of the predicted attention mask, Ai is

the ground-truth attention mask associated to the example

Xi, Âi is the predicted attention mask for the example Xi,

and j and k iterate through the components of the matrices

Ai and Âi.

We combine the classification loss and the attention loss

into a joint loss function expressed as follows:

Ljoint = λ · Lclass + (1− λ) · Lattention, (3)

where λ is a parameter between 0 and 1 that controls the bal-

ance between the classification loss and the attention loss.

Each PPE classifier is trained using the Adam optimizer

[10], minimizing the joint loss function defined in Equa-

tion (3). It is important to note that, during inference, the

ground-truth attention masks are no longer needed, since

these are used only at training time to compute the attention

loss defined in Equation (2). Therefore, the articulated body

pose estimator is not required at inference time, signifi-

cantly reducing the processing time of the proposed method.

Since only the person detector and the classifiers are em-

ployed during inference, our entire architecture can process

an input video stream in real-time at about 30 frames per

second (32.6 milliseconds per frame, with an average of one

person per frame) using one GPU (see Table 3).

4. Experiments

4.1. Data Sets

We evaluate our model on three types of PPE, namely

helmets, boots and surgical masks.

Helmets data set. The helmets data set is composed of peo-

ple wearing and people not wearing helmets. We collected a

total of 13,481 images of people wearing helmets and 4,170
images of people not wearing helmets. We split the data set

into 12,286 examples for training, 2,628 examples for vali-

dation and 2,737 examples for testing, using stratified sam-

pling. Hence, the ratio of people wearing helmets to people

not wearing helmets is roughly 3:1 in all three subsets.

Boots data set. The boots data set contains images with

people wearing and people not wearing protective boots.

We gathered a total of 4,784 images of people wearing pro-

tective boots and 988 images of people wearing other types

of shoes. We divide the data set in 3,988 examples for train-

ing, 866 examples for validation and 918 examples for test-

ing. Since we used stratified sampling for splitting the data,

the ratio of people wearing protective boots to people not

wearing them is nearly 4.5:1 in all three subsets.

Surgical Masks data set. The surgical masks data set is

formed of images of people with and without masks. We

collected a total of 1,535 images of people wearing sur-

gical masks and 5,473 images of people that do not wear

masks. Using stratified sampling, we split the data set in

3,421 examples for training, 1,710 examples for validation

and 1,877 examples for testing. The ratio of people wearing

to people not wearing masks in each subset it is 1:3.5.

4.2. Evaluation Metrics

In the evaluation, we employ several metrics, such as

the accuracy, the macro-averaged precision, the macro-

averaged recall and the macro-averaged F1 score. As the

accuracy is equivalent to the micro-averaged F1 score, we

do not report micro-averaged metrics. A macro-averaged

metric computes the score for each class, then averages the

results. For example, in the binary case, the macro-averaged

precision is computed by calculating the precision for class

0 and class 1, then averaging the resulting scores. Since the

macro-averaged metrics do not take into account the imbal-

anced class distributions in our data sets, we also report the

weighted precision, the weighted recall and the weighted F1

score. For instance, the weighted precision is computed by

calculating the precision for class 0 and class 1, but instead

of averaging the resulting scores, it weights the scores by

the class probabilities.

In the last experiment, we compare the two-stage ap-

proaches, including our own, with an approach that per-

forms detection and recognition in a single step, consid-

ering the mean Average Precision (mAP). The mAP score

is the mean of the AP scores corresponding to all object

classes. The AP score for one class is represented by the
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Data Set Method Accuracy Macro Weighted

Precision Recall F1-score Precision Recall F1-score

MobileNet 96.90±0.9 96.96±1.4 95.01±1.1 95.93±1.2 96.91±1.0 96.90±0.9 96.87±0.9
Helmets MobileNet+SAM 95.76±1.0 96.53±0.5 92.56±2.2 94.28±1.5 95.88±0.9 95.76±1.0 95.65±1.1

MobileNet+SuPEr-SAM 98.92±0.4 98.89±0.2 98.33±0.9 98.60±0.5 98.93±0.4 98.92±0.4 98.92±0.4

MobileNet 95.69±0.5 89.89±2.2 91.27±1.7 90.47±0.8 95.85±0.4 95.69±0.5 95.74±0.4
Boots MobileNet+SAM 95.48±0.9 93.20±2.1 85.69±3.7 88.83±2.6 95.37±0.9 95.48±0.9 95.26±1.0

MobileNet+SuPEr-SAM 96.54±0.2 91.48±1.1 92.93±0.9 92.17±0.5 96.63±0.2 96.54±0.2 96.57±0.2

MobileNet 93.90±1.1 88.59±1.6 95.69±0.6 91.42±1.3 95.16±0.6 93.90±1.1 94.17±1.0
Masks MobileNet+SAM 94.74±1.1 89.88±1.8 96.23±0.7 92.50±1.5 95.70±0.7 94.74±1.1 94.94±1.1

MobileNet+SuPEr-SAM 95.26±1.0 90.92±1.9 96.08±0.5 93.14±1.4 95.92±0.7 95.26±1.0 95.41±1.0

Table 1. Results of the MobileNet and the MobileNet+SAM baselines versus our MobileNet+SuPEr-SAM on the Helmets, the Boots and

Surgical Masks data sets. Reported values are averaged over 5 runs. The best score on each data set and each metric is highlighted in bold.

area under the precision-recall (PR) curve. The PR curve

is obtained by mapping each detected bounding box to the

most-overlapping ground-truth bounding box, considering

a minimum Intersection over Union (IoU) score of 0.5 [8].

4.3. Baselines and Models

MobileNet. As our first baseline, we consider a two-stage

approach that detects people using a pre-trained YOLOv3

model [23], then classifies the cropped detections using a

fine-tuned MobileNetV2 architecture [26].

MobileNet+SAM. As our second baseline, we take into

consideration a two-stage approach based on YOLOv3 and

MobileNetV2, which introduces a spatial attention module

(SAM) in the MobileNetV2 architecture. The module is

placed immediately after the last convolutional layer.

MobileNet+SuPEr-SAM (ours). Our model is most simi-

lar to the second baseline, the only difference being that the

spatial attention module (SAM) is trained using supervision

signal from a pose estimator (SuPEr). Our approach is

therefore called SuPEr-SAM.

YOLO on faces. Another relevant baseline is to fine-tune

the YOLOv3 model to detect and recognize PPE items di-

rectly. Since this baseline requires manual bounding box

labeling, we test it on a single data set, namely the Surgical

Masks data set. Hence, the model detects and recognizes

two object categories: faces with masks and faces without

masks. Both categories are required, since we also need to

know when people do not wear the mask.

4.4. Parameter and Implementation Choices

We trained the MobileNetV2 [26] classification models

in Keras [4]. We employed the Adam optimizer [10] with

the learning rate set to 10−4, while keeping the default val-

ues for the other parameters of Adam. Each model was

trained for a maximum of 150 epochs using early stopping

with respect to the validation set. In each experiment, we

set the mini-batch size to 32 samples. We tuned the param-

eter λ in Equation (3) on each validation set, considering

values between 0.1 and 1, using a step of 0.1. We obtained

Figure 2. Validation accuracy rates on the Helmets data set, while

tuning λ in Equation (3) between 0.1 and 1.

optimal results using λ = 0.5. In Figure 2, we illustrate the

parameter tuning process on the Helmets data set.

4.5. Quantitative Results

We present the quantitative results on the three data sets

in Table 1. For each system, we report the average scores

and the standard deviations for 5 runs, in order to account

for the variation that commonly appears in the initialization

and the stochastic training process of neural networks.

Results on Helmets. On the Helmets data set, we outper-

form the two baselines, namely MobileNet [26] and Mo-

bileNet+SAM, by large margins, regardless of the metric.

For instance, we surpass the standard MobileNet by 2.02%
in terms of the accuracy rate and by 2.67% in terms of the

macro-averaged F1 score, respectively. Interestingly, the

MobileNet+SAM model attains lower performance levels

than the standard MobileNet. By adding SAM, we observe

performance drops higher than 1% for almost all metrics.

This shows that the spatial attention module was not able

to learn relevant spatial information without direct supervi-

sion. It is worth noting that our approach is more stable,

having lower standard deviations over the 5 runs compared

to the two baselines. For example, our standard deviation in

terms of the macro-averaged precision is 0.2%, which is sig-

nificantly lower than the standard deviation of the baseline

MobileNet architecture, which is equal to 1.4%. In sum-
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Method No Mask Mask mAP

YOLO on faces 91.93% 83.90% 87.91%
MobileNet 90.15% 86.39% 88.27%
MobileNet+SAM 90.33% 86.18% 88.25%
MobileNet+SuPEr-SAM 90.31% 87.19% 88.75%

Table 2. AP and mAP scores of a single-stage pipeline (YOLO on

faces) versus three two-stage pipelines based on YOLO on people

and various MobileNet classifiers, with and without attention.

mary, the results clearly show the benefit of using the su-

pervision signal from the pose estimator to train the spatial

attention module.

Results on Boots. The results presented in Table 1 in-

dicate that we generally outperform both baselines on the

Boots data set. Our approach attains a macro-averaged pre-

cision of 91.48%, being surpassed by the MobileNet+SAM,

which yields a macro-averaged precision of 93.20%. Even

though SAM seems to perform better than SuPEr-SAM in

terms of the macro-averaged precision, when we consider

the macro-averaged recall, our method attains a score that is

7.24% higher. Consequently, the macro-averaged F1 score

of MobileNet+SuPEr-SAM is superior. Moreover, we note

that MobileNet+SAM attains generally lower performance

scores, even compared to the standard MobileNet architec-

ture. Once again, this proves that the integration of the stan-

dard spatial attention module is rather harmful. On the con-

trary, SuPEr-SAM brings performance gains, regardless of

the evaluation metric. Our model is also more stable, hav-

ing a maximum standard deviation of 1.1%, compared to

3.7% obtained by MobileNet+SAM and 2.2% obtained by

MobileNet, respectively.

Results on Surgical Masks. The macro-averaged recall of

MobileNet+SAM is slightly higher (0.15%) than the macro-

averaged recall obtained by MobileNet+SuPEr-SAM, but

our macro-averaged precision is superior, with a difference

of 1.04%. Consequently, in terms of the macro-averaged

F1 score (which combines precision and recall), we obtain

an improvement of 0.64% compared to MobileNet+SAM.

We also surpass the standard MobileNet model, regard-

less of the evaluation metric. Hence, we conclude that

our approach outperforms the two baselines on the Surgi-

cal Masks data set. We also note that, on this data set, Mo-

bileNet+SAM outperforms the standard model. This is the

only case in which we observe performance gains due to the

integration of standard spatial attention.

One-stage versus two-stage pipelines. In Table 2, we

compare the results of the one-stage pipeline (YOLO on

faces) with the results of the two-stage pipelines on the Sur-

gical Masks data set. We present the results of the one-

stage pipeline only on one data set, because this approach

requires human labor to annotate images at the bounding

box level. This represents a disadvantage compared to the

two-stage approaches, which require only class label anno-

Method Detector Time Classifier Time

YOLO on faces 23.3 ms -

MobileNet 23.3 ms 8.7 ms

MobileNet+SAM 23.3 ms 9.3 ms

MobileNet+SuPEr-SAM 23.3 ms 9.3 ms

Table 3. Inference times in milliseconds (ms) per image of

MobileNet+SuPEr-SAM versus three baselines. Reported times

are measured on a machine with an Intel i9-9900K 3.6GHz CPU,

64GB of RAM and an NVIDIA GeForce RTX 2080Ti 11GB GPU.

tations. We want to underline, once again, that the two-

stage pipelines, denoted by MobileNet, MobileNet+SAM

and MobileNet+SuPEr-SAM, are based on detecting peo-

ple with YOLOv3 and on classifying cropped body parts

with MobileNetV2. The Average Precision (AP) of YOLO

on detecting faces with masks is 83.90%. When we employ

MobileNet+SuPEr-SAM on the detected people, we obtain

a much higher AP score (87.19%) for the same class (peo-

ple with mask). In general, the two-stage pipelines exhibit

lower AP scores for people without masks, when we com-

pare them to the single-stage pipeline. However, the mAP

scores of the two-stage pipelines are always higher than the

mAP score of the single-stage pipeline. Our results con-

firm the already known fact [21] that two-stage approaches

outperform single-stage models.

4.6. Running Time

In Table 3, we compare our model to the baselines

in terms of running time. Since MobileNet+SAM and

MobileNet+SuPEr-SAM use the same spatial attention

module, there is no difference in terms of running time be-

tween the two models. MobileNet requires 8.7 millisec-

onds (ms) to infer the class for one image, while Mo-

bileNet+SAM and MobileNet+SuPEr-SAM require 9.3 ms

for the same task. Hence, the spatial attention module in-

creases the running time by less than 1 ms (about 6.5%).

The YOLOv3 detector requires 23.3 ms per image, being

more computationally intensive than MobileNetV2. With

an average of one person per image, our complete two-stage

pipeline requires 23.3 + 9.3 = 32.6 ms.

4.7. Qualitative Results

Figure 3 illustrates examples of cropped images that are

provided to MobileNet+SAM and MobileNet+SuPEr-SAM

during inference. For the selected examples, we computed

the pseudo-ground-truth attention masks, using the pose

estimator to determine the location of body parts. This

enables us to compare the pseudo-ground-truth attention

masks with the masks predicted by MobileNet+SAM and

by MobileNet+SuPEr-SAM, respectively. In general, the

attention masks predicted by SuPEr-SAM are significantly

more correlated to the pseudo-ground-truth attention masks

than the attention masks predicted by SAM. For SAM, we

observe visual correlations for the sixth image on the first
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Figure 3. Examples of cropped input images and associated pseudo-ground-truth attention masks versus the attention masks predicted by

SAM and SuPEr-SAM, respectively. The examples are chosen from the Boots, the Helmets and the Surgical Masks test sets. The labels

predicted by MobileNet+SAM or by MobileNet+SuPEr-SAM are placed immediately below the corresponding attention masks. Correct

labels are colored in green and wrong labels are colored in red. Best viewed in color.

row (counting from left to right) and for the last two im-

ages on the second row. Although, in general, the attention

masks produced by SAM seem uncorrelated with the loca-

tions of the PPE items, the predicted class labels are still

correct in most cases. Nevertheless, we conclude that the

illustrated examples clearly show that SuPERr-SAM helps

the MobileNet classifier to focus on the right regions.

5. Conclusion

In this paper, we presented a two-stage approach for PPE

recognition. Our contribution consists in introducing a pose

estimator at training time, which provides a supervision sig-

nal to the spatial attention module incorporated in the clas-

sifier. Since the pose estimator is not required during infer-

ence, our pipeline adds a negligible margin (less than one

millisecond) to the overall computational cost. The empir-

ical results reported on three PPE data sets show that our

contribution provides important accuracy gains. We con-

clude that our novel contribution is both effective and effi-

cient. In future work, we aim to extend our work beyond the

task of PPE recognition, integrating SuPEr-SAM in other

neural architectures.
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