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Abstract

The study of neurodegenerative diseases relies on the

reconstruction and analysis of the brain cortex from mag-

netic resonance imaging (MRI). Traditional frameworks for

this task like FreeSurfer demand lengthy runtimes, while

its accelerated variant FastSurfer still relies on a voxel-

wise segmentation which is limited by its resolution to cap-

ture narrow continuous objects as cortical surfaces. Hav-

ing these limitations in mind, we propose DeepCSR, a 3D

deep learning framework for cortical surface reconstruc-

tion from MRI. Towards this end, we train a neural network

model with hypercolumn features to predict implicit surface

representations for points in a brain template space. After

training, the cortical surface at a desired level of detail is

obtained by evaluating surface representations at specific

coordinates, and subsequently applying a topology correc-

tion algorithm and an isosurface extraction method. Thanks

to the continuous nature of this approach and the efficacy

of its hypercolumn features scheme, DeepCSR efficiently

reconstructs cortical surfaces at high resolution capturing

fine details in the cortical folding. Moreover, DeepCSR is

as accurate, more precise, and faster than the widely used

FreeSurfer toolbox and its deep learning powered variant

FastSurfer on reconstructing cortical surfaces from MRI

which should facilitate large-scale medical studies and new

healthcare applications.

1. Introduction

The study of many neurodegenerative diseases and psy-

chological disorders, rely on the analysis of the cerebral cor-

tex using magnetic resonance imaging (MRI) [1, 6, 32]. As

shown in Figure 1a, the cortex can be visually described

Thanks to Maxwell plus: http://maxwellplus.com/

as the inner volume between two cortical surfaces: the in-

ner surface which is the interface between the white matter

(WM) and the gray matter (GM) tissues, and the outer sur-

face which is the interface between the gray matter tissue

and the cerebrospinal fluid (CSF). Therefore, the goal of

cortical surface reconstruction is to estimate reliable, accu-

rate, and topologically correct [30] triangular meshes, for

the inner and outer cortical surfaces from a given MRI.

Reconstructing cortical surfaces from MRI is a chal-

lenging problem. First, cortical surfaces vary significantly

across individuals as exemplified in Figure 1b by overlay-

ing axial slices of co-registered MRIs from 3 different pa-

tients. Second, voxels near the cortex tend to hold more

than one tissue type due to the discrete nature of MRI and

the folding patterns of the cortical surfaces which is known

as partial volume effect (PVE) [2] in medical imaging. Con-

sequently, sub-voxel variations of these surfaces can not

be captured by pure voxel-wise segmentation approaches.

This limitation leads to oversmoothed reconstructed corti-

cal surfaces even when manual expert segmentation is em-

ployed as shown in Figure 1c. Finally, we need to enforce

the spherical topology (i.e., homeomorphic to a sphere) of

the reconstructed surfaces to allow surface-based analysis

[34, 39] and visualizations [7]. Figure 1d emphasizes that

arbitrarily small defects, known as holes, can drastically

change the topology of the reconstructed surface.

Despite these challenges, there exist frameworks for cor-

tical reconstruction from MRI [4, 5, 11, 16, 18, 21, 40].

Traditionally, they consist of extensive pipelines of hand-

crafted image processing algorithms subject to careful

hyper-parameter tuning (e.g., thresholds, iteration numbers,

and convergence criterion) and very long runtimes which

prevent them from being employed in healthcare applica-

tions where immediate results are critical. For instance, the

well-known FreeSurfer’s V6.0 [5] takes around six hours

per scan depending on the quality of the input MRI. Concur-
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Figure 1: Cerebral cortex and its reconstruction challenges. (a) Depicts the brain cortex from an axial view. It also provides

schematics for the partial volume effect (PVE) problem and the inaccurate boundary estimation using partial volume mapping.

(b) Overlays the cortical surfaces of co-registered MRIs from 3 different individuals exemplifying that the visual variability

across individuals is like a fingerprint. (c) Shows that meshes obtained from manual segmentation provided by experts, e.g.

Neuromorphometrics, can not capture high-frequency details in the cortical surfaces. (d) Present examples of small surface

mesh defects that change the topology of the reconstructed surface.

rently to our work, Henschel et al. [11] propose FastSurfer

which alleviates this burden by integrating a fast and accu-

rate deep learning based brain segmentation model to the

FreeSurfer cortical surface reconstruction pipeline. How-

ever, these frameworks still rely on voxel-wise segmenta-

tion of the input MRI which has a limited resolution or em-

ploy partial volume mapping which also fails to define the

tissue boundaries accurately. More specifically, multiple

configurations of a tissue boundary have the same partial

volume assignment as illustrated in Figure 1a.

In this paper, we propose a 3D deep learning framework

for cortical surface reconstruction from MR images named

DeepCSR. More specifically, we first reformulate this prob-

lem as the prediction of an implicit surface representation

for points in a continuous coordinate system. Then, the cor-

tical surfaces are extracted using this implicit surface repre-

sentation, a lightweight topological correction method, and

an isosurface mesh extraction technique. Since our frame-

work predicts implicit surface representation for real-valued

points instead of voxels, providing a continuous approxi-

mation to surfaces, we can reconstruct cortical surfaces at a

higher resolution than the input MR image. This continuous

formalism allows us to overcome the PVE problem with-

out relying on inaccurate estimations like partial volume

mapping. We also develop a neural network architecture

with hypercolumn features able to capture local informa-

tion from the input MR image allowing the reconstruction

of fine details describing the cortical folding.

In order to validate our approach, we first provide ab-

lative studies of its main components. Then, we compare

DeepCSR to the FreeSurfer V6.0 cross-sectional pipeline

and FastSurfer for cortical reconstruction on the Test-

Retest [22] and MALC [19, 23] datasets. We conclude that

the proposed DeepCSR is able to reconstruct cortical sur-

faces faster and with higher reliability than the competitors,

thus facilitating new healthcare applications.

2. Related Work

Cortical surface reconstruction. Traditionally, cortical

surface reconstruction frameworks involve a lengthy se-

quence of image processing techniques [4, 5, 16, 18, 21,

40]. For instance, the widely used FreeSurfer [5] per-

forms multiple image normalization routines, linear and

non-linear registration techniques, brain tissue labeling, sur-

face fitting models, and topology correction between other

techniques to reconstruct the cortical surfaces. The other

traditional frameworks follow a similar approach mostly

differing in the mechanism used to fit the desired surfaces

onto the segmented volumes. As examples, Kim et al. [16]

leverage a Laplacian field with stretch and self-proximity

regularization terms to prevent mesh self-intersection and

Han et al. [9] introduce a topology-preserving geometric

deformable surface model. Therefore, these frameworks re-

quire a considerable processing time and eventually man-

ual intervention of experts to fine-tune the parameters of

some of these image processing techniques [14] which limit

their range of applications. Differently, we propose a swift

framework able to reconstruct cortical surfaces efficiently

by leveraging modern 3D deep learning models.

Concurrently to our work, Henschel et al. [11] propose a

faster variant for the FreeSurfer pipeline named FastSurfer.

In that work, expensive computations of FreeSurfer are re-

placed with modern and lightweight alternatives as a deep

learning model for whole-brain segmentation and a spectral

mesh processing algorithm for spherical mapping. How-

ever, this approach still relies on voxel-wise brain segmen-

tation which does not approximate continuous surfaces well

due to its discrete nature as exemplified in Figure 1c. In

contrast, we propose a 3D deep learning model that directly

predicts implicit surface representations for real coordinates

in the brain MRI providing a continuous approximation to

the cortical surfaces. Nonetheless, it is also important to
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acknowledge that FreeSurfer and FastSurfer are complete

brain morphometry tools [41] providing further volumetric

and surface-based analysis which is beyond the scope of this

work. Note also that recent approaches tend to indicate that

one could bypass the estimation of cortical surfaces directly

predicting averaged morphometric measurements from the

MR images [33, 37].

Deep learning models for 3D reconstruction. It com-

prises the set of deep learning models that learn to re-

construct 3D geometries, e.g., objects and scenes, from

data [12, 38]. These deep learning models can be broadly

categorized according to the 3D shape representation they

operate on as either mesh-based, voxel-based, or implicit

surfaces models. Mesh-based methods exploit explicit rep-

resentations like template meshes [8, 31], graphs [45, 47],

and parametric 3D models [17, 27] to predict surfaces and

object shapes. While these approaches are very conve-

nient, they are also prone to produce noisy meshes with a

large number of self-intersections which is very undesir-

able for cortical surface reconstruction. On the other hand,

voxel-based methods reconstruct 3D shapes by predicting

3D voxel-grids of surface representations like discretized

signed distances [28] and level-sets [26]. The main limita-

tion of these approaches is to treat the output 3D space as a

discretized grid that may not capture the fine details of the

cortical surface folding. On the other hand, implicit surface

models explore continuous representations of the 3D space

where the objects are defined as 3D scalar fields [25, 28].

These approaches are memory efficient and can explore the

finer details of the target geometries. Therefore, we follow

this approach and develop a novel deep learning model to

reconstruct cortical surfaces from MR images.

3. Method

In this section, we introduce DeepCSR, a deep learning

framework for cortical surface reconstruction from MR im-

ages. First, we describe how to implicitly define surfaces by

functions on the 3D Euclidean space, and how to learn these

functions using a deep learning model. Then, we show how

to perform cortical surface reconstruction using this model.

3.1. Learning Implicit Surface Representation

In order to ease the presentation, we focus on the learn-

ing of a single target surface, but this framework can be gen-

eralized to multiple surfaces by introducing mild modifica-

tions. Without loss of generality, one can implicitly define a

Lipschitz surface S ⇢ R
3 by the `-level set of a continuous

function fS : R3 7! R as,

S =
�

p 2 R
3 | fS(p) = `

 

, (1)

where the function fS maps to a scalar for every point

p 2 R
3 in the 3D Euclidean space. Furthermore, given fS ,

the mesh representation of S can be obtained by iso-surface

extraction algorithms like marching cubes [20] or ray cast-

ing [44]. Therefore, reconstructing a specific surface can

be thought as modeling a function such that its `-level set

defines the desired geometry.

For a given surface S, the function fS can be modeled,

for instance, using occupancy field or signed distance func-

tion. The former is a binary valued function defined as,

roccS (p) = 1p∈Sint
, (2)

where 1pred is the indicator function evaluating to one, if

its predicate pred is true, and zero otherwise. In this case,

the level set of interest to retrieve the surface is ` = 1

2
. The

occupancy field roccS divides the 3D space in the interior

Sint and exterior of the oriented surface S. On the other

hand, the signed distance function consists of the Euclidean

distance between every point in the 3D space and its pro-

jection, projS(p) = argminq∈S kp� qk
2
, on the surface S.

Mathematically,

r
sdf
S (p) = (2 roccS (p)� 1) kp� projS(p)k2 . (3)

Therefore, r
sdf
S assigns positive distances to points in the

interior of the surface Sint, zero to points on the surface S

(i.e., ` = 0), and negative distances otherwise. These tools

are widely used in surface modeling, then we evaluate both

in the context of cortical surface reconstruction.

Our final goal is to reconstruct surfaces according to an

observed MR image. Rather than conditioning the function

fS on a specific surface, one should condition it on an in-

put 3D MR image. While this formulation seems logical,

we notice that MR images may be defined in different co-

ordinate systems producing an unbounded input space for

learning. We overcome this difficulty by co-registering the

input MR images to a brain template constraining the space

where the target surfaces exists to the coordinates of the

bounding box containing the template brain in the template

coordinate system. Therefore, our problem boils down to

model the function,

f : Ω⇥ I 7! R, (4)

where Ω ⇢ R
3 is a closed and bounded subspace where the

template brain is defined and I denotes the space of MR

images I represented by a 3D grid of voxels.

Using a machine learning approach to model such a

function, we first define a dataset D = (Ii, Si)i=1,...,N

of N MR images Ii and their corresponding surfaces Si

which can be obtained using traditional pipelines for auto-

matic cortical surface reconstruction [4, 5, 40]. Then, we

parametrize the function fθ in terms of learnable parame-

ters ✓ and minimize the regularized empirical risk on the

dataset D. This learning problem can be stated as,

argmin
θ

1

N

N
X

i=1

Z

Ω

∆
�

r∗Si
(p), fθ(p, Ii)

�

dp+R(✓), (5)
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Figure 2: DeepCSR’s neural network architecture. It receives as input an image I and the coordinates of a point p in the

template coordinate system Ω. Then, it predicts the implicit surface representation fθ(p, I) for the inner and outer cortical

surfaces divided into left and right hemispheres.

where R is some regularization function on the parameters

✓ and ∆ is an appropriate cost function measuring discrep-

ancies between the predicted implicit surface representation

fθ(p, Ii) and the true implicit surface representation r∗Si
(p)

for the given point p 2 Ω, MR image Ii, and its correspond-

ing surface Si. In the case of occupancy field, we minimize

the binary cross-entropy classification loss, while for signed

distance function we opt for the L1-loss.

In order to use this approach for cortical surface recon-

struction, we extend the scalar-valued functions fθ to a

vector-valued function fθ 2 R
4 where the predicted val-

ues are the surfaces representations for the inner and outer

cortical surfaces further divided into left and right brain

hemispheres. Consequently, the learning problem descried

by Equation 5 is solved jointly for these four cortical sur-

faces across all of the MRIs in the dataset D. This for-

mulation is an instance of multi-task learning which often

produces models with good generalization ability [36].

In practice, we approximate the integral in Equation 5 by

a finite sum of sampled locations p in the reference space Ω.

We observed that the sampling scheme employed is critical

to the quality of the reconstructed surface. More specifi-

cally, as shown later in Section 4.1, the proposed framework

reconstructs more accurate cortical surfaces when we sam-

ple more points near the surface, in addition to uniformly

on the template space Ω. In order to sample points near the

target surface, we first sample faces proportionally to their

area, then we sample points uniformly in these faces using

the triangle point picking method [46]. Finally, we perturb

these sampled points on the surface by adding a Gaussian

N (0, 1) centered at zero with 1mm variance getting points

near the surface. Such a sampling scheme provides global

information to correctly align the predicted surface to the

brain and a lot of local information to capture the highly

folded geometry of the brain cortex.

3.2. Neural Network Architecture and Hypercol-
umn Features

We implement the parameterized function fθ as an

encoder-decoder neural network. The encoder takes as in-

put a point p represented by its coordinates in the MNI105

space and a co-registered MR image as a 3D voxel grid I . It

first processes the input MR image by a sequence of 3D con-

volutional layers (Conv3D), ReLu activation functions, max

pooling layers (Max3D), and fully connected layers (FC)

producing multiple feature maps as indicated in the top of

Figure 2. The convolutional layers use 33 kernels, stride

equal to two, and padding equal to one, with the excep-

tion of the first convolutional layer where the stride is equal

to one. Our goal is to produce a rich hierarchy of visual

features with different level of details. Then, inspired by

Hariharan et al. [10], we project the input point coordinates

into each feature map, linearly interpolate a feature value

at these projected locations, and concatenate these interpo-

lated values to form a 512-dimensional hypercolumn fea-

ture vector c(I, p). This hypercolumn vector holds global
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Figure 3: DeepCSR framework for cortical surface recon-

struction from MRI.

and local visual cues for predicting the surface representa-

tion at the input point p since it collects features from differ-

ent levels of our hierarchy of features maps. As shown later

in Section 4.1, this architectural design is critical to capture

the high frequency details on the target surfaces.

On the other hand, the decoder receives as input the

point coordinates p and its corresponding hypercolumn vec-

tor c(I, p) generated by the encoder for the image I as

previously described. The decoder processes these inputs

through a sequence of fully connected layers, conditional

batch normalization layers (CBN) [29] and ReLU activa-

tion functions as also indicated in Figure 2, outputting

the predicted implicit surfaces representation fθ(p, I) 2
R

4 for the inner and outer cortical surfaces divided into

left and right brain hemispheres. The decoder network

uses skip-connections and follows the method proposed

by Mescheder et al. [25]. However, our CBN layers com-

pute a non-linear function conditioned on the hypercolumn

vector c(I, p) which encodes global and local visual cues

for the prediction of the desired surfaces representation.

We train such a model from scratch by optimizing the

objective in Equation 5 extended for multiple surfaces us-

ing stochastic gradient descent. More specifically, we use

Adam optimizer with an initial learning rate equal to 10−4

and back-propagate the loss computed on mini-batches of 5

MR images and 1024 sampled points per image from a pre-

computed pool of 4 million points whereby 10% of them

are sampled uniformly in Ω and 90% are sampled near the

target surfaces as explained in Section 3.1.

3.3. Reconstructing Cortical Surfaces

DeepCSR receives as input a MRI scan and outputs mesh

representations for the outer and inner cortical surfaces fur-

ther divided into the left and right brain hemispheres. As

illustrated in Figure 3, we first perform an affine registra-

tion of the input MRI scan to the MNI105 brain template

[24]. This registration aims to unify the coordinate systems

across different MR scans easing the learning and predic-

tion of implicit surfaces.

Second, we construct a Cartesian grid of points at the de-

sired resolution by dividing the template bounding box into

evenly spaced points. Using the trained neural network fθ,

we predict implicit surface representations at these points,

represented by their continuous coordinates, for those four

cortical surfaces according to the input MRI. Through-

out this paper we reconstruct cortical surfaces using 5123

points, unless mentioned, providing sub-voxel precision.

The model only needs to extract the feature maps once and

can process the points in parallel, generating surfaces at

high resolution efficiently.

Third, since most of the applications of cortical sur-

face reconstruction require surfaces with spherical topology

(i.e., genus zero) as discussed in Section 1, we employ a

lightweight topology correction algorithm to fix the topo-

logical defects caused by wrong predictions of the implicit

surface representation. Specifically, we use the method pro-

posed by Bazin and Pham [3] which consists of a spherical

level-set evolution that avoids evolving over critical points

[30], outputting a 3D implicit surface volume with guaran-

teed spherical topology. Each target surfaces’ topology is

corrected independently, and these tasks are performed in

parallel for efficiency. Note that the proposed framework

is agnostic to the topology correction method allowing the

application of other techniques.

Finally, in order to obtain the mesh representation of the

target surfaces, we apply a topology preserving marching

cubes algorithm [20]. The predicted surfaces are in the tem-

plate brain coordinate system, but these can be mapped back

to the native space using the inverse of the transformation

obtained during the registration of the input MR scan.

4. Experiments

We now evaluate the performance of our method on

the reconstruction of cortical surfaces from MR images.

In Section 4.1, we present an ablative study while, in

Section 4.2, we compare it to the FreeSurfer V6 (cross-

sectional pipeline) and FastSurfer.

4.1. Ablation Studies

We now perform experiments with variations of the pro-

posed DeepCSR to measure the importance of its main com-

ponents. The quantitative results are presented in Table 1,

while the qualitative results are shown in Figure 4. See be-

low a brief summary of the dataset and evaluation metrics

used, in addition to the detailed description of these experi-

ments and the discussion of their results.

Dataset. We use the MRI data provided by the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) [15] and their cor-

responding pseudo-ground truth surfaces generated with

FreeSurfer V6.0. The ADNI dataset consists of 3876 MRI

images from 820 different subjects collected at different

time points. We split this dataset by subjects obtaining 2353

MRI scans from 492 subjects for training (⇡ 60%), 375

MRI scans from 82 subjects for validation (⇡ 10%) and

1148 MRI scans from 246 subjects for testing (⇡ 30%). We

train the models on the training set until their loss plateau
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Table 1: Results of the ablation study on the proposed DeepCSR framework for cortical surface reconstruction from MRI

using the ADNI study data [15].

Left Outer Surface Right Outer Surface Left Inner Surface Right Inner Surface

EMD AD (mm) HD (mm) EMD AD (mm) HD (mm) EMD AD (mm) HD (mm) EMD AD (mm) HD (mm)

DeepCSR (SDF.)
7.084

(±0.797)
0.298

(±0.184)
0.654

(±0.596)
7.083

(±0.851)
0.294

(±0.155)
0.651

(±0.530)
6.440

(±0.810)
0.267

(±0.216)
0.562

(±0.725)
6.401

(±0.692)
0.260

(±0.162)
0.542

(±0.523)

DeepCSR (Occ.)
7.133

(±0.757)
0.312

(±0.167)
0.711

(±0.525)
7.108

(±0.857)
0.305

(±0.134)
0.672

(±0.554)
6.459

(±0.802)
0.281

(±0.284)
0.587

(±0.724)
6.522

(±0.632)
0.289

(±0.127)
0.582

(±0.570)

Uniform Sampling
7.342

(±0.856)
0.510

(±0.208)
1.185

(±0.665)
7.415

(±0.868)
0.538

(±0.169)
1.326

(±0.524)
6.584

(±0.804)
0.501

(±0.236)
1.100

(±0.728)
6.537

(±0.691)
0.465

(±0.184)
0.997

(±0.521)

No hypercolumns
10.892

(±1.375)
5.145

(±0.489)
12.252

(±1.267)
10.649

(±1.201)
5.173

(±0.437)
12.346

(±1.106)
15.644

(±1.914)
5.629

(±0.603)
12.811

(±1.254)
15.434

(±1.814)
5.698

(±0.591)
12.917

(±1.113)

Single Surface Model
7.109

(±0.872)
0.314

(±0.229)
0.702

(±0.885)
7.088

(±1.042)
0.323

(±0.249)
0.731

(±0.958)
6.454

(±0.807)
0.280

(±0.199)
0.568

(±0.708)
6.429

(±0.709)
0.278

(±0.186)
0.564

(±0.606)

Resolution 643
9.164

(±1.114)
3.227

(±0.369)
8.039

(±1.103)
8.992

(±1.068)
3.268

(±0.344)
8.123

(±1.047)
8.318

(±0.962)
2.889

(±0.365)
6.189

(±0.950)
8.299

(±0.893)
2.996

(±0.325)
6.429

(±0.828)

Resolution 1283
8.340

(±1.117)
1.400

(±0.314)
3.879

(±1.023)
8.277

(±1.077)
1.408

(±0.305)
3.868

(±1.006)
6.680

(±0.776)
0.872

(±0.261)
1.929

(±0.779)
6.681

(±0.669)
0.893

(±0.207)
1.982

(±0.618)

Resolution 2563
7.349

(±0.882)
0.453

(±0.198)
1.112

(±0.649)
7.315

(±0.906)
0.447

(±0.167)
1.096

(±0.571)
6.522

(±0.818)
0.327

(±0.226)
0.697

(±0.740)
6.525

(±0.652)
0.324

(±0.168)
0.691

(±0.549)

on the validation set and report their performance on the

test set. We emphasize that these splits do not have MRIs

or subjects in common for an unbiased evaluation.

Evaluation metrics. We report the mean and standard devi-

ation of well known surface comparison metrics like earth

mover’s distance (EMD), average absolute distance (AD),

and Hausdorff distance (HD) [35, 42, 43]. EMD is the min-

imum amount of “work” to morph one surface to the other

(lower is better), while AD and HD is the mean and maxi-

mum distance between closest points in two meshes (lower

is better), respectively. Since HD is very sensitive to out-

liers, we use the 90th percentile instead of the maximum as

suggested by Huttenlocher et al. [13]. It is also important

to mention that AD and HD are computed in a bidirectional

way for symmetry and over a sub-sample of 100k points.

Signed distance vs. Occupancy Field. We compare the

performance of the DeepCSR framework when using signed

distance function (first row in Table 1) and occupancy field

(second row in Table 1) as implicit surface representation.

The signed distance function provides better results than oc-

cupancy field since such a representation offers more infor-

mation than simple binary labels to the learning process and

mesh extraction method. More specifically, it also indicates

the remoteness of the target surface at every point in the 3D

space whereas the occupancy field just says whether a given

point is inside or outside the target surface.

Surface-based Sampling. Despite uniform sampling has

presented better results on generic object surface recon-

struction as in Mescheder et al. [25], it is not the best choice

for cortical surfaces due to the high frequency details lo-

calized on the surface. To support such a claim, we train

the DeepCSR framework to regress signed distance function

of points sampled uniformly in the 3D template space and

compare with the proposed sampling scheme described in

Section 3.1. The results for the uniform sampling approach

is reported in the third row of Table 1, while our surface-

based sampling scheme is in the first row of the same table.

The surface-based schema outperforms uniform sampling

in all of the evaluation metrics.

Hypercolumn features. It is the most important compo-

nent in our model, since we are not able to recover the high

frequency details in the cortical surfaces without it. In order

to support this claim, we remove the hypercolumn forma-

tion steps from our encoder depicted in Figure 2, reshape

the encoder’s last layer to output a 512-dimensional vector,

use this vector as the decoder input, and train this model

as before. These changes remove the hypercolumn schema

but keeps the model with similar capacity since no layer or

weights are removed. The performance of such a model is

reported in the fourth row of Table 1 and it is much worse

than the proposed model for all the evaluation metrics. Fur-

thermore, Figure 4 depicts oversmoothed cortical surfaces

that were reconstructed without hypercolumn features.

Single Surface Model. As previously observed by the ma-

chine learning community [36], multi-task learning tends

to provide better generalization. Similarly, we observe that

learning the surface representations jointly produces bet-

ter results than learn multiple models independently. We

demonstrate such a result by training and evaluating a net-

work for each target surface independently and comparing

them to a network trained jointly for all the target surfaces.

The results for the single-surface approach is presented in

the fifth row of Table 1, while the multi-surface is presented

in the first row of the same table.

Output Resolution. We reconstruct cortical surfaces at dif-

ferent resolutions by predicting implicit surface representa-

tions for 3D evenly spaced grids of points of different sizes

as explained in Section 3.3. Figure 4 depicts cortical sur-

faces generated at 643, 1283, 2563, and 5123 3D evenly

spaced grids of points. As the resolution grows, our method

reconstructs more details of the cortical surfaces. The quan-

titative results are presented in the last three rows of Table 1.
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643 1283 2563 51235123 No hc.
Figure 4: Reconstructed outer cortical surfaces at different resolution or without hypercolumns (”No hc.”).

4.2. Comparison to FreeSurfer and FastSurfer

We now compare the precision, accuracy, and runtime of

the proposed model to the FreeSurfer V6 (cross-sectional

pipeline) and FastSurfer. More specifically, we use the

DeepCSR (SDF) trained on the ADNI dataset and recon-

struct surfaces at 5123 resolution as explained Section 3.3.

Table 2 summarizes the results and Figure 5 shows exam-

ples of reconstructed surfaces.

Precision Analysis. We measure the precision, i.e., repeata-

bility, of the evaluated frameworks using the Test-Retest

dataset (TRT) [22] and the experimental protocol described

by Tosun et al. [43]. More specifically, the TRT dataset pro-

vides 120 T1-weighted MRI scans from 3 subjects which

are scanned twice in 20 sessions spanning 31 days. Since

no morphological changes should occur between successive

scans of the same subject at the same session, the recon-

structed surfaces should be identical up to the variations

in the image acquisition and minor physiological changes.

Therefore, following the aforementioned protocol, we re-

construct the surfaces from every MRI scan using the eval-

uated frameworks, align pairs of surfaces from the same

subject and session using the ICP algorithm, compute dis-

crepancy measures between these pairs of aligned surfaces,

and report group statistics of these metrics. As discrepancy

measures, we use the already discussed average absolute

distance (AD), in millimeters (mm), between meshes and

the percentage of distances greater than one (% > 1 mm)

and two (% > 2 mm) millimeters as group statistics. The

“Precision” column in Table 2 summarizes the results for

this experiment. We observe that the proposed DeepCSR

has better reproducibility than both FreeSurfer and Fast-

Surfer which is critical for medical studies.

Accuracy Analysis. This experiment aims to measure how

close the reconstructed cortical surfaces are to the true cor-

tical surfaces. Since there is no manually annotated surface

data for such a task, we decide to compare the evaluated

methods on the segmentation of the brain cortex using the

Multi-Atlas Labelling Challenge (MALC) dataset [19, 23].

This dataset consists of 30 brain volumes manually seg-

mented by experts using the NeuroMorphometric labelling

schema for the whole brain including cortical and subcorti-

cal structures. We first select all cortical labels to form the

brain cortex ground-truth segmentation. Then, for a given

MR image, we reconstruct the inner and outer surfaces us-

ing the evaluated methods, discretize these surfaces to a grid

of voxels of 1 mm3, and resample these generated voxel-

grids to the input MRI resolution and dimensions. Next, we

remove the resampled voxel-grid of the inner surface from

the interior of the resampled voxel-grid of the outer surface

and perform morphological opening and dilatation to gen-

erate a surface-based brain cortex segmentation. Finally,

we report the Dice score (Dice) and volume similarity (VS)

[42] between the surface-based generated segmentation and

the cortex ground-truth segmentation as an accuracy mea-

sure of the evaluated frameworks. The “Accuracy” column

in Table 2 summarizes the results for this experiment. We

observe that DeepCSR provides brain cortex segmentation

with slightly greater overlap and more similar volume to the

manually annotated data than the competitors.

Runtime Analysis. In order to compare the processing time

required by the evaluated frameworks, we report the aver-

age elapsed time, in minutes, for these frameworks to recon-

struct the cortical surfaces of the MRI scans in the MALC

dataset [19, 23]. The “Runtime” column in Table 2 presents

the results for this experiment. It also important to note that

the FreeSufer and FastSurfer runtimes reported just takes

into account the processing steps necessary to reconstruct

the cortical surfaces and ignores any other computations for

a fair comparison. In summary, using a NVIDIA P100 GPU

and Intel Xeon (E5-2690) CPU, our model is at least thir-

teen times faster than the FreeSurfer using the same hard-

ware and input MRI scans. When compared to the Fast-

Surfer, the speed-up is much smaller but the variance in

runtime is drastically reduced. These improvements facil-

itate large medical studies and new healthcare applications.

Moreover, profiling DeepCSR, we observe that the initial

registration takes 2.334 (±0.022) minutes, the implicit sur-
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Table 2: Precision, accuracy and runtime comparison between FreeSurfer, FastSurfer, and DeepCSR on cortical reconstruc-

tion from MRI using Test-Retest (TRT) and MALC datasets.

Precision on TRT Accuracy on MALC Runtime

Method AD (mm) % > 1 mm % > 2mm Dice VS (minutes)

FreeSurfer
0.241

(±0.291)
2.472 0.983

0.841
(±0.020)

0.953
(±0.027)

373.86
(±47.64)

FastSurfer
0.204

(±0.028)
1.492 0.374

0.834
(±0.021)

0.942
(±0.029)

28.943
(±13.281)

DeepCSR
0.193

(±0.051)
1.266 0.263

0.846
(±0.019)

0.958
(±0.024)

27.824
(±1.393)

2.00.0 1.00.5 1.5

AD (mm)

Recon. Outer Surf.

Recon. Inner Surf.

GT. Outer Surf.

GT. Inner Surf.

Figure 5: Example of outer and inner cortical surfaces reconstructed with DeepCSR. The surfaces are color coded with the

absolute distance to the pseudo ground-truth surface.

face prediction takes 8.672 (±0.655) minutes, the topology

correction takes 16.493 (±1.064) minutes, and the march-

ing cubes takes 0.325 (±0.025) minutes. Therefore, further

speed-up can be achieved by employing a faster topology

correction method.

5. Conclusion

In this paper, we tackle the problem of directly recon-

structing the brain cortex from MRI which is a critical task

in clinical studies of neurodegenerative diseases. We for-

mulate this problem as the prediction of implicit surfaces

for points in a continuous brain template coordinate system.

We also develop an encoder network architecture with hy-

percolumn features that is able to extract local and global

image features from brain MR Images. Due to the con-

tinuous nature of this formulation and the efficient design

of our network, we are able to accurately reconstruct cor-

tical surfaces at high resolution capturing the brain surface

geometry. Compared to the widely used FreeSurfer tool-

box and its deep learning powered variant FastSurfer in two

standard datasets, the proposed DeepCSR was found to be

as accurate, more precise, and faster, which should facilitate

large-scale medical studies and new healthcare applications.
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