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Abstract

Interpolation of sparse pixel information towards a

dense target resolution finds its application across multi-

ple disciplines in computer vision. State-of-the-art inter-

polation of motion fields applies model-based interpolation

that makes use of edge information extracted from the tar-

get image. For depth completion, data-driven learning ap-

proaches are widespread. Our work is inspired by latest

trends in depth completion that tackle the problem of dense

guidance for sparse information. We extend these ideas and

create a generic cross-domain architecture that can be ap-

plied for a multitude of interpolation problems like opti-

cal flow, scene flow, or depth completion. In our experi-

ments, we show that our proposed concept of Sparse Spa-

tial Guided Propagation (SSGP) achieves improvements to

robustness, accuracy, or speed compared to specialized al-

gorithms.

1. Introduction

The problems of interpolation and extrapolation have

a long history in mathematics and computer science. In

high-level computer vision, interpolation finds its applica-

tion in various problems like motion estimation in 2D (opti-

cal flow) [1, 2, 11, 14, 15, 20, 30, 31, 33, 43, 50], 3D (scene

flow) [36, 37], or depth completion [6, 17, 26, 40, 41].

These methods in turn are applied in robot navigation, ad-

vanced driver assistance systems (ADAS), surveillance, and

many others.

The strategies of previous work are quite distinct for mo-

tion field interpolation and depth completion. While the first

focuses on hand-crafted models and piece-wise patches ex-

tracted from edge information, the latter fully relies on deep

neural networks often considering image information insuf-

ficiently. With the learning capabilities and inherent paral-

lelism of the data-driven approach, we want to further push

the limits of motion field estimation towards higher accu-

racy and speed. At the same time, we extend and com-

(a) Input image

(b) LiDAR measurements (visually enhanced)

(c) Densified depth with SSGP

Figure 1. We propose Sparse Spatial Guided Propagation (SSGP),

a deep network for interpolation of sparse data. Here, an example

of depth completion on KITTI [10] data is shown. Our full evalu-

ation conducts experiments on more data sets and different types

of input.

bine previous ideas from depth completion into a model

that works equally well on different domains and applica-

tions. This exposes novel challenges like effective mecha-

nisms for handling of sparse data with different patterns or

densities, efficient strategies for guidance from dense image

information, or suitable fusion of heterogeneous data (e.g.

image and depth feature representations).

To solve the aforementioned challenges, we propose

Sparse Spatial Guided Propagation (SSGP), which is the

combination of spatially invariant, image dependent convo-

lutional propagation and sparsity-aware convolution. This

key concept is used in a generic sparse-to-dense encoder-

decoder with full image guidance at every stage. Our over-

all contribution consists of the following:

• A unified architecture which performs sparse-to-dense in-

terpolation in different domains, e.g. interpolation of opti-
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cal flow, scene flow, or depth.
• A proper architectural design that leads to excellent ro-

bustness against noisy input or changes in the input den-

sity.
• Appropriate image guidance to resolve the dependency of

previous flow interpolators on edge maps.
• A modification of existing spatial propagation that saves a

vast amount of trainable parameters and improves gener-

alization.
• Exhaustive experiments to validate all the above claims

and to compare to state-of-the-art where in several cases

SSGP produces top results.

2. Related Work

Sparse-to-Dense Motion Estimation. The interpolation

of sparse points to a dense motion field dates back to at least

[11, 30]. A practical approach for large displacement opti-

cal flow is introduced by EPICFlow [33]. The authors make

use of image edges computed with SED [48] to find local

edge-aware neighborhoods of previously computed, sparse

flow values. Based on these neighborhoods, an affine 2D

transformation is estimated to interpolate the gaps. Later,

this concept is improved by RICFlow [14] to be more ro-

bust by using small superpixels and RANSAC in the estima-

tion of the transformation. SFF [36] and SFF++ [37] take

both interpolators for optical flow and transfer them to the

scene flow setup. Throughout this work, we will refer to the

interpolation modules of SFF and SFF++ as EPIC3D and

RIC3D respectively. SemFlow [43] extends the above con-

cepts for interpolation of optical flow by the use of deeply

regressed semantic segmentation maps. These maps replace

the edge information used in EPIC or RIC to improve the

measure of similarity of connected neighborhoods of input

matches. However, this approach is heavily dependent on

semantic segmentation algorithms and thus not suitable for

all domains and data sets. Lastly, InterpoNet [50] is another

recent approach that considers deep neural networks for the

actual interpolation task. Yet, InterpoNet still requires an

explicit edge map as input.

In contrast to all interpolation modules mentioned, our

network performs dense interpolation at full resolution for

a multitude of problems (i.e. it is not restricted to optical

flow or scene flow) and utilizes a trainable deep model (i.e.

it is not subjected to hand-crafted rules or assumptions and

provides significantly better run-times). Additionally, the

existing approaches highly depend on an intermediate rep-

resentation of the image (edges, semantics). SSGP operates

on the input image directly and resolves this dependency.

Depth Completion. Most recent related work (especially

in the area of deep learning) is concerned with depth com-

pletion. In this field, literature differentiates between un-

guided and guided depth completion. The latter utilizes the

reference image for guidance. In the setup of guided depth

completion, novel questions arise which are also highly rel-

evant for this work, e.g. how to deal with sparse information

in neural networks or how to combine heterogeneous fea-

ture domains. SparseConvNet [41] introduces sparsity in-

variant CNNs by normalizing regular convolutions accord-

ing to a sparsity mask. This work has also introduced the

Depth Completion Benchmark to the KITTI Vision Bench-

mark Suite [10]. Later, another strategy for the handling of

sparsity was introduced by confidence convolution [9]. In

this case, the authors replace the binary sparsity mask with

a continuous confidence volume that is used to normalize

features after convolution.

Another promising strategy is the use of spatially variant

and content dependent kernels in convolutional networks

[23, 45]. This idea is successfully used by [25] for seman-

tic segmentation and later by CSPN [6] for the refinement

of already densified depth maps. Most recently, GuideNet

[40] has applied the same idea for the densification of sparse

depth maps itself. In all cases, the idea is to predict per-

pixel propagation kernels based on the image (or a feature

map) directly instead of learning a spatially invariant set of

kernels that is likewise applied to every pixel of the input.

We will make use of the two latterly presented concepts,

namely awareness and explicit handling of sparsity as well

as learning of spatially-variant and image-dependent convo-

lutions. Both ideas will be combined in our novel, sparsity-

aware, image-guided interpolation network that uses our

new Sparse Spatial Guided Propagation (SSGP) module.

Other Interpolation Tasks. Lastly, there are more com-

puter vision problems that are remotely related to our work,

e.g. image inpainting which is also a problem of interpo-

lation. However, for image inpainting the challenge usu-

ally lies within the reconstruction of the texture. For the

interpolation of geometry or motion, the expected result is

piece-wise smooth and thus the problem is rather to find se-

mantically coherent regions. Still, related ideas can also be

found in the field of image inpainting, where e.g. in [24]

partial convolutions are used, which is the same idea for

handling of sparsity as in [41]. Similarly, the task of super-

resolution could also be posed as an interpolation problem

with a regular pattern of sparse input. Though theoretically,

our method is directly applicable to this family of problems,

super-resolution goes beyond the scope of this paper and

might be easier to be solved with other approaches.

3. Interpolation Network

As motivated earlier, we will use a deep neural net-

work for the task of sparse-to-dense interpolation. The net-

work has to be equipped with an appropriate mechanism

for sparsity, otherwise the considerably large gaps in the

used sparse-to-dense motion estimation pipelines can lead
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Figure 2. An overview of our network architecture (a) as well as a close-up view on our sparse spatial propagation module (b) which is

used in the down- and up-sampling blocks of the sparse-to-dense codec.

to significantly deteriorated feature representation in these

regions. For the same reason of large gaps in motion fields

(contrary to e.g. depth completion where LiDAR measure-

ments follow a predictable pattern of rotated scan lines), the

network architecture has U-Net [34] structure. This way,

even large gaps will be effectively closed after a few levels

of the encoder, leading to a dense representation at the bot-

tleneck. Additionally, to inject a maximal amount of guid-

ance through the entire sparse-to-dense codec, the image

information is used to compute spatially variant propaga-

tion kernels that are applied for densification by convolu-

tional propagation in the sparse encoder, and for guided up-

sampling in the dense decoder. These guidance kernels are

computed from the RGB image within a feature pyramid

network with skip connections, for high expressiveness and

accurate localization.

In summary, the interpolation network consists of four

components. Firstly, the RGB codec for computation of

image-dependent and spatially-variant propagation kernels

(Section 3.1). Secondly, a sparse spatial propagation mod-

ule that is likewise used within the encoder and decoder

of the sparse-to-dense codec (Section 3.2). Thirdly, the u-

shaped sparse-to-dense network that applies the propaga-

tion module for guidance and considers sparsity throughout

(Section 3.3). Lastly, a dense refinement module to further

improve the dense result. The combination of all elements

– our sparse-to-dense interpolation network – is visualized

in Figure 2.

3.1. RGB Codec

The purpose of the RGB codec is to provide a well-

shaped feature representation of the image that fits the ac-
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cording level of the sparse codec. Therefore it mimics the

shape of the sparse codec and has the same number of levels

l in the encoder and decoder as the interpolator. The image

gets pre-processed by a regular 1 × 1 convolution and is

then passed through l down-sampling blocks. Each consists

of four 3 × 3 convolutions where the third convolution ap-

plies a stride of 2 to sub-sample the representation. After

one additional convolution at the bottleneck, the represen-

tation of lowest resolution is passed through l up-sampling

blocks. Again, each of these blocks consists of four 3 × 3

convolutions, but this time the second one is a transposed

convolution with a stride of 2 for up-sampling. In addition

after up-sampling, the intermediate feature representation

gets concatenated with the next higher resolved level of the

encoder, i.e. regular skip connections to re-introduce local-

ization into the feature maps. In this architecture, the num-

ber of output channels is gradually increased as the spatial

resolution is reduced which is a common practice for low

resolution feature embeddings. In our setup, we use l = 6

pyramid levels with fully symmetric feature depth of 32, 32,

48, 64, 80, 96, and 128. An overview of the RGB codec is

shown in Figure 2a.

Finally, we branch two affinity blocks from each level

of the decoder to predict the spatially-variant, content-

dependent kernels for each scale. One affinity block con-

sists of two convolutional layers. One layer is used for pre-

transformation, and one to predict a single K×K kernel per

pixel for propagation in the sparse-to-dense codec. Please

note, that different sets of propagation kernels are predicted

for the encoder and the decoder of the sparse codec, i.e.

weights are not shared for the two affinity blocks at each

level of the RGB decoder. For reasons of memory consump-

tion and computational efficiency, our propagation kernels

have a size of K = 3. Contrary to existing work [6], our

network uses a single, flat affinity map independent of the

number of feature channels to propagate. This reduces the

total number of parameters significantly and effectively di-

minishes over-fitting during fine-tuning on small data sets.

3.2. Sparse Spatial Propagation

The previously computed multi-scale feature maps,

affinity maps, and propagation kernels are now used within

our sparse spatial propagation module. Consider an arbi-

trarily shaped H ×W × C feature representation S of the

sparse input along with a binary sparsity mask M of shape

H ×W × 1 and a feature representation F of the guidance

image of the same spatial size (and potentially a different

number of feature channels). The affinity block of the pre-

vious section will transform the image features F into a set

of propagation kernels K of the shape H × W × 1 × K2.

For the sake of affinity and propagation, the center pixel

of the propagation kernels is fixed to 1, i.e. isolated sparse

points will not be altered. These kernels are then applied in

a channel-wise K × K convolution with the sparse repre-

sentation S to spread the information into the neighborhood

according to the image features. In GuideNet [40] one set

of kernels is predicted for each feature channel of the sparse

input, which leads to the necessity of depth-wise separa-

ble convolutions [7]. Other than that, we predict a single

affinity map, which results in the natural use of depth-wise

convolution for practicability and efficiency. After channel-

wise spatial propagation, a 1 × 1 convolution is performed

to mix the propagated input dimension and expand (or com-

press) the representation to a new feature depth. Further and

in contrast to existing methods using convolutional spatial

propagation, we explicitly model sparsity-awareness in our

propagation module. Towards this end, we adopt the idea of

sparse convolution from [41] and utilize the sparsity mask

M to normalize the propagated features. By that, only valid

information is spread according to the guidance image to fill

in gaps. Formally, the output of the sparse spatial convolu-

tion of S with K for a single channel c and pixel is

S̃c =

∑
i,j∈W

Sc,i,j · Ki,j
∑

i,j∈W
Mi,j

, (1)

where W is the k × k window around the pixel under con-

sideration. The normalization and the propagation kernel

are independent of the feature channel, i.e. there are only a

single 1-channel mask M and single set of kernels K for the

entire feature volume. This relationship is also visualized in

Figure 2b. The entire concept expands directly to arbitrary

batch sizes.

3.3. Image­guided Sparse­to­Dense Codec

The RGB codec and the sparse spatial propagation mod-

ule enable an efficient way to introduce image guidance to

our interpolation network. All convolutions of the sparse-

to-dense codec make use of the sparse convolution as pre-

sented by [41]. Sparsity masks are used throughout the en-

tire sparse codec which makes it easy to verify that full den-

sity is reached by the end of the decoder by the latest (usu-

ally already at the bottleneck), i.e. all pixels have been filled

with information from the initially valid points. As with the

RGB codec, we pre-process the sparse input with a sparse

1×1 convolution. Then, l sparse down-sampling blocks are

applied. These blocks consist of our sparse spatial propaga-

tion module that applies the spatial guidance kernels from

the RGB decoder, followed by a 1× 1 convolution to com-

plete the depth-wise separation of the spatially variant guid-

ance. The last step within this block is a sparse average

pooling layer with a kernel size of 3× 3 and a stride of 2 to

perform the sparse sub-sampling. Again, a single 3×3 con-

volution is applied at the bottleneck. Starting at lowest reso-

lution from the bottleneck, l guided up-sampling blocks are

passed through. As with the down-sampling, the first part

of these blocks is the depth-wise separated sparse spatial
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propagation. Then, the feature representation along with its

validity mask are up-sampled using nearest-neighbor inter-

polation to avoid mixture with invalid pixels in case some

are still remaining. Lastly, skip connections are established

from the next higher resolution of the sparse encoder. The

skipped encoder features are summed up with the decoder

features to avoid re-introduction of sparsity into the feature

representation and merged in another 3× 3 convolution.

At full input resolution of the decoder pyramid, we per-

form one additional sparse spatial guided propagation, fol-

lowed by three more convolutions for final decoding. The

first two of these three are of size 3 × 3, the other is 1 × 1.

The last two have linear activation to allow a final predic-

tion of negative motions. We are aware that, theoretically,

the two linear activated convolutions could be folded into a

single one. However, we found that explicit separation leads

to a faster convergence initially, probably due to better ini-

tialization by separation. Another advantage of using sparse

convolution is that (especially during the decoding) no neg-

ative boundary effects are introduced, because the sparsity

mechanism can treat padded areas as invalid.

3.4. Dense Refinement

At the end of the sparse-to-dense codec, a dense result in

the respective target domain is already obtained. However,

we follow the idea of CSPN [6] and further refine the re-

sult using spatial propagation for filtering. Since the RGB

codec provides already a strong feature representation, we

can transform these features into affinity maps for each out-

put channel using a single 3 × 3 convolution. The kernels

extracted from the affinity maps are further transformed to

introduce stability as in CSPN [6]. The dense results are

then refined during 10 iterations of spatial propagation.

3.5. Data, Training, and Implementation Details

Data Sets. For real applications, realistic data is required.

However, labeling real world data with reference displace-

ment fields is non-trivial and sometimes even impossible.

Therefore, only a limited amount of suitable data sets is

available. Additionally, these data sets are small in size,

i.e. in the number of distinct images. This work will mainly

use the KITTI 2015 data set [28] to cover realistic scenarios

which only provides 200 annotated images for scene flow

and optical flow. To overcome this issue, we will make

use of synthetically generated data, namely the FlyingTh-

ings3D (FT3D) data set [27]. It provides approximately

2500 sequences, with 10 images each, of 3D objects fly-

ing in front of a random background image. This data set is

large enough for deep training, but lacks variation in the

scenes and realism. Still, it has been shown to be irre-

placeable for pre-training [16, 27, 35, 39]. Next to KITTI

and FT3D, Sintel [3] provides a trade-off between realism

and size, though only for optical flow. Sintel comprises 23

sequences of 20 to 50 frames each. Additionally, we use

HD1K [19] for extended experiments with interpolation of

optical flow. For depth completion, the KITTI Benchmark

Suite [10, 41] offers a larger and yet more realistic data set

that provides labels for about 45000 stereo image pairs.

For all results in Section 4, we follow the common rec-

ommendation and perform our experiments on a randomly

selected validation split which is not used for training. In

particular these sets are the 20 sequences 4, 42, 46, 65, 92,

94, 98, 106, 115, 119, 121, 124, 146, 173, 174, 181, 184,

186, 190, 193 on KITTI, the original val selection cropped

split from the KITTI depth completion data, the sequences

alley 2, ambush 4, bamboo 2, cave 4, market 5 for Sintel

that sum up to 223 frames, and the sequences 0, 5, 15, 16,

18, 19, 27, 31 for HD1K.

Details. For large size data sets like FT3D, it is infeasi-

ble to compute the actual sparse input of existing sparse-to-

dense pipelines, due to the high run-times of several seconds

up to one minute per frame. Instead and because FT3D is

only used for pre-training, a randomized sparsification pro-

cess is introduced to simulate the sparse or non-dense in-

put for interpolation. Additionally, random Gaussian noise

(σ = 2 px) is added to all remaining valid pixels to simulate

inaccuracies of a real matching process. For our experi-

ments on optical flow and scene flow interpolation, we first

train our network on FT3D [27]. The KITTI depth com-

pletion data set is sufficiently large to train on it directly.

We pre-train for 1 million iterations which corresponds to

approximately 64 epochs. Afterwards, we start training on

the respective target domain and task with the pre-trained

weights for initialization. For pre-training, photometric im-

age augmentation is applied as in [8]. The objective for

training depends on the specific interpolation problem at

hand. For motion fields, the average Euclidean distance

between predicted p̂ and ground truth p motion vectors is

minimized. This loss function is equally used for optical

flow and scene flow. For single valued depth, we optimize

the mean squared error between ground truth d and predic-

tion d̂. Except for the two final linearly activated layers,

we use ReLU activation [12] for all convolutional layers.

ADAM [18] with an initial learning rate of 10−4 is used.

The learning rate is continuously reduced with an exponen-

tial decay rate of 0.8 after every 10 % of the total number

of steps. Due to hardware constraints, we are limited to a

batch size of 1 for all our experiments. For training stabil-

ity and improved generalization, we normalize all input of

our network according to the respective image and sparse

statistics to zero mean and unit variance.

4. Experiments and Results

Three sets of experiments are presented. The first one is

an ablation study on the different components of the archi-
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tecture to clarify our contributions and validate the impact.

Then, we demonstrate the robustness of SSGP in terms of

noisy input, wrong input, changes of density of the input,

and padding artifacts. Lastly, SSGP is compared to state-

of-the-art on various data sets and interpolation tasks.

For flow interpolation, the metrics under considerations

are the end-point error (EPE) in image space, and the KITTI

outlier error rate (KOE) giving the percentage of pixels that

exceed an EPE of 3 px and deviate more than 5 % from

the ground truth. Both metrics are likewise applied in our

experiments on scene flow and optical flow. For depth com-

pletion, we use the default mean absolute error (MAE) and

the root mean squared error (RMSE) as measure.

To obtain the sparse input for our experiments with op-

tical flow, we use the prominent FlowFields (FF) [1] or its

extension FlowFields+ (FF+) [2] along with their competi-

tor CPM [15]. There has also been a longer history of sparse

matching techniques in optical flow [13, 44]. However lat-

est interpolation approaches [14, 33] have shown that these

have been superseded by the FlowFields family or CPM.

Their matching concept has been extended to a stereo cam-

era setup to predict scene flow correspondences in Scene-

FlowFields (SFF) [36] and further to a multi-frame setup

in SceneFlowFields++ (SFF++) [37]. To the best of our

knowledge, these are the only approaches which have tested

the sparse-to-dense approach for scene flow. For the prob-

lem of depth completion, sparse input is obtained directly

from a LiDAR sensor.

4.1. Ablation Study

Part of our contributions is the combination of sparsity-

awareness and spatial propagation for full guidance into an

end-to-end interpolation network. Therefore, in this section

our approach is compared to equivalent networks that differ

only conceptually from our design. All the results of the ab-

lation study are reported in Table 1. As a first step, we will

validate that the fusion of image data into the sparse target

domain (image guidance) is beneficial, especially when im-

age data is available anyways. Towards that goal, we eval-

uate an unguided version of the sparse-to-dense codec, i.e.

the input image is not used at all and the RGB branch is re-

moved. Whenever the ablation removes our Sparse Spatial

Guided Propagation, we replace it with a spatially invari-

ant 3 × 3 convolution. We also test different variants of

guidance. We remove guidance from either the encoder or

decoder of the sparse-to-dense codec and compare to our

fully guided approach. It is obvious that guidance improves

the results significantly. Furthermore, guidance in the en-

coder alone (enc) performs not as good as in later stages of

the network (dec), or during all stages (full). The latter two

variants perform on a par, but we argue that full guidance

improves results in difficult scenarios without much addi-

tional computational effort.

Table 1. Ablation study. We compare different concepts for sparse-

to-dense interpolation of LiDAR measurements on the validation

split of KITTI data. Mean absolute error (MAE) [mm], root mean

squared error (RMSE) [mm], number of parameters (×10
6) and

floating point operations (×10
9) are presented.

Guide Sparse Flat Refine MAE RMSE Params FLOPs

none yes yes no 356 1171 0.93 41.2

enc yes yes no 312 1013 4.32 148.5

dec yes yes no 289 953 4.47 149.5

full yes yes no 288 957 4.61 156.9

enc no no no 280 929 6.49 250.1

full yes no no 276 915 10.14 382.4

full no no no 270 910 10.14 381.3

full yes yes no 288 957 4.61 156.9

full no yes no 267 908 4.61 155.8

full yes no yes 260 892 10.15 384.7

full no no yes 251 881 10.15 383.6

full yes yes yes 260 910 4.61 159.2

full no yes yes 248 877 4.61 158.1

Next, we compare networks that use regular convolution

wherever our design uses sparse convolution (sparse) and

networks which compute either a full affinity volume for

guidance or a single affinity map (flat). Because LiDAR

measurements have a quite regular pattern across all sam-

ples, the network variants without sparse convolution per-

form in general slightly better than our versions with sparse

convolution. Anyways, we will show in Section 4.2 that

sparse convolution introduces higher robustness in case this

property is not fulfilled. The flat versions reduce the net-

work size and computational complexity by more than 50 %

without much loss of accuracy. In fact, the version with

flat guidance and regular convolutions performs the best.

In later experiments with smaller data sets, we found the

impact of flat guidance to be even more beneficial to re-

duce over-fitting. Lastly, we show that dense refinement im-

proves the results for all variants with very little increase in

number of parameters or FLOPs.

The fifth row in Table 1 represents a setup which is

conceptually comparable to GuideNet [40], i.e. guidance is

only used in the encoder, the network is not sparsity-aware,

and guided propagation uses the full affinity volume. We

call this setup GuideNet-like.

4.2. Robustness

In this section, the robustness of SSGP is demonstrated.

We evaluate SSGP when the input is deteriorated with ran-

dom noise, and when the density is reduced by random sam-

pling. Both results are presented in Figure 3. For the exper-

iment with noisy input, we add random Gaussian or Lapla-

cian noise with zero mean and different values of standard

deviation σ and exponential decay λ to all valid points of

the sparse input. We then perform scene flow interpolation
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Figure 3. Experiments on the robustness of SSGP. We alter the input with additive Gaussian and Laplacian noise (a) or random sparsification

for depth completion and interpolation of scene flow (b). Our novel architecture is most robust to any type or level of degradation.

and compare the relative increase of outliers for different

levels of noise and different interpolation approaches with

respect to the unaltered input. Figure 3a clearly shows, that

our SSGP is extremely robust even to very noisy input. The

outlier rate is maintained almost constant, while the com-

peting methods perform considerably worse even for small

amounts of additive noise.

In a second experiment, we also validate that the con-

tribution of sparse convolution during guided propagation

and the rest of the sparse-to-dense codec introduces higher

invariance to the level of sparsity. Towards this end, we per-

form depth completion and scene flow interpolation with

randomly sparsified input. Results are presented in Fig-

ure 3b. The increase of errors for the sparsity-aware model

is about 50 % less when considering very sparse depth mea-

surements. For SSGP on scene flow (SF), the impact of

sparisfication is neglectable until 1 % of the original den-

sity. Note that all models are trained on the full input den-

sity. This improved robustness applies also to changes in the

pattern of the input, e.g. when the LiDAR measurements are

sparsified non-uniformly.

As additional indicator for the robustness of SSGP, we

measure the outlier rejection rate (ORR), i.e. the percent-

age of input that is classified as scene flow outlier before

interpolation, but is corrected during interpolation. For in-

put from SFF and SFF++, EPIC3D achieves ORRs of 51.2

% and 40.3 %, RIC3D achieves 64.2 % and 55.7 %, and our

SSGP yields ORRs of 67.6 % and 56.7 %.

We also compare the errors at boundary regions of the

image to show the robustness of sparse convolution to

padding. While the GuideNet-like variant obtains an MAE

and RMSE of 186 and 505 mm in regions which are less

than 10 px away from the image boundary, our full setup of

SSGP achieves 140 and 448 mm.

4.3. Interpolation

Scene Flow. As first application to our interpolation net-

work, we use matches from SFF [36] and SFF++ [37] (using

the SDC feature descriptor [38]) for interpolation of dense

Table 2. Evaluation of scene flow interpolation on our validation

split of the KITTI scene flow data set. KITTI outliers (KOE) [%],

end-point error (EPE) [px], and run time [s] are reported.
D0 D1 OF SF Run

Input Method KOE EPE KOE EPE KOE EPE KOE ΣEPE time

S
F

F

EPIC3D [36] 12.83 1.88 17.80 11.49 29.62 112.1 31.72 125.4 1.0

RIC3D [37] 9.88 1.92 13.94 2.79 15.44 8.42 17.45 13.10 3.8

SSGP (Ours) 9.06 1.33 13.93 1.83 20.67 5.04 25.19 8.20 0.19
S

F
F

+
+

+
S

D
C EPIC3D [36] 6.74 1.30 10.83 1.96 15.65 6.23 17.91 9.49 1.0

RIC3D [37] 5.91 1.29 7.24 1.53 9.80 3.33 11.50 6.15 3.8

SSGP (Ours) 5.71 1.04 9.89 1.45 12.39 3.00 16.61 5.50 0.19

scene flow. The results are computed on the KITTI data

set [28] and are compared to EPIC3D [36] and RIC3D [37]

which are the heuristic two-stage interpolators of SFF and

SFF++ respectively. Both use additional edge information

of the scene. Results are given in Table 2.

Our approach achieves competitive performance to pre-

vious methods, though being significantly faster. Especially

for interpolation of initial disparity (D0), SSGP outperforms

the baselines. Further, SSGP performs comparatively well

in the EPE metric, which was also the objective function

during training.

Optical Flow. For the experiments related to optical flow,

we have multiple data sets to evaluate on, namely KITTI

[28], HD1K [19], and Sintel [3]. We evaluate our method

and state-of-the-art for two kinds of input matches gener-

ated from FF+ [2] and CPM [15]. Our approach will be

compared to EPICFlow [33], RICFlow [14], and InterpoNet

[50]. Note, that all three methods use additional edge in-

formation, while we feed the raw image to our network.

A visual comparison for a cropped frame of KITTI is pre-

sented in Figure 4. In this example, SSGP presents a glob-

ally consistent result, even in the static part of the scene,

where small deviations have most impact in the visualiza-

tion. Our approach shows the most accurate and sharp

object contours, even though it is not provided with pre-

computed edge information. This highlights the capabilities

of the full guidance strategy. In fact, our approach is able

to reject wrong matches in shadows of the vehicles during
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Figure 4. Visual comparison of optical flow interpolation on the

KITTI data set.

interpolation.

Table 4 compares quantitative results over our entire val-

idation sets. It is to highlight that SSGP cuts the end-point

error on KITTI by about half in our comparison. On KITTI

also, the outlier rates of SSGP beat all previous work. For

completeness and fairness, we have to mention that we are

using the publicly available pre-trained weights of Inter-

poNet [50] that have been fine-tuned on Sintel with input

from DF [29] and on KITTI with matches from FlowFields

[1]. However, this indicates that InterpoNet is not very ro-

bust to changes of the input. On Sintel, our approach is

on par with InterpoNet, but lacks behind the other methods.

This is due to the limited variance between scenes which

makes it hard to train a deep model on Sintel. Yet on HD1K,

our SSGP outperforms state-of-the-art in all metrics while

also being faster.

Table 4. Evaluation of interpolation of optical flow. We test on our

validation splits of the KITTI, HD1K, and Sintel data sets. Outlier

rates (KOE) [%], end-point error (EPE) [px], and run time [s] are

reported.
Sintel

KITTI HD1K clean final Run

Input Method KOE EPE KOE EPE KOE EPE KOE EPE time

C
P

M
[1

5
] EPICFlow [33] 24.39 10.04 5.43 1.11 9.98 3.84 13.94 5.76 0.4

RICFlow [14] 21.98 9.91 5.02 1.09 9.17 4.05 13.60 5.88 2.8

InterpoNet [50] 40.38 12.81 12.3 2.36 14.94 4.75 18.09 6.24 0.3

SSGP (Ours) 20.26 5.02 4.32 0.83 14.97 5.63 20.33 7.27 0.16

F
F

+
[2

] EPICFlow [33] 23.97 11.34 5.55 1.21 11.25 5.05 15.99 7.26 0.4

RICFlow [14] 20.46 10.17 4.88 1.07 10.59 5.59 15.82 8.19 2.8

InterpoNet [50] 37.08 11.34 13.1 2.35 16.49 5.7 20.51 7.64 0.3

SSGP (Ours) 20.34 5.21 4.54 0.85 16.53 6.55 22.20 8.43 0.16

Depth Completion. SSGP can also be used for the com-

pletion of sparse LiDAR measurements. We train the entire

architecture from scratch on the KITTI depth completion

data set [41] and compare our results to state-of-the-art in

Table 3. Our network again achieves a competitive result on

yet another challenge, indicating its broad applicability. A

visual example of an interpolated depth map is given in Fig-

ure 1. We further notice that RIC3D [37], a top-performing

method for interpolation of scene flow, performs consid-

erably worse than any other approach. This shows, that

even though RIC3D is not a learning-based method, it has a

strong dependency on properly selected hyper-parameters.

5. Conclusion

SSGP successfully combines sparsity-aware convolution

and spatially variant propagation for fully image guided in-

terpolation. The network design is applicable to diverse

sparse-to-dense problems and achieves competitive perfor-

mance throughout all experiments, beating state-of-the-art

in interpolation of optical flow and in terms of EPE. A flat

affinity map can be used for spatial guidance equally well as

a full affinity volume, drastically reducing the overall net-

work size. This strategy for guidance resolves the depen-

dency on explicitly pre-computed edge information result-

ing in even more accurate interpolation boundaries with a

globally consistent output that preserves fine details. SSGP

is especially robust to variations of the sparsity pattern and

to noise in the input.

Acknowledgement: This work was partially funded by the

BMW Group and partially by the Federal Ministry of Ed-

ucation and Research Germany under the project VIDETE

(01IW18002).

Table 3. Comparison of methods for depth completion on the KITTI benchmark [41]. We report mean average error (MAE [mm]), root

mean squared error (RMSE [mm]), and run time [ms] for the best performing, published methods using image guidance out of more than

90 total submissions. Values in gray are computed on the validation split.

GuideNet [40]

CSPN++ [5]

FuseNet [4]

DeepLiDAR [32]

MSG-CHN [22]

Guide&Certainty [42]

PwP [46]

CrossG
uidance [21]

Sparse
-to

-Dense
[26]

NConv-CNN [9]

DDP [47]

SSGP (O
urs)

Spade [17]

DFineNet [49]

CSPN [6]

RIC3D [37]

MAE 219 209 221 227 220 215 235 254 250 233 204 245 235 304 279 588

RMSE 736 744 753 758 762 773 777 807 815 830 833 838 918 945 1020 2477

Run time 140 200 90 70 10 20 100 200 80 20 80 140 70 20 1000 1400
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