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Abstract

Single-photon avalanche diodes (SPADs) are a rapidly

developing image sensing technology with extreme low-

light sensitivity and picosecond timing resolution. These

unique capabilities have enabled SPADs to be used in appli-

cations like LiDAR, non-line-of-sight imaging and fluores-

cence microscopy that require imaging in photon-starved

scenarios. In this work we harness these capabilities for

dealing with motion blur in a passive imaging setting in

low illumination conditions. Our key insight is that the data

captured by a SPAD array camera can be represented as a

3D spatio-temporal tensor of photon detection events which

can be integrated along arbitrary spatio-temporal trajecto-

ries with dynamically varying integration windows, depend-

ing on scene motion. We propose an algorithm that esti-

mates pixel motion from photon timestamp data and dynam-

ically adapts the integration windows to minimize motion

blur. Our simulation results show the applicability of this

algorithm to a variety of motion profiles including transla-

tion, rotation and local object motion. We also demonstrate

the real-world feasibility of our method on data captured

using a 32× 32 SPAD camera.

1. Introduction

When imaging dynamic scenes with a conventional cam-

era, the finite exposure time of the camera sensor results in

motion blur. This blur can be due to motion in the scene

or motion of the camera. One solution to this problem is

to simply lower the exposure time of the camera. However,

this leads to noisy images, especially in low light condi-

tions. In this paper we propose a technique to address the

fundamental trade-off between noise and motion blur due

to scene motion during image capture. We focus on the

challenging scenario of capturing images in low light, with

fast moving objects. Our method relies on the strengths

of rapidly emerging single-photon sensors such as single-

photon avalanche diodes (SPADs).

Light is fundamentally discrete and can be measured

in terms of photons. Conventional camera pixels measure

brightness by first converting the incident photon energy

into an analog quantity (e.g. photocurrent, or charge) that

Figure 1. Overview of our adaptive motion deblurring method.

(a) The photon frames captured from a rotating fan contain times-

tamps for the first detected photon in each frame. Note the smaller

value of timestamps in brighter regions and vice versa. (b) Flux

changepoints obtained after changepoint detection and flux esti-

mation at pixel location highlighted in cyan in (a). Note the rapidly

varying photon timestamps due to heavy-tailed nature of the raw

timestamp data. (c) A changepoint video (CPV) maintains sharp

edges while providing motion cues to estimate inter-frame mo-

tion trajectories; the temporal flux profile of the highlighted pixel

in this CPV is the piecewise constant function shown in (b). (d)

Integrating photons along estimated spatio-temporal motion tra-

jectories generates a sharp image with high signal-to-noise ratio.

is then measured and digitized. When imaging in low light

levels, much of the information present in the incident pho-

tons is lost due to electronic noise inherent in the analog-to-

digital conversion and readout process. Unlike conventional

image sensor pixels that require 100’s-1000’s of photons to

produce a meaningful signal, SPADs are sensitive down to

individual photons. A SPAD pixel captures these photons

at an instant in time, with a time resolution of hundreds of

picoseconds. Each photon detection can therefore be seen

as an instantaneous event, free from any motion blur. Re-

cently, single photon sensors have been shown to be useful

when imaging in low light, or equivalently, imaging at high

frame rates where each image frame is photon-starved [22].

The data captured by a SPAD camera is thus quite dif-
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ferent than a conventional camera: in addition to the two

spatial dimensions, we also capture data on a high resolu-

tion time axis resulting in a 3D spatio-temporal tensor of

photon detection events. We exploit this novel data format

to deal with the noise-blur trade-off. Our key observation is

that the photon timestamps can be combined dynamically,

across space and time, when estimating scene brightness.

If the scene motion is known a priori, photons can be accu-

mulated along corresponding spatio-temporal trajectories to

create an image with no motion blur. A conventional cam-

era does not have this property because at capture time high

frequency components are lost [24]. So even with known

scene motion, image deblurring is an ill-posed problem.

Our method relies on dynamically changing exposure

times, where each pixel can have its own set of exposure

times. An overview of our approach is shown in Fig. 1.

We propose using statistical changepoint detection to infer

points in time where the photon flux at a given pixel changes

from one steady state rate to another. This allows us to

choose exposure times that adapt to scene motion. Change-

points allow us to track high contrast edges in the scene and

align “high frequency” motion details across multiple im-

age frames. We show that for the case of global motion

(e.g., rotation) we can track the varying motion speeds of

different scene pixels and combine photons spatially to cre-

ate deblurred images. We also show that for the case of local

scene motion, our method can provide robust estimates of

flux changepoints around the edges of the moving objects

that improves deblurring results obtained from downstream

motion alignment and integration.

The locations of changepoints can be thought of as a

spike-train generated by a neuromorphic event camera [9],

but with three key differences: First, unlike an event cam-

era, our method preserves original intensity information for

each pixel. Second, the numbers and locations of events,

chosen by our algorithm, adapt to each pixel, without the

need for a hard-coded change threshold. Third, direct pho-

ton measurements are inherently more sensitive, less noisy,

and have a higher time resolution than conventional cam-

eras. Current cameras create an analog approximation of

the quantized photon stream (usually a charge level in a ca-

pacitor) and then measure and digitize that analog quantity.

This process introduces noise and does not take advantage

of the inherent quantized properties of the photons. We

therefore expect photon counting methods to have higher

sensitivity, accuracy, and temporal resolution than analog

cameras, when imaging in low light scenarios.

Single-Photon Sensitive Cameras for Machine Vision?

Currently, single-photon sensitive image sensors are quite

limited in their spatial resolution compared to conventional

complementary metal–oxide–semiconductor (CMOS) and

charge-coupled device (CCD) image sensors. However,

single-photon image sensing is a rapidly developing field;

recent work has demonstrated the feasibility of making

megapixel resolution single-photon sensitive camera arrays

[23, 12]. Moreover, silicon SPAD arrays are amenable to

manufacturing at scale using the same photolithographic

fabrication techniques as conventional CMOS image sen-

sors. This means that many of the foundries producing

our cellphone camera sensors today could also make SPAD

array sensors at similar cost. Other current limitations of

SPAD sensors are the small fraction of chip area sensitive

to light (fill factor) resulting from the large amount of addi-

tional circuitry that is required in each pixel. Emerging 3D

stacking technologies could alleviate this problem by plac-

ing the circuitry behind the pixel.

Limitations Our experimental demonstration uses a first

generation commercial SPAD array that is limited to a

32×32 pixel spatial resolution. More recently 256×256

pixel commercial arrays have become available [5]. Al-

though current SPAD cameras cannot compete with the im-

age quality of commercial CMOS and CCD cameras, with

the rapid development of SPAD array technology, we en-

vision our techniques could be applied to future arrays with

spatial resolution similar to that of existing CMOS cameras.

Contributions:

• We introduce the notion of flux changepoints; these can

be estimated using an off-the-shelf statistical change-

point detection algorithm.

• We show that flux changepoints enable inter-frame

motion estimation while preserving edge details when

imaging in low light and at high speed.

• We show experimental demonstration using data ac-

quired from a commercially available SPAD camera.

2. Related Work

Motion Deblurring Motion deblurring for existing cam-

eras can be performed using blind deconvolution [21].

Adding a fast shutter (“flutter shutter”) sequence can aid

this deconvolution task [24]. We push the idea of a flut-

tered shutter to the extreme limit of individual photons: our

image frames consist of individual photon timestamps al-

lowing dynamic adaptation of sub-exposure times for the

shutter function. Our deblurring method is inspired by

burst photography pipelines used for conventional CMOS

cameras. Burst photography relies on combining frames

captured with short exposure times [16], resulting in large

amounts of data that suffer from added readout noise. More-

over, conventional motion deblurring methods give optimal

performance when the exposure time is matched to the true

motion speed which is not known a priori.

Event-based Vision Sensors Event cameras directly cap-

ture temporal changes in intensity instead of capturing

scene brightness [9]. Although it is possible to create in-

tensity images from event data in post-processing [3], our
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method natively captures scene intensities at single-photon

resolution: the “events” in our sensing modality are individ-

ual photons. The notion of using photon detections as “spik-

ing events” has also been explored in the context of biologi-

cally inspired vision sensors [30, 1]. We derive flux change-

points from the high-resolution photon timestamp data. Due

to the single-photon sensitivity, our method enjoys lower

noise in low light conditions, and pixel-level adaptivity for

flux changepoint estimation.

Deblurring Methods for Quanta Image Sensors There

are two main single-photon detection technologies for pas-

sive imaging: SPADs [20, 17] and quanta image sensors

(QIS) [8]. Although our proof-of-concept uses a SPAD

camera, our idea of adaptively varying exposure times can

be applied to QIS data as well. Existing motion deblur-

ring algorithms for QIS [13, 14, 22] rely on a fixed inte-

gration window to sum the binary photon frames. How-

ever, the initial step of picking the size of this window

requires a priori knowledge about the motion speed and

scene brightness. Our technique is therefore complemen-

tary to existing motion deblurring algorithms. For exam-

ple, our method can be considered as a generalization of

the method in [18] which uses two different window sizes.

Although we use a classical correlation-based method for

motion alignment, the sequence of flux changepoints gen-

erated using our method can be used with state-of-the-art

align-and-merge algorithms [22] instead.

3. SPAD Image Formation Model

SPADs are most commonly used in synchronization with

an active light source such as a pulsed laser for applications

including LiDAR and fluorescence microscopy. In contrast,

here we operate the SPAD passively and only collect am-

bient photons from the scene. In this section, we describe

the imaging model for a single SPAD pixel collecting light

from a fixed scene point whose brightness may vary as a

function of time due to camera or scene motion.

3.1. Pixelwise Photon Flux Estimator

Our imaging model assumes a frame-based readout

mechanism: each SPAD pixel in a photon frame stores at

most one timestamp of the first captured ambient photon.

This is depicted in Fig. 1(a). Photon frames are read out

synchronously from the entire SPAD array; the data can be

read out quite rapidly allowing photon frame rates of 100s

of kHz (frame times on the order of a few microseconds).

Let Npf denote the number of photon frames, and Tpf be

the frame period. So the total exposure time is given by

T = NpfTpf. We now focus on a specific pixel in the SPAD

array. In the ith photon frame (1 ≤ i ≤ Npf), the output

of this pixel is tagged with a photon arrival timestamp ti

relative to the start of that frame.∗ If no photons are detected

during a photon frame, we assume ti = Tpf.

Photon arrivals at a SPAD pixel can be modeled as a

Poisson process [15]. It is possible to estimate the inten-

sity of this process (i.e. the perceived brightness at the

pixel) from the sequence of photon arrival times [20, 17].

The maximum likelihood brightness estimator Φ̂ for the true

photon flux Φ is given by [20]:

Φ̂ =

∑Npf

i=1
1(ti 6= Tpf)

q
∑Npf

i=1
ti

(1)

where q is the sensor’s photon detection efficiency and 1

denotes a binary indicator variable.

This equation assumes that the pixel intensity does not

change for the exposure time T . The assumption is violated

in case of scene motion. If we can determine the temporal

locations of intensity changes, we can use still use Eq. (1) to

estimate a time-varying intensity profile for each pixel. In

the next section we introduce the idea of flux changepoints

and methods to locate them with photon timestamps.

3.2. Flux Changepoints

Photon flux at a given pixel may change over time in case

of scene motion. This makes it challenging to choose pixel

exposure times a priori: ideally, for pixels with rapidly

varying brightness, we should use a shorter exposure time

and vice versa. We propose an algorithm that dynamically

adapts to brightness variations and chooses time-varying ex-

posure times on a per pixel basis. Our method relies on lo-

cating temporal change locations where the pixel’s photon

flux has a large change: we call these flux changepoints.

In general, each pixel in the array can have different

numbers and locations of flux changepoints. For pixels that

maintain constant brightness over the entire capture period

(e.g. pixels in a static background), there will be no flux

changepoints detected and we can integrate photons over

the entire capture time T . For pixels with motion, we as-

sume that the intensity between flux changepoints is con-

stant, and we call these regions virtual exposures. Photons

in each virtual exposure are aggregated to create a piecewise

constant flux estimate. The length of each virtual exposure

will depend on how quickly the local pixel brightness varies

over time, which in turn, depends on the true motion speed.

An example is shown in Fig. 1(b). Note that the photon

timestamps are rapidly varying and extremely noisy due to a

heavy-tailed exponential distribution. Our changepoint de-

tection algorithm detects flux changepoints (red arrows) and

estimates a piecewise constant flux waveform for the pixel

(blue plot). In the example shown, five different flux levels

are detected.

∗In practice, due to random timing jitter and finite resolution of timing

electronics, this timestamp is stored as a discrete fixed-point value. The

SPAD camera used in our experiments has a 250 picosecond discretization.
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3.2.1 Changepoint Detection

Detecting changepoints is a well studied problem in the

statistics literature [4, 26]. The goal is to split a time-series

of measurements into regions with similar statistical prop-

erties. Here, our time series is a sequence of photon times-

tamps at a pixel location, and we would like to find regions

where the timestamps have the same mean arrival rate, i.e.,

the photon flux during this time is roughly constant.

Using the sequence of photon arrival times {ti}
Npf

i=1
, we

wish to find a subset {tl1 , . . . , tlL} representing the flux

changepoints. For convenience, we let the first and the last

flux changepoint be the first and the last photons captured

by the pixel (l1 := 1 and lL = Npf).

Offline changepoint detection is non-causal, i.e., it uses

the full sequence of photon timestamps for a pixel to esti-

mate flux changepoints at that pixel. In Suppl. Note S.1 we

describe an online changepoint detection method that can

be used for real-time applications.

For a sequence of photon timestamps, we solve the fol-

lowing optimization problem [29] (see Suppl. Note S.1):

(l∗i )
L
i=1

=argmin
l1,...,lL

L−1∑

i=1


− log(Φ̂i)

li+1∑

j=li

1(tj 6=Tpf)


+λL

(2)

where Φ̂i is the photon flux estimate given by Eq. (1) using

only the subset of photons between times tli and tli+1
. Here

λ is the penalty term that prevents overfitting by penalizing

the number of flux changepoints. For larger test images we

use the BOTTOMUP algorithm [28] which is approximate

but has a faster run time. For lower resolution images we

use the Pruned Exact Linear Time (PELT) algorithm [19]

which gives an exact solution but runs slower. See Suppl.

Section S.4 for results using the BOTTOMUP algorithm.

Flux Changepoints for QIS Data The cost function in

Eq. (2) applies to photon timestamp data, but the same idea

of adaptive flux changepoint detection can be used with QIS

photon count data as well. A modified cost function that

uses photon counts (0 or 1) is derived in Suppl. Note S.1.2.

3.2.2 Single-Pixel Simulations

There is a trade-off between contrast and motion speed

when trying to detect changepoints. For example, it is

harder to detect the flux change with a fast moving object

with a lower contrast with respect to its background. To

evaluate this trade-off, we simulate a single SPAD pixel for

800 photon frames with a time varying flux signal with a

randomly placed pulse wave. We use the pulse width as

a proxy for motion speed, and vary the contrast by vary-

ing the ratio of the pulse height. We measure the absolute

difference between the number of changepoints detected by

Figure 2. Contrast-Speed Trade-off. We simulate a single SPAD

pixel measuring a pulse-shaped photon flux signal to analyze the

contrast-speed trade-off when detection motion. Our method (a)

based on PELT changepoint detection adapts to a wider range of

contrast and speed combinations than the comparison method (b)

from Gyöngy et al. [14].

our algorithm and the true number of flux changes (which is

exactly 2 for a single pulse). We call this “annotation error.”

Fig. 2 shows the annotation errors for different values

of contrast and motion speeds for two different algorithms.

For each set of contrasts and motion speeds we display the

average number of annotation errors over 120 simulation

runs. We use the PELT algorithm to detect flux change-

points. For comparison, we also show the fixed windowing

approach used by Gyöngy et al. [14, 2]. The changepoint

detection algorithm is able to adapt to a wider range of con-

trasts and speeds.

4. Pixel-Adaptive Deblurring

4.1. Changepoint Video

Using methods described in the previous section we lo-

cate flux changepoints for each pixel in the image. The

changepoints for each pixel represent when a new virtual

exposure starts and stops; photons within each virtual expo-

sure can be used to estimate photon flux using Eq. (1). We

call this collection of piecewise constant functions over all

pixels in the array the changepoint video (CPV).

The CPV does not have an inherent frame rate; since

each pixel has a continuous time piecewise constant func-

tion, it can be sampled at arbitrarily spaced time instants in

[0, T ] to obtain any desired frame rate. We sample the CPV

at non-uniform time intervals using the following criterion.

Starting with the initial frame sampled at t = 0, we sample

the subsequent frames at instants when at least 1% of the

pixel values have switched to a new photon flux. This leads

to a variable frame rate CPV that adapts to changes in scene
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Figure 3. Changepoint video deblurring. Photon timestamps for each pixel location in the 3D timestamp tensor are analyzed for change-

points (a) to generate a changepoint video. Pixels may have different numbers of changepoints, and hence, dynamically changing frame-rate

over time. We estimate motion between successive frames of the changepoint video (b) and estimate motion parameters. Finally, using

this motion estimate, we sum photons (c) from the photon frames along motion trajectories resulting in a deblurred video. Frames in the

deblurred video are registered and summed (d) to obtain the final deblurred image. (Original images from FreeImages.com)

velocity: scenes with fast moving objects will have a higher

average CPV frame rate.

The CPV preserves large brightness changes in a scene.

For example, the edges of a bright object moving across

a dark background remain sharp. However, finer texture

details within an object may appear blurred.

4.2. Spatio­Temporal Motion Integration

We use global motion cues from the CPV and then com-

bine the motion estimates with the photon frames to create

a deblurred video. The overall flowchart is shown in Fig. 3.

We use a correlation-based image registration algorithm

to find the motion between consecutive frames in the CPV.

For each location p = [x, y] in the ith CPV frame, we as-

sume it maps to a location p′ in (i + 1)st CPV frame. We

assume that the mapping is a linear transformation:

Ap = p′. (3)

We constrain A to represent planar Euclidean motion (rota-

tion and translation). Let θ be the amount of rotation cen-

tered around a point [rx, ry] and let [τx, τy] be the transla-

tion vector. Then A has the form:

A=




cos θ sin θ rx(1−cos θ)+ry sin θ+τx
− sin θ cos θ ry(1−cos θ)−rx sin θ+τy

0 0 1


 . (4)

We apply the enhanced correlation coefficient maximiza-

tion algorithm [7] to estimate the transformation matrix A

for consecutive pairs of CPV frames i → i + 1. A se-

quence of frame-to-frame linear transformations generates

arbitrarily shaped global motion trajectories. We aggregate

the original photon frame data along these estimated spatio-

temporal motion trajectories.

We assume that the rotation center, [rx, ry], is the middle

of the image and a change in rotation center can be modeled

as a translation. We solve for θ, τx, and τy which we linearly

interpolate. Then using the interpolated motion parameters

and Eq. (3), we align all photon frames corresponding to

the time interval between CPV frames i → i + 1 and sum

these frames to get a photon flux image by using Eq. (1) at

each pixel. This generates a motion deblurred video with

the same frame rate as the CPV, but with finer textures pre-

served as shown in Fig. 3.

If the final goal is to obtain a single deblurred image, we

repeat the steps described above on consecutive frames in

the deblurred video, each time decreasing the frame rate by

a factor of 2, until eventually we get a single image. This

allows us to progressively combine photons along spatial-

temporal motion trajectories to increase the overall signal to

noise ratio (SNR) and also preserve high frequency details

that were lost in the CPV.

Our method fails when motion becomes too large to

properly align images, especially at low resolutions. It can

also fail when not many flux changepoints are detected, this

will occur mainly due to a lack of photons per pixel of

movement. In the worst case, if not enough changepoints

are detected, the result of the algorithm will look similar to

a single long exposure image.

The method of aligning and adding photon frames is sim-

ilar to contrast maximization algorithms used for event cam-

eras [10]. However, unlike event camera data, our method

relies on the CPV which contains both intensity and flux

changepoints derived from single-photon timestamps.
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Figure 4. Comparison of SNR for different deblurring win-

dow sizes. (a) A ground truth video of a rotating orange used for

creating simulated SPAD photon frames. A long exposure image

is quite blurry while a short exposure image is very noisy. Our de-

blurring algorithm strikes a balance between noise and blur to get

a sharp high-quality image. (b) By varying the brightness of the

orange scene, we compare the simulated SNR using our method

compared to a conventional method with fixed windows. Notice

the proposed method stays above 20 dB at all photon rates, while

the fixed photon window SNRs decrease in the low photon count

regime. (Original image from FreeImages.com)

Handling Multiple Moving Objects To handle multiple

moving objects on a static background, we implement a

method similar to Gyögny et al. [14] and combine it with

our CPV method. We cluster the changepoints for different

objects using a density-based spatial clustering algorithm

(DBSCAN) [6]. For each cluster, we then create a bound-

ing box, isolating different moving objects. We then apply

our motion deblurring algorithm on each object individu-

ally, before stitching together each object with the areas that

are not moving in the CPV. The clustering step also denoises

by rejecting flux changepoints not belonging to a cluster.

4.3. Simulations

Starting with a ground truth high resolution, high frame

rate video, we scale the video frames to units of photons

per second and generate photon frames using exponentially

distributed arrival times. We model a photon frame readout

SPAD array with 8000 bins and bin width of 256 ps.

We first simulate a rotating orange by applying succes-

sive known rigid transformations to an image and generat-

ing SPAD data by scaling the transformed images between

104 and 108 photons per second. We rotate the image by

0.1◦ for every 10 generated photons for a total of 1000 pho-

tons. We use the BOTTOMUP algorithm [29] with λ = 5
for the changepoint detection step. The results are shown in

Fig. 4(a). Our method captures sharp details on the orange

skin while maintaining high quality.

Fig. 4(b) shows quantitative comparisons of SNR for dif-

ferent deblurring methods. The conventional approach to

deblur photon data uses a fixed frame rate; we use two dif-

ferent window lengths for comparison. We compute the

SNR of the deblurred imaging using the ℓ2 (root-mean-

squared) distance from the ground truth to and repeat this

over a range of photon flux levels. We keep the total number

of photons captured approximately constant by extending

the capture time for darker flux levels. Our method dynam-

ically adapts to motion and lighting so we are able to recon-

struct with high SNR even in photon starved regimes where

the SNR of the fixed window methods degrades rapidly.

To simulate multi-object motion, we captured a ground

truth video of two toy cars rolling down a ramp at different

speeds. The video frame pixels are then scaled between 105

and 106 photons per second and a total of 690 photon frames

are generated. A bright slow moving car has a contrast of

1.2 with respect to the background, and moves 48 pixels

over the duration of video. The dark car has a contrast of

5.0 with the background, and moves 143 pixels. We use

the PELT algorithm [19] with λ = 6 for the changepoint

detection step. We use ǫ = 7.5 and MinPts = 40 in the DB-

SCAN clustering algorithm. The resulting deblurred images

are shown in Fig. 5. Observe that the method of [14] blurs

out the low contrast white car in the back. Our method as-

signs dynamically changing integration windows extracted

from the CPV to successfully recover both cars simultane-

ously with negligible motion blur. The changepoint clusters

used for segmenting cars from the static background in our

method are are shown in Fig. 6.
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Figure 5. Simulated Motion Deblurring for Multiple Moving Objects. We simulate SPAD data from video of toy cars, a fast moving

black car and slow moving white car. (Top row) A sample frame from the ground truth frame sequence is shown. The short and long

exposure images show the results of using integrating the first 75 and 250 photon frames, respectively. Notice that the short exposure

preserves the black car while the white car is quite noisy, on the other hand, the long average blurs the black car but preserves details of the

white one better. (Bottom row) The method of Gyögny et al. [14], fails to reconstruct the white car (blue arrow) due to its low contrast. A

sample frame from our changepoint video shows both moving cars. Finally, our deblurring algorithm is able to reconstruct both the black

and white car with negligible motion blur.

Figure 6. Clustered Flux Changepoints Two clusters of flux

changepoints are detected using frames from the changepoint

video for the toy car scene. These changepoint clusters are used

for segmenting the moving cars from the static background.

5. Experiments

We validate our method using experimental data cap-

tured using a 32×32 InGaAs SPAD array from Prince-

ton Lightwave Inc., USA. The pixels are sensitive to near

infrared and shortwave infrared (900 nm–1.6 µm wave-

lengths). The SPAD array operates in a frame readout mode

at 50,000 photon frames per second. Each photon frame

exposure window is 2 µs and sub-divided into 8000 bins,

giving a temporal resolution of 250 ps per bin [27].

For this low resolution experimental data, we zero-order

hold upsample both the timestamp frames and the CPV be-

fore step (b) in Fig. 3 in the spatial dimensions. We then use

upsampled photon frames for step (c) resulting in sharper

images. Upsampling before motion integration allows pho-

tons that are captured in the same pixel to land in a larger

space during the motion integration step.

Fig. 7 shows results from two different scenes. The “fan”

scene shows the performance of our algorithm with fast ro-

tation†. The optimal exposure time in this case depends on

the rotation speed. Our method preserves the details of the

fan blades including the small black square patch on one of

the fan blades. The “checkerboard” scene shows deblurring

result with purely horizontal global motion. Note that our

method is able to resolve details such as the outlines of the

squares on the checkerboard.

The last row in Fig. 7 shows the upsampled results. Ben-

efits of upsampling are restricted to the direction of motion.

The “fan” dataset is upsampled 9× compared to the orig-

inal resolution. The “checkerboard” dataset is upsampled

4×; this is because the motion is limited to the horizon-

tal dimension. Note that some of the details in the vertical

edges are sharp, but horizontal edges remain blurry.

†The background behind the fan is covered with absorbing black felt

material. This allows us to treat the data as having global rotation, because

there is hardly any light captured from the background.
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Figure 7. Experimental Results. The first row shows a single raw data frame from the photon timestamp tensor; each photon has an

associated timestamp with a 250 ps bin resolution. Integration over a long exposure (2ms for the fan and 0.2ms for checkerboard scene)

this gives a low noise but blurry result. Using a short exposure time (40 µs for both scenes) produces very noisy results. The second

row shows a sequence of three frames from the final deblurred video. The third row shows the result with upsampling. Note that in the

checkerboard scene due to purely horizontal motion, some vertical edges (yellow arrow) are sharper but not the horizontal edges (cyan

arrow). See supplementary video results.

6. Discussion and Future Work

Euclidean Motion Assumption In the case of camera

shake, most of the motion will come from small rotations

in the camera that result in 2D translations and rotations in

the image frames. The short distance translations of shak-

ing camera would cause translations in the frames that are

similar in nature, but smaller in magnitude.

Translation of the camera over larger distances would re-

sult in parallax while motion within the scene can result in

more complex changes. In these cases our model captures

scene changes only approximately. It applies to frame to

frame motion over short time-scales and limited to regions

in the scene. Ideas for extending our model to deal with

larger motion will be the subject of future work.

Dealing with Local Motion The techniques presented in

this paper assume multiple moving objects exhibiting eu-

clidean motion, with no occlusions. We can extend our ap-

proach to more complex motions. We can use a patch-wise

alignment and merging methods to deal with more complex

local motion and occlusions [16, 22].

Deblurring algorithms developed for event camera data

can be adapted to SPAD data, because the flux change-

points represent changes in brightness similar to the out-

put of event cameras. Current event camera algorithms are

able to recover complex motion in scenes [10, 25], and they

could be improved with a fusion based approach where im-

age intensity information is also available [11].

Data Compression With increasing number of pixels, pro-

cessing photon frames with high spatio-temporal resolution

will be quite resource intensive. Our online changepoint

method takes some initial steps towards a potential real-time

implementation. The CPV can be used for video compres-

sion with variable frame rate: by tuning the regularization

parameter of the changepoint detection algorithm a tradeoff

between image fidelity and data rate can be achieved.
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