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Abstract

In this paper, we propose risk-calibrated evidential deep

classifiers to reduce the costs associated with classification

errors. We use two main approaches. The first is to de-

velop methods to quantify the uncertainty of a classifier’s

predictions and reduce the likelihood of acting on erroneous

predictions. The second is a novel way to train the classi-

fier such that erroneous classifications are biased towards

less risky categories. We combine these two approaches in

a principled way. While doing this, we extend evidential

deep learning with pignistic probabilities, which are used to

quantify uncertainty of classification predictions and model

rational decision making under uncertainty.

We evaluate the performance of our approach on sev-

eral image classification tasks. We demonstrate that our

approach allows to (i) incorporate misclassification cost

while training deep classifiers, (ii) accurately quantify the

uncertainty of classification predictions, and (iii) simultane-

ously learn how to make classification decisions to minimize

expected cost of classification errors.

1. Introduction

Deep neural networks have shown superhuman perfor-

mance in many classification tasks. However, unlike humans,

existing deep models do not take into account the conse-

quences of their possible mistakes. This is evidenced by the

choice of the cross entropy as the most common measure of

loss in deep classifiers. The cross entropy loss is computed

using the predicted probability of the correct category and

completely ignores how the remaining probability mass is

distributed over the wrong categories. Thus, the classifier is

trained without regard to the risk of incorrect classification

decisions.

An agent solely depending on the predictions of such

classifiers to make a decision or take an action may pay

a high cost when these prediction are wrong. A striking

example is an incident happened on 7th May 2016, near

Williston, Florida, USA. A car operating with automated

vehicle control systems crashed into a truck. Unfortunately,

the car driver died due to the sustained injuries. The car

manufacturer stated that the accident originated from the

vision system which incorrectly classified the white truck as

a bright sky [16] and acted based on this erroneous prediction.

As deep learning is used more widely and in more critical

decision making operations, these difficulties will become

more prevalent.

To incorporate the cost of misclassification into the train-

ing of deep classifiers, one approach is to use cost-sensitive

learning [4]. This aims to minimize the expected cost of

classification errors, e.g., by avoiding predictions placing

high probabilities for high-risk categories, whilst maintain-

ing classification accuracy. However, similarly to standard

classifiers, cost-sensitive classifiers do not have any mech-

anism for quantifying the uncertainty of their predictions.

Thus an autonomous agent using these classifiers cannot

know if it can rely on their predictions to make a decision or

take an action. Hence, the main advantage of these classifiers

for the agent is limited to decreasing the cost of classification

errors due to their tendency to predict less risky categories.

On the other hand, if the agent is equipped with tools to

quantify the uncertainty of these predictions, it can avoid

taking actions based on ungrounded and most likely wrong

predictions. Recently, a number of methods have been pro-

posed to quantify uncertainty of deep classifier predictions.

Among those, evidential deep learning is the state-of-the-art

and a practical approach for uncertainty quantification in

deep classifiers [18]. However, these methods do not take

into account the risk of classification errors and may still be

overconfident for some high-risk categories.

In this paper, we propose risk-calibrated evidential clas-

sifiers and made the following contributions:

• We reformulate evidential deep learning within a

Bayesian learning framework and regularize the gener-

ated evidence using misclassification risk.

• We incorporate decision theoretical principles with

deep neural networks through pignistic probabilities.

• We empirically show that we do not trade off accuracy
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or uncertainty quantification for risk reduction.

The paper is organised as follows. Section 2 describes

our approach for risk-calibrated deep classifiers. Section 3

evaluates our approach with respect to other methods using

well-known datasets. Section 4 discusses the related work

and the proposed approach. We conclude the paper with an

overview of our contributions and findings in Section 5.

2. Risk-calibrated Classifiers

In a typical dataset for classification, each sample x,

(e.g., an image), has a label y representing its category.

This label is related to a latent categorical distribution

π = [π1, . . . , πK ], which represents the probability that

the sample belongs to each of K categories. Vanilla neu-

ral network classifiers aim to directly estimate π using the

softmax function. We can quantify the uncertainty of this pre-

dictive distribution using statistics such as the (information

theoretic) entropy, H[y|π] = −
∑
πi log πi. However quan-

tifying uncertainty as H[y|π] presupposes the classifier’s

estimate of π is precise.

In this work, we wish to construct neural networks that

are aware of and can quantify confidence in their predic-

tions. One natural (Bayesian) approach is to design classi-

fiers that output probability distributions over π rather than

point estimates and allow uncertainty estimation using these

distributions. Since the Dirichlet distribution is a prior for

the categorical distribution, it can be used as a distribution

over all possible softmax outputs for the classification of any

given sample.

2.1. Dirichlet Distributions and Pseudocounts

The Dirichlet distribution is a probability density func-

tion (pdf) for categorical distributions, π = [π1, . . . , πK ]
over K categories. It is characterized by parameters α =
[α1, . . . , αK ] and is given by

Dirichlet(π|α) =

{
1

B(α)

∏K

i=1 π
αi−1
i for π ∈ SK ,

0 otherwise.

where SK is the K-dimensional unit simplex and B(α) is

the K-dimensional multinomial beta function [10].

Figure 1 illustrates several Dirichlet distributions over

three categories with different choices of parameter values.

When all the parameters are one (i.e., α = [1, 1, 1]), the

Dirichlet distribution is uniform, i.e., all categorical distri-

butions over these three categories are equally likely. As

the parameter values become more unequal, the distribution

becomes more concentrated.

The parameters of the Dirichlet distribution can be consid-

ered to be real-valued pseudocounts [15], where the higher

the pseudocount, the more evidence exists for that category.

This behaviour is formalised when the Dirichlet distribution

is used as a conjugate prior for the categorical distribution.

In this case, if the prior beliefs about a categorical distribu-

tion, π, are represented as Dirichlet(π;β) and we observe

evidence (a total of n pseudocounts),

c = [c1, . . . , cK ] ∼ Multinomial(n,π),

then our belief about π is updated to Dirichlet(π;β+c). For

example, let c = [1, 4, 14] be the evidence to be added to the

prior pseudocounts β = [1, 1, 1], then the posterior Dirichlet

distribution will have the parameters α = β+c = [2, 5, 15].
This indicates that the categorical distributions which place

more mass on the third category are more likely than others,

as shown in Figure 1(b). Similarly, if c = [9, 9, 9], the result-

ing Dirichlet distribution parameters are β = [10, 10, 10],
which indicates that the categorical distributions placing sim-

ilar amount of mass on all categories become more likely, as

shown in Figure 1(c).

The mean and variance of the probability of category k
when π is distributed as Dirichlet(π;α) are

E[πk] =
αk

α0
, V[πk] =

αk(α0 − αk)

α2
0(α0 + 1)

, where α0 =

K∑

i=1

αi.

Note that scaling each αi by a constant greater than one

leaves the mean the same but reduces the variance. This

fits the pseudocount (evidence) interpretation of the αi.

For example, the predictive categorical distribution for the

Dirichlet distributions with parameters α = [1, 1, 1] and

α = [10, 10, 10] are both [1/3, 1/3, 1/3] — the uniform cat-

egorical distribution with the maximum entropy. However,

the variance of the latter is much smaller than that of the

former, as also shown in Figures 1(a) and 1(c).

2.2. Evidential Deep Classifiers

Discriminative classifiers (e.g. logistic regression, vanilla

neural network classifiers) [15] are models of the form

p(y|x) where a distribution over theK possible categories is

estimated directly. The primary concept underlying eviden-

tial classifiers is to estimate how much evidence a sample

holds for each category. By estimating the evidence we can

estimate both p(y|x) and reason about how confident we are

in this prediction of p(y|x).

We describe the underlying discriminative model here

and show it in plate notation in Figure 2. Our model as-

sumes that every input sample x has a weight of evidence

c = [c1, . . . , cK ], where ci > 0 ∀i associated with it. The

ci are effectively pseudocounts representing how much evi-

dence the sample holds for the ith category. This evidence is

combined with a prior in order to parameterise a distribution

over a per-sample latent variable π|β, c ∼ Dirichlet(α),
where α = β + c. Finally, the label y is sampled from

π. Note that whilst a typical discriminative classifier makes
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(a) α = [1, 1, 1] (b) α = [2, 5, 15] (c) α = [10, 10, 10] (d) α = [0.1, 0.9, 2]
Figure 1. Top: The pdf of the Dirichlet(π;α) distribution over the probability simplex in R

3 (blue = low, yellow = high). Bottom: 500

draws from the Dirichlet(π;α) distribution for various values (a, b, c, d) of the α parameter.

Figure 2. A graphical representation of discriminative evidential

classifiers using plate notation.

a point estimate of π directly, an evidential classifier esti-

mates a distribution over π. Even though π is latent, we can

marginalise over it to calculate the predictive distribution for

the label exactly as p(y = k|c,β) = p(y = k|α) = αk/α0.

In general, the prior parameters β can take any values. In this

work we set them to [1, . . . , 1] to have the uniform Dirichlet

distribution as the prior for π. This induces a flat prior where

each π is equally likely. For any given x, the prior is com-

bined with the evidence, c, to estimate π. Then, the entropy

of the predictive categorical distribution can be computed

as H[y|α] = −
∑K

i=1(αi/α0) log(αi/α0). If the evidence

is low, the prior will dominate and the uncertainty in y will

be high. If the evidence is high and concentrated in one

category, the uncertainty will be low. Having a Dirichlet

distribution as the output of a classifier instead of a single

softmax output, we can exploit the uncertainty of the predic-

tive categorical distribution to avoid making possibly wrong

decisions based on vague predictions. In the next section, we

describe how to predict parameters of Dirichlet distributions

for classification.

2.3. Learning to Predict Evidence

We predict a Dirichlet distribution for each sample. The

predicted Dirichlet distribution represents both the predictive

categorical distribution and its uncertainty in a principled

way. Let fθ(·) be the output of the penultimate layer (i.e.,

logits layer) of any neural network for classification with

arbitrary architecture, i.e., z = fθ(x). Instead of using

softmax(fθ(x)) to predict a single categorical distribution

for the sample x, we propose to use another activation func-

tion a(·) to calculate ĉθ(x) = a(fθ(x)), which will then be

interpreted as evidence to update the prior counts. For any

input −∞ < zi < ∞, this activation function should take

values 0 < a(zi) < ∞. We used the exponential function,

i.e., a(zi) = ezi ; however, others such as the softplus func-

tion log(ezi + 1) can also be used. For any input sample x,

having total predicted evidence very close to zero implies

that the resulting distribution p(π|ĉθ(x),β) is very simi-

lar to the uniform Dirichlet distribution, so we have a very

uncertain predictive categorical distribution for the sample.

We can use maximum likelihood estimation (MLE) to

train the neural network to predict an evidence vector for

each sample x. For this purpose, we select a base loss func-

tion Lbase(y|π) conditioned on the latent categorical distri-

bution π; then, we calculate the overall loss by aggregating

individual sample losses and marginalising out the latent π

values using the predicted Dirichlet distributions,

L(θ) =
∑

〈x,y〉∈D

Ep(π|ĉθ(x),β)[Lbase(y|π)].

If the cross-entropy is used, then Lbase(y|π) = − log πy and

L(θ) =
∑

〈x,y〉∈D

[

ψ
(

K∑

i=1

(
ĉθi(x) + 1

))
− ψ

(
ĉθy(x) + 1

)]

(1)

where ψ is the digamma function [18]. Without any regu-

larisation, the network may generate high pseudocounts to

maximize the likelihood. We prevent this during training by

encouraging the network to reduce the counts for incorrect

categories via an additional loss term. This loss term uses

the Kullback–Leibler (KL) divergence between the predicted

Dirichlet distribution and a target (or desirable) Dirichlet dis-

tribution. This target distribution agrees with the predicted

Dirichlet distribution for the correct category, but places zero
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evidence in all other categories. For a sample x and its label

y, the regularization term is written as

KL[p(π|ĉθ(x) + 1) ‖ p(π|ĉθ(x)⊙ hot(y) + 1)],

where hot(·) is the one-hot encoding function for K cat-

egories, ⊙ represents element-wise product, and ĉθ(x) ⊙
hot(y) + 1 are the parameters of the target distribution.

2.4. Decision Making under Uncertainty

Agents usually use classifiers when they need to choose

one option among several alternatives during decision mak-

ing. Pignistic probabilities have been introduced in decision

theory to represent the probability that a rational agent will

choose a particular option when it is required to make a

decision. The pignistic probabilities p = [p1, . . . , pK ] are

mathematically equivalent to the Shapley value in game

theory [3] and inherently incorporate the decision maker’s

uncertainty when choosing one of K options (i.e., the uncer-

tainty related to π) and the incurred risk of choosing each

one. Hence, while calculating the expected risk of choosing

one category as the label of a sample, the pignistic probabili-

ties (p) replace the categorical probabilities (π) to account

for the risk of misclassification. In the settings where there is

no risk for misclassification or each misclassification has the

same risk, p should be equal to π. However, in our setting,

we have an explicit risk matrix, which may lead to some

divergence between these two probabilities.

We choose to model the pignistic probabilities for the

classification of the sample x as a Dirichlet distribution

qθ(p|x) = Dirichlet(p|ĉθ(x) + γθ(x)),

where we replace the prior β by γθ(x). This is the prior

count for the pignistic probabilities for the sample and is a

function of x. The reason we do this is to model the fact

that the risk of misclassification may change from sample

to sample (e.g., based on its true category). By doing so,

we let the neural network learn the less risky categories and

increase its prior count through the softmax output.

The term has the form γθ(x) = Ksoftmax(Wf ′
θ(x) +

b), which is a per-sample redistribution of uniform prior

counts over K categories. W and b are additional weight

and bias variables, respectively, to calculate γθ(x) based on

f ′
θ(x), which represents the input of the logits layer of the

neural network. Note that we still have
∑

i γθi(x) = K.

Hence, the total prior counts for the pignistic probabilities p

is same as that of the categorical probabilities π. This allows

us to keep the evidence predicted by the network for the

categorical probabilities (i.e., ĉθ(x)) to be commensurate

with the prior counts for the pignistic probabilities. Figure 4

overviews the network architecture used in our approach.

Figure 1(d) shows the resulting Dirichlet distribution after

redistributing the counts in the uniform Dirichlet distribution

in Figure 1(a), using [0.033, 0.3, 0.667] as the softmax out-

put to calculate γθ(x). The resulting Dirichlet distribution

generates almost no probability mass for the first category

while placing more probability mass on the third category.

This is a desired prior for the pignistic probabilities of a sam-

ple if the misclassification risk for the sample is inversely

proportional to the redistributed counts.

Given its pignistic probabilities, the average risk of mis-

classifying x from category y is risk(x) =
∑K

i=1Ryipi,
where Ryi indicates the risk or cost of misclassifying a

sample from category y to the category i. These risk val-

ues are stored in an asymetric non-negative square matrix

R ∈ [0,∞)K×K such that Ryi ≥ Ryy = 0. We can in-

tegrate out the pignistic probabilities using their Dirichlet

distribution parametrized by α with αi = ĉθi(x) + γθi(x),
to compute the expected risk

E[risk(x)] = Eqθ(p|x)

[
Ei∼p[Ryi]

]
=

∑K

i=1Ryi(ĉθi(x) + γθi(x))

K +
∑K

j=1 ĉθj(x)

To minimize the risk of misclassification and increase the un-

certainty for the misclassified samples, we combine the loss

introduced before with the expected risk of misclassification

Ltotal(θ) =
∑

〈x,y〉∈D

[

ψ
(

K∑

i=1

(
ĉθi(x) + 1

))
− ψ

(
ĉθy(x) + 1

)

+ KL[p(π|ĉθ(x) + 1) ‖ p(π|ĉθ(x)⊙ hot(y) + 1)]

+ κ

K∑

i=1

(
Ryiĉθi(x)
︸ ︷︷ ︸

(1)

+Ryiγθi(x)
︸ ︷︷ ︸

(2)

)]

, (2)

where κ ∈ [0, 1] is the weight of the expected risk in the

loss. In this loss, we neglect the denominator of the expected

risk to prevent the neural network from producing high ev-

idence for less risky categories when it cannot predict the

correct category. By excluding the denominator in the loss,

the term (1) in Equation 2 acts as a risk-based regularizer for

the generated evidence. During training, it regularizes the

evidence and discourages network to reduce the expected

risk by generating evidence for less risky wrong categories.

This is similar to learning evidence using maximum a pos-

teriori (MAP), instead of maximum likelihood estimation.

Furthermore, the term (2) in the loss serves as an objective

to optimize prior counts for the pignistic probabilities, which

influence classification decisions only when the total evi-

dence is very low, so the predictive uncertainty is high. Note

that the evidence regularization in the total loss is distinct

from L1 or L2 regularization methods, which are used to

regularize network parameters, not to directly regularize the

output of the network. Through the redistributed prior counts

of the pignistic probabilities, the loss function reduces the

expected risk for misclassification when π is highly uncer-

tain. If the categorical probabilities were used to calculate
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the risk of misclassification, the expected risk in the loss

would encourage more evidence for the wrong categories

with lower risk to reduce the expected risk when the correct

category cannot be predicted correctly. However, the formu-

lation of pignistic probabilities encourages zero evidence for

the wrong categories if the redistributed prior counts reduce

the expected risk sufficiently.

3. Evaluation

In this section, we evaluate how agents may use our ap-

proach (i) to minimize their risk when making classification

decisions based on the predictions of deep neural networks

and (ii) to determine if these predictions are wrong based on

their uncertainty. For this purpose, we use the LeNet5 neural

network architecture [13] with three well-known datasets:

MNIST1, FashionMNIST2, and CIFAR103.

Our approach is very general and can be used for an

arbitrary deep neural network for classification. However,

in our evaluations, we choose LeNet5 as a neural network

architecture, because it has been used as a benchmark re-

cently to evaluate uncertainty quantification in deep neural

networks [18, 14]. It is a simple convolutional neural net-

work architecture, which cannot achieve the state-of-the-art

performance in terms of accuracy. It fits very well to our

purpose, since we aim to analyse classification errors of neu-

ral networks in our evaluations. We desire to equip even

simple neural networks with the ability of estimating their

uncertainty when making mistakes and choosing less risky

categories when they are uncertain. The configuration of the

network architecture used for MNIST and FashionMNIST

is presented in Table 1. For CIFAR10, we used the same

architecture with 192 filters for Conv1 and Conv2, and 1000
neurons in FC1 as described in [14]. We used L2 regulariza-

tion coefficient 0.005 in the fully-connected (FC) layers.

We compare our approach with three approaches: (i)

standard learning uses cross-entropy loss; (ii) cost-sensitive

learning [9] incorporates the risk matrix into the standard

loss to minimize the cost of misclassifications; and (iii) evi-

dential deep learning (EDL) [18] uses the regularized loss in

Equation 1. Let us note that [18] introduces three different

loss functions while we use only one of them in this work.

Other loss functions in [18] can also be incorporated with

our approach. We name our model as risk-calibrated evi-

dential deep learning, which is referred to as Risk EDL. It

uses the expectation of the predicted Dirichlet distribution

for pignistic probabilities, i.e., qθ(p|x), as the predictive dis-

tribution for classification. All these models uses the same

LeNet5 architecture, but with different loss functions.

In our experiments, we used two different matrices for R

1In MNIST, samples are 28× 28 images of handwritten digits 0− 9.
2FashionMNIST similar to MNIST but contains fashion products.
3In CIFAR10, samples are low-resolution images of 10 animal and

vehicle categories.

Table 1. LeNet5 architecture for MNIST and FashionMNIST.

Layer Filters/Neurons Patch Size Stride Activation

Conv1 20 5 × 5 1 ReLU

Max Pool — 2 × 2 2 —

Conv2 50 5 × 5 1 ReLU

Max Pool — 2 × 2 2 —

FC1 500 — — ReLU

FC2 10 — — —

Table 2. Misclassification cost

Model MNIST Fashion CIFAR10

Cross-entropy 11.16 8.42 5.8

Cost-sensitive 5.9 6.1 4.7

EDL 11.0 10.04 6.1

Risk EDL 3.44 3.48 3.54

as shown in Figure 3 (a) and (d), and set κ = 1/max(R).
For MNIST and FashionMNIST, we used the category in-

dices to create the risk matrix. Let i refers to the true category

index of a sample and j refers to the index of the predicted

category for the sample. We set R[i, j] = (i− j)
2

if j > i;
otherwise, it is set to i − j. For MNIST, this risk matrix

implies that overestimating the value of the digit in an image

incurs much higher cost than under estimating it. For CI-

FAR10, we divided the categories into two groups: animals

and vehicles. In this case, we set R[i, j] = 1 if i and j are

from the same group. If the true index i is animal, but the

predicted index j is not, we set R[i, j] = 10; otherwise, we

set it to 50 as shown in Figure 3(d).

MNIST and FashionMNIST datasets contain 60000 and

10000 training and test samples, respectively, while the num-

ber of training and test samples are 50000 and 10000 for

CIFAR10 dataset. We train the models for 50 epochs and

evaluated the trained models using the test samples. Table 2

and 3 present our results for the average misclassification

cost and accuracy on the test samples, respectively. Our

results indicates that cost-sensitive training achieves lower

misclassification cost than standard or evidential deep learn-

ing. This is reasonable, since these methods do not consider

the risk matrix during training. Our model achieves signif-

icantly lower misclassification cost than the cost-sensitive

training, while also enhancing the accuracy of the model

on the test samples in all datasets. That is, when compared

with cost-sensitive training, our approach reduces the cost

of misclassification by 42%, 43%, and 25%, for MNIST,

FashionMNIST, and CIFAR10, respectively.

An important problem that should also be addressed is

the detection of misclassified samples. If an agent can detect

misleading classification predictions of a classifier (instead

of blindly following these predictions), it can actively reduce

the cost of misclassification by avoiding making classifica-

tion decisions when possible. In the literature, for uncertainty

quantification of deep classifiers [14], the entropy of their
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(a) MNIST risk mat. (b) MNIST misclas. % (c) FashionMNIST misclas.% (d) CIFAR10 risk mat. (e) CIFAR10 misclas.%

Figure 3. The risk matrices in the experiments and the percentage of misclassification for each category for the proposed approach.

Network Layer

Logits Layer

Network Layer

Network Layer

Evidence Pignistic prior
counts

Input Layer

Network Layer

Figure 4. The network architecture of the proposed approach.

(a) MNIST ROC (b) MNIST PR

(c) FashionMNIST ROC (d) FashionMNIST PR

(e) CIFAR10 ROC (f) CIFAR10 PR

Figure 5. ROC and PR curves for misclassification detection.

prediction are used as a proxy for their uncertainty. This

metric for uncertainty is very general and can be used for

any neural network, which provides a predictive categorical

distribution for classification. Hence, to be able to compare

them fairly, we also evaluate different approaches using the

entropy of their predictions and measure how well we can

separate the misclassified and correctly classified samples

using the entropy. Ideally, when it is unable to correctly

Table 3. Test accuracy

Model MNIST Fashion CIFAR10

Cross-entropy 99.0 90.0 73.0

Cost-sensitive 99.1 90.0 73.1

EDL 98.8 89.4 73.6

Risk EDL 99.3 91.3 75.0

Table 4. Misclass. (PR AUC)

Model MNIST Fashion CIFAR10

Cross-entropy 0.938 0.79 0.71

Cost-sensitive 0.942 0.83 0.69

EDL 0.967 0.87 0.76

Risk EDL 0.992 0.92 0.85

Table 5. Misclass. (ROC AUC)

Model MNIST Fashion CIFAR10

Cross-entropy 0.945 0.82 0.71

Cost-sensitive 0.945 0.85 0.71

EDL 0.979 0.90 0.81

Risk EDL 0.996 0.94 0.85

classify a sample, a model should say I do not know by pro-

viding a very uncertain prediction (i.e., a prediction with

maximum entropy). We used the area under the Precision-

Recall (PR) and Receiver Operating Characteristic (ROC)

curves4 to measure the successful detection of misclassified

samples using the entropy of predictions for these samples.

Figure 5 shows PR and ROC curves for misclassification de-

tection. The area under curve (AUC) for PR and ROC curves

are presented in Table 4 and 5 and indicate that our approach

allows much better misclassification detection and separa-

tion of misclassified samples from others for all datasets.

Figure 3 (b) and (c) demonstrate misclassification ma-

trices of our approach for the MNIST and FashionMNIST

datasets. The rows of this matrix represent the true category

indices and columns represent indices of the predicted cate-

4ROC curves are not suitable for analysing imbalanced data. That is

why we used oversampling to balance the data before computing the ROC

curves.
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Table 6. OoD (PR AUC)

Model MNIST Fashion CIFAR10

Cross-entropy 0.975 0.77 0.76

Cost-sensitive 0.965 0.80 0.76

EDL 0.970 0.91 0.98

Risk EDL 0.993 0.97 0.98

Table 7. OoD (ROC AUC)

Model MNIST Fashion CIFAR10

Cross-entropy 0.972 0.78 0.78

Cost-sensitive 0.961 0.81 0.78

EDL 0.97 0.89 0.99

Risk EDL 0.993 0.96 0.99

gories. The value at index [i, j] represents what percentage

of the misclassified samples from category i are predicted

as belong to category j. Similarly, Figure 3 (e) represents

the misclassification matrix for CIFAR10. These matrices

indicate how our approach avoid classifying samples to high-

risk categories and explain lower cost of misclassification

for our approach.

Recent studies indicate that deep classifiers are very vul-

nerable to out-of-distribution (OoD) samples [7]. In other

words, the deep classifiers are usually very confident when

they classify samples that are not from their training set dis-

tribution. Ideally, classifiers should give a very uncertain pre-

diction in such settings. If the entropy is taken as a measure

of uncertainty, their predictions should be a uniform proba-

bility distribution over possible categories, which indicates

highest predictive uncertainty. To evaluate our approach for

the predictive uncertainty for OoD samples, we use samples

from the notMNIST and CIFAR100 datasets. The notM-

NIST dataset [14] contains images of letters from A to J on

various typefaces. It is used to evaluate classifiers trained

with MNIST and FashionMNIST datasets. CIFAR100 con-

tains images similar to images from CIFAR10, but from 100
different categories. We used it to evaluate classifiers trained

with CIFAR10 dataset. Figure 6 shows the empirical entropy

CDF of the predictions for the OoD samples for each dataset.

An ideal classifier should give the near maximum entropy

predictions for OoD samples, so the entropy CDF curve

should be very close to the bottom right corner. The figure

indicates that our approach is closer to the ideal; the entropy

of its predictions for OoD samples are much more closer to

the maximum entropy than others.

We also compare the uncertainty of in- and out-of-

distribution samples to see how easy to separate these two

using only the predictive uncertainty. For this purpose, we

use predictions for the correctly classified samples from the

training distribution, i.e., in-distribution samples, and predic-

tions for the OoD samples. We calculate their entropy and

use the PR and ROC curves to see how easy to separate these

two using only the entropy of predictions. Our results are

shown in Figure 7, which clearly indicates that our approach

allows much better separation between in-distribution and

out-of-distribution samples using the predictive uncertainty.

We also summarized our results also in Table 6 and 7 for all

datasets.

In this section, we evaluated our approach and showed

that (i) it allows an agent to minimize the cost of misclassifi-

cation by learning and exploiting pignistic probability distri-

butions, and (ii) it allows an agent to detect misclassified and

out-of-distribution samples through predictive uncertainty.

4. Related Work

Machine learning and especially classifiers are frequently

used in different fields and applications of autonomous and

multiagent systems. Deep neural networks and deep learn-

ing in general are becoming a fundamental component in

intelligent systems and already deployed in autonomous sys-

tems such as self-driving vehicles. However, recent studies

indicates that these methods are very confident when they do

mistakes and fail severely when exposed to input different

from what they are trained for. That is why uncertainty quan-

tification in deep learning stands as an important problem.

Bayesian deep learning [14, 8, 5, 12, 17] has emerged as

a field combining deep neural networks with Bayesian prob-

ability theory, which provides a principled way of modelling

uncertainty of machine learning models by employing prior

distribution on their parameters and inferring the posterior

distribution for these parameters using approximations such

as Variational Bayes [1, 5, 19]. Then, the posterior predic-

tive distribution is approximated with sampling methods,

which brings a significant computational overhead and leads

to noise in predictive uncertainty estimates. In these models,

predictive uncertainty is modelled by taking samples from

the posterior distributions of model parameters and using the

sampled parameters to create a distribution of predictions

for each input of the network. However, modelling uncer-

tainty of network parameters may not necessarily lead to

good estimates of the predictive uncertainty of networks [6].

Recently, a number of approaches, such as evidential

deep learning [18], have been proposed to use the outputs

of neural networks to estimate the parameters of Dirichlet

distributions for classification; instead of predicting a cate-

gorical distribution through the softmax function. Then, the

resulting Dirichlet distribution is used to calculate the pre-

dictive uncertainty for classification. These approaches are

more practical since they do not require sampling methods

and are easier to implement, but also disregard the different

risk of misclassification for different categories. In this pa-

per, we extend evidential deep learning by incorporating the

risk of misclassification into its loss function in a principled

way. We use the risk of incorrectly classifying samples from
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(a) MNIST (b) FashionMNIST (c) CIFAR10
Figure 6. Empirical entropy CDFs of the predictions for the out-of-distributions samples.

(a) MNIST ROC (b) MNIST PR

(c) FashionMNIST ROC (d) FashionMNIST PR

(e) CIFAR10 ROC (f) CIFAR10 PR

Figure 7. ROC and PR curves for out-of-distribution detection.

a category to regularize the generated evidence and avoid

fictitious evidence.

Cost-sensitive learning aims training models for the set-

tings where different misclassification errors incur differ-

ent penalties [4, 11]. The standard learning techniques try

to achieve high classification accuracy while cost-sensitive

learning has a joint objective of minimizing the cost of mis-

classification in addition to achieving high accuracy. Inte-

gration of cost-sensitive learning with deep neural networks

for classification has not been studied well. Chung et al. has

extended this approach for deep neural networks to create

cost-sensitive deep classifiers [2]. Khan et al. proposed to

incorporate cost (or risk) of misclassification directly to the

cross-entropy loss by weighting the terms in the softmax

function using the entries from the risk matrix [9]. None

of these methods consider the uncertainty of classification

predictions. On the other hand, in this paper, we do not

only decrease the overall cost of incorrect predictions, but

also increase the uncertainty of wrong predictions so that

these predictions can easily be discriminated from the correct

predictions. Hence, our approach allows a more accurate

detection of classification errors and creates an opportunity

for avoiding their undesirable consequences.

We would like to extend our approach in future to en-

hance robustness of neural networks against adversarial per-

turbations, which are engineered to result in the maximum

damage through misclassification of samples into high-risk

categories. Recently, Zhang et al. proposed to combine

certified robustness against adversarial examples with the

risk of misclassification [20] and compared it with cost-

sensitive learning of [9] as we do. Certified robustness used

in their work is based on linear programming and guaran-

tees that small perturbations of samples will not change the

predictions of their categories. However, it is applicable

only to very simple neural network architectures and low-

dimensional classification tasks.

5. Conclusions

As a result of striking success of deep learning in re-

cent years, deep classifiers are now an indispensable part

of autonomous systems. However, these black-box models

may be very confident when their predictions are wrong

and lead agents to make mistakes in their decisions. Fur-

thermore, standard training of deep models neglects that

different mistakes involve in different level of risk for the

agents depending them. In this paper, we significantly ex-

tend the evidential deep learning to address this problem.

Our approach allows agents to incorporate their own risk for

classification mistakes into the training of evidential classi-

fiers [18]. By incorporating the notion of risk and pignistic

probabilities into the loss function, our approach improves

the uncertainty quantification of evidential networks and, at

the same time, significantly minimizes the cost of misclassi-

fication for autonomous agents.
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