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Can you guess these actions? “yawning”, “sneezing” or “crying”? Temporal information is essential to discriminate

some actions, while for others it is redundant. Shuffling frames in time removes temporal information, revealing the actions

where it actually matters. (Solution at the end of the paper.)

Abstract

Understanding temporal information and how the visual

world changes over time, is a fundamental ability of intelli-

gent systems. In video understanding, temporal information

is at the core of many current challenges, including com-

pression, efficient inference, motion estimation or summa-

rization. However, in current video datasets it has been ob-

served that action classes can often be recognized without

any temporal information, from a single frame of video. As

a result, both benchmarking and training in these datasets

may give an unintentional advantage to models with strong

image understanding capabilities, as opposed to those with

strong temporal understanding. In other words, current

datasets may not reward good temporal understanding, po-

tentially hindering progress. In this paper we address this

problem head on by identifying action classes where tempo-

ral information is actually necessary to recognize them and

call these “temporal classes”. Selecting temporal classes

using a computational method would bias the process. In-

stead, we propose a methodology based on a simple and

effective human annotation experiment. We remove just the

temporal information, by shuffling frames in time, and mea-

sure if the action can still be recognized. Classes that can-

not be recognized when frames are not in order, are included

in the temporal set. We observe that this set is statistically

different from other static classes, and that performance in

it correlates with a network’s ability to capture temporal in-

formation. Thus we use it as a benchmark on current popu-

lar networks, which reveals a series of interesting facts, like

inflated convolutions bias networks towards classes where

motion is not important. We also explore the effect of train-

ing on the temporal set, and observe that this leads to better

generalization in unseen classes, demonstrating the need

for more temporal data. We hope that the proposed dataset

of temporal categories will help guide future research in

temporal modeling for better video understanding.

1. Introduction

Temporal information has been shown to be important

for recognition. In the biological setting, Johansson’s point-

light experiments [18] show that moving dots alone contain

enough information to understand actions, when the points-

lights are placed at the joints. Similarly, Heider and Sim-

mel [11] find that simple figures (like squares or triangles)

in motion can convey rich story information, including in-

tention and emotions like anger, joy. Fig. 1(a) shows two

frames from these experiments; neither the action nor a

story can be recognized easily in the absence of temporal

information.

In computational settings, temporal features (optical

flow, spatio-temporal convolutions, or both) have been

shown to be useful for video understanding. For some

datasets and models, using optical flow as input actually
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yields higher accuracy than using RGB images [32, 3, 36].

However, a single image is often informative enough to pre-

dict the label with good confidence. This leads to the ques-

tion when do we need temporal information to understand

an action? Fig. 1(b) shows some examples from Kinet-

ics [20], where the action class is easy to guess. Further-

more, in recent two-stream models such as I3D [3] fusing

the predictions of the stream operating on optical flow (the

temporal stream) to that operating on RGB frames (the spa-

tial stream) produces rather small gains. Do these observa-

tions mean that given the image content, motion informa-

tion is redundant?

We argue that actually these observations do not reflect

the importance of motion in video understanding, but rather

the distribution of categories in some of the video datasets.

Based on this hypothesis, we propose to examine some of

the most widely used datasets, and identify classes where

temporal information is necessary to recognize them. We

call these “temporal classes.” Our analysis is based on hu-

man perception rather than on the performance of compu-

tational models as we do not want to tie the definition of

temporal categories to a specific model’s performance. In

particular, given a collection of videos , we compare hu-

man performance on a video with shuffled frames and on

the same video with the original ordering of frames. We

use this difference as a cue for how necessary temporal in-

formation is to recognize a class. We then select the classes

where this difference is largest. We use these categories as a

benchmark to measure how well different architectures per-

form. Our analyses provides interesting observations such

as that the ranking of models on the temporal classes is dif-

ferent compared to that on the full datasets and that tempo-

ral models trained on temporal classes have stronger gener-

alization performance. In summary, we make the following

contributions:

• A methodology to discover the importance of temporal

information in action classes based on human percep-

tion. This allows us to untie the definition of temporal

relevance from the performance of existing computa-

tional methods.

• The temporal set of classes, resulting from using our

proposed methodology on current video classification

datasets. We identify the set of categories containing

more temporal information and what they have in com-

mon, and examine their computational properties. We

will release all of the collected human judgments for

further analysis by the community.

• We benchmark current video models, and observe that

the ranking changes with the inclusion or omission

of temporal categories, revealing hidden biases and

strengths. This also suggests that the distribution of

(a) Temporal task.

(b) Static task.

Figure 1. The relevance of temporal information varies vastly

by task. In one end of the spectrum (a) shows sample frames from

Heider and Simmel [11] (left) and Johansson [18] (right). Images

alone do not give much information, but when the video is played,

an action or a even a story comes to life. These experiments high-

light the richness of temporal information in visual understanding.

At the other end (b) shows sample frames from Kinetics. It is easy

to map images to playing trumpet, brushing teeth, washing dishes,

drinking beer, playing violin, windsurfing, bowling. In this task,

temporal information is completely redundant.

the videos in the temporal categories actually has dif-

ferent structure.

• We use the temporal categories for training temporal

models. We observe that training on the temporal set

produces stronger temporal features. We also observe

that training on this dataset leads to a better ability to

generalize in the transfer learning setting of training on

“seen” categories and testing on “unseen” categories.

We hope that our proposed “meta-dataset” of temporal cate-

gories will help guide future research in temporal modeling

for better video understanding.

2. Related Work

Temporal Modeling. Over the last years video un-

derstanding has made rapid progress. While modeling

spatial information on videos has largely been addressed

leveraging advancements in image understanding methods,

modeling temporal information has sprouted new and

creative techniques. These techniques can be broadly

categorized in three families: two-stream, temporal con-

volutions, and recurrent methods. The first, pioneered by
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Simonyan and Zisserman [32], consists on having two

parallel networks: the spatial stream aimed at modeling

image content, which takes RGB as input, and a temporal

stream aimed at modeling motion content, which takes

a small number of neighboring flow fields as input. The

predictions of the two streams are combined at the end.

Different variants of this general framework arise using

different architectures for the streams [37, 8]. These

techniques are described as frame-based, since they do

not explicitly model inter-frame information. Temporal

convolution methods [35, 36, 38, 25, 14] extend the success

of 2D convolutions in image understanding to include con-

volutions across frames that are adjacent in time. Recently,

TSM [24] augments 2D CNN with temporal shift modules

to achieve temporal modeling. Finally, recurrent convo-

lutional networks [34, 39, 6] and relational networks [41]

have been used for learning video representations across

multiple clips, most often by applying a 2D CNN as a

feature extractor on the individual frames/segments and

using a recurrent or relational network on the CNN features

to model temporal information. Some of the latest methods

combine the two-stream with the temporal convolution

approach, like I3D [3]. In this paper we will focus on

this hybrid family of methods, that include two streams

and temporal convolutions, since they will allow us to

experiment and compare the impact of testing and training

on temporal data when using flow vs using images, and

using frame-based models vs using temporal convolutions.

Video Datasets. Progress in video understanding has been

greatly propelled by the growth of video datasets in data

scale and richness of taxonomy. Two of the first datasets

in this area were UCF-101 [33], HMDB-51 [22], which

have been widely studied since the early 2010’s. These are

single-label videos of human actions in 101 classes and 51

classes, respectively. The first large-scale dataset to appear

was Sports-1M [19], which provides 1M videos of sport ac-

tions in 487 classes. Although the labels are predicted by

tagging algorithms and thus noisy, Sports-1M has consis-

tently improved the quality of models pre-trained on it. In

the last few years, researchers have pushed video classifi-

cation to more challenging scenarios by using human an-

notation to collect large-scale datasets with different char-

acteristics. For example, the Something-Something [12]

dataset contains categories of generic actions independent

of objects, with the goal of obtaining models that reason

over physical aspects of actions and scenes as opposed to

high-level action concepts. Kinetics [20] includes 400 cate-

gories of human actions in different environments, combin-

ing the success case of UCF101 with large-scale. Moments-

In-Time dataset [27] contains 1M short videos correspond-

ing to over 300 event classes. Unlike past datasets that fo-

cus on third person videos, Charades [31] focuses on ego-

centric first-person videos that happen around the house.

These datasets are often created by first deciding on a tax-

onomy of classes and then looking for videos containing

instances of such classes, or recording them [27]. This pro-

cess may bias the distribution of videos based on the search

engine, and thus SOA [28] proposes a dataset where the

videos are chosen first, and then labeled using the taxon-

omy of classes that naturally arises. While this is a more

resource intensive labeling process, it yields videos often

with multiple labels, and datasets with less biased label

taxonomy. Other recent datasets also extend the types of

video tasks to action localization(e.g. THUMOS 14 [17],

ActivityNet [2], AVA [13], HACS [40]), video object detec-

tion (e.g. VLOG [10]), action sequence classification [23],

and video prediction (e.g. Epic-kitchens [5]). Despite the

tremendous efforts of dataset collection, it is not well stud-

ied yet what action classes substantially require temporal

modeling to recognize as opposed to still appearance mod-

eling.

Temporal Ordering and Frame Shuffling. Temporal or-

dering in the video is arguably important for video under-

standing. A rich set of methods have explicitly exploited it

for video recognition, including ranking pooling [9, 4], and

RNN-based methods [7, 34]. Furthermore, Misra et al. [26]

use it as a self-supervised task to learn better temporal mod-

els, where a network is trained to predict the original order-

ing of a shuffled set of frames. Other recent work has ex-

plored the effect of shuffling to measure the robustness of a

network to temporal disarray [30, 16], observing that even

networks using temporal convolutions can be surprisingly

insensitive to shuffling frames within clips. Finally, percep-

tual studies also have investigated the effect of shuffling in

space and time [21]. In contrast, in this work, we conduct a

human perception study, and use frame shuffling to identify

action classes where the action recognition performance of

human is substantially compromised by the randomly shuf-

fled temporal ordering.

3. Discovering Temporal Classes

In this section we describe the process to discover the

categories for which temporal information is important,

which will be part of the temporal set of classes. We first

describe the perceptual test in detail and then discuss our

findings.

3.1. Perceptual Test to Discover Temporal Classes

Motivation. How can we measure if temporal information

is necessary to identify an action in a video? We could,

for example, compare the accuracy of a method using the

entire video as input to the accuracy using a single frame.

However, going from the full video to a single frame

eliminates not only the temporal information, but also some
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appearance information, since we would be excluding most

of the frames. Further, recent studies have shown [16] that

some frames make recognition easier than others, raising a

more complicated “frame selection problem”. Instead we

maintain all image information and remove all temporal

information by shuffling frames in time, using the resulting

video as input. We could choose an action recognition net-

work and observe the performance drop with and without

temporal shuffling. However, this approach would tie the

selection of temporal classes to a specific computational

model. This is risky for two reasons. First, it conflates the

inherent complexity of identifying a class and the temporal

information. Second, we do not know the architecture’s

ability to represent temporal information in the first place.

Our intent here is not to find classes where a specific model

does poorly, but to define a “meta-dataset” of temporal

classes that will spur innovation in temporal modeling.

Based on these arguments we propose to show the shuffled

videos to human subjects and define temporal relevance of

a class based on the drop in accuracy in human recognition

performance when the video frames are shuffled in time.

Stimuli. We empirically found that watching videos

where frames are shuffled in time can be discomforting.

It is hard for humans to attend to so much change in the

scene. Even if we slow down the frame rate there is a

fundamental problem: we are simply replacing the true

temporal information with random temporal information;

the human perceptual system will still attempt to connect

the frames in time. For this reason we render the video

on a canvas containing space for two frames side by

side. At any time we black out one half (either the left

or the right half) of the canvas and render the current

frame in the other half. The next frame is then shown in

the half that was previously blacked out. This left-right

alternation eliminates any perception of motion (real or

random), producing a slide-show effect where image in-

formation is retained but temporal information is removed.

Video examples are included in the supplementary material.

Task. Action recognition networks are typically trained for

multi-class classification, where given an input video, they

classify the action in it. Ideally we would like to expose

human annotators to the exact same task. However, this

is difficult in practice, since the number of classes is in

the order of hundreds. Annotators would have a hard time

remembering all the classes in the taxonomy. Another

option is to ask the binary question “is X action happening

in this video?”. The problem there is that we only have

positive examples, and generating compelling negative

examples is not trivial. Instead, for each video we show

as possible answers only classes within a semantic group.

For example, if a video has the label “barbecueing”, then

we will show as possible answers other cooking categories,

which includes classes like “making a sandwich”, since

they are more likely to be visually similar. 1 This restricts

the options that we give to the annotator, from the order of

hundreds to 5-15 options. While this may be considered

making the task easier, in practice it would be rare that

categories across groups would be accidentally mistaken

for each other.

Datasets. We discover temporal classes from the most

relevant action classification datasets. We use Kinetics [20]

(400 classes, 290K videos), for being the most widely used

set. We also use Something-Something [12] (174 classes,

100K videos) because it was specifically designed to be

action-centered and independent of the objects appearing in

the scene which makes it particularly relevant to our study.

Selection of Temporal Classes. We show between 15 and

30 videos per class to a set of 20 different human annotators.

For each class i we compute the average accuracy of the an-

notators when they see the videos shuffled Accs(i) and for

the control Accc(i), when the videos are not shuffled. We

select the groups where the control accuracy is larger than

70% (e.g., the classes names are sufficiently clear) and the

drop in accuracy Accc(i)− Accs(i) is larger than a thresh-

old (40% in Kinetics, and 60% in Something-something,

since performance drops have different statistics). We also

include those action classes that have been the source of

confusion more than 20% of the times, since they are nec-

essary to actually observe the confusion (e.g. plugging and

unplugging, opening and closing, etc).

3.2. What Actions Actually Require Temporal In
formation?

In total, we discover 50 temporal classes, where 32

come from the Kinetics datasets and 18 from Something-

something. We call this subset the temporal set of classes.

The total amount of videos is 35,045, where 32,081 are for

training and 2,964 for testing.

In Table 1, we show the actions where accuracy drops

most when we remove temporal information, by group and

by class, respectively. As expected, temporal information

is more important when the scene or objects in are not dis-

criminative for the action recognition task, for example in

videos showing different forms of dancing, or different ski-

ing styles. These are classes where the background, cloth-

ing, and objects tend to be fairly constant across categories

or uninformative for action recognition. We also observe

that facial actions are particularly sensitive to frame shuf-

fling, making actions like yawning and sneezing difficult to

1These semantic groups are provided in the Kinetics dataset, but for the

Something-something dataset we design them manually, using the verb as

guidance.

538



Class Confused with ∇Acc (%)

Ski jump. Ski, Ski slal. 73.33

Play cards Shuffle cards 66.66

Ski crossc. Ski jump., Ski slal. 60.00

Drop kick Wrestle, High kick 60.00

Dance macar. Breakdance, Tap 60.00

Shake head Sneeze, Headbang 53.33

Sneeze Yawn, Blow nose 46.66

Table 1. What is motion for? Classes from the Kinetics dataset

where human recognition accuracy drops most when temporal in-

formation is removed.

Figure 2. Histogram of performance drop (%). Something-

Something contains more categories where temporal information

is necessary.

tell apart without temporal information.

Fig. 2 shows the histogram of performance drop of all

classes after temporal shuffling. The proportion of classes

that require temporal analysis is small for both datasets.

Something-Something shows a larger proportion of cate-

gories requiring temporal information for discrimination.

This is not surprising since this dataset was designed pre-

cisely to avoid strong correlations between object categories

and action classes. Perhaps what may be more surprising is

that still many of the classes in such dataset can be cor-

rectly identified from shuffled frames. This highlights the

need for the proposed methodology: it is difficult to design

a dataset of actions that require strong temporal modeling

for accurate recognition, while it is much easier to discover

temporal classes using our simple perceptual test.

4. Analysis of the Temporal Classes

4.1. Experimental Details

Datasets. We use two sets of classes in our experiments:

Temporal-50, which is the set of 50 temporal action classes

where performance decreases most. And Static-50, the

50 classes where human accuracy decreases least. Both

sets are measured in Sec. 3.2. The number of videos in

this set is comparable to that of Temporal-50. While there

is a larger portion of classes where accuracy decreases a

negligible amount, we choose 50 at random to keep the

number of classes and videos comparable to Temporal-50.

Note that both sets contain the same proportion of classes

from Kinetics, and Something-something, to factor out the

dataset bias component.

Architectures. We choose a suite of architectures that are

top-performing and most widely used. They include some

that use temporal information (e.g. through optical flow or

temporal convolution) and others that do not. In particular,

we use: R2D which is a frame-based model, that uses the

ResNet [15] architecture with 18 layers, and it is trained

with a cross-entropy loss; R3D [35] which is similar to

R2D, but instead of processing each frame separately it

includes convolutions in the temporal dimension; I3D [3]

which is also a 3D architecture, that extends inception to

use convolutions in the temporal dimension; and R(2+1)D

which is a recent architecture [36] that achieves state-of-

the-art accuracy. The main difference compared to R3D is

that R(2+1)D factors the 3D convolutions into 2D filters

in space and 1D filters in time. This separability helps the

optimization, making this the strongest of the models we

use.

Training and Evaluation Details. Unless otherwise spec-

ified, all training experiments are performed with the same

parameters: 75 epochs, from which 10 are warm-ups and

the remaining 65 follow a cosine function, where the base

learning rate is 0.0025 and gamma is 0.0001, on 4 GPUs

at a time. The batch size is 16. We use multiple crops of

size 112×112. All models are trained from scratch. Un-

less otherwise specified, the reported evaluation of models

is done using a clip size of 16 frames. We report only the

video-level top-1 accuracy in the main paper for brevity.

4.2. Computational Properties of Temporal Classes

In this section we perform a series of computational

sanity checks, that help validate the nature of the temporal

and static classes. This is, that temporal classes are actually

those where temporal information matters, and the static

classes those where temporal information is redundant. We

argue that a randomly chosen set of classes is very unlikely

to satisfy all our sanity checks.

Temporal and static classes are statistically different.

The first sanity check is to make sure that the behavior of

networks is different in the temporal and static classes in

a statistically significant manner. Given a network N , we

compute the per-class accuracy of the network AccN (i) of

all classes i. We now compute all accuracies of the classes

in the Temporal Dataset T , as A = {AccN (i) | i ∈ T}.

We also compute the accuracies in the Static Dataset S,

which is the set B = {AccN (i) | i ∈ S}. We use the

Kolmogorov-Smirnov test [1] to measure if A and B are

sampled from the same distribution, for multiple networks

N (R(2+1)D and R2D). We observe that the null hypothesis
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can be rejected with probability p < 0.1, suggesting that

the behavior of the networks on the datasets T and S

are sampled from different distributions. As a control

experiment, we randomly sample two sets T ′ and S′, and

observe that p > 0.4. We conclude that the behavior of

networks is statistically different in the temporal and static

classes.

A network’s ability to capture temporal information is

correlated with its accuracy in temporal classes. Recall

that one of our goals with the discovery of temporal classes

is to use it as a benchmark to measure a network’s abil-

ity to capture temporal information. In this sanity check

we use pairs of networks where we do know their relative

abilities to capture temporal information. In particular we

use the pair R2D and R(2+1)D, which are identical except

for the fact that R2D is frame-based and R(2+1)D includes

temporal convolutions. Thus it is safe to say that R(2+1)D

has a stronger ability to represent temporal information than

R2D. We also use the pair RGB and flow. If temporal

classes actually contain videos where temporal information

is necessary, we should observe that R(2+1)D has an advan-

tage over R2D on temporal classes, and so does using flow

as input over using RGB. Of course, R(2+1)D has larger

capacity, and it will typically always outperform R2D. We

use the accuracy on static classes to control for the capac-

ity of the networks, and measure the difference between the

accuracy in temporal and Static classes.

Results are shown in Fig. 3. The accuracy of the R2D

network using RGB as input is similar in temporal and static

classes (Fig. 3(a)). However, when we use the R(2+1)D

architecture, which adds temporal convolutions, the net-

work does better on temporal than static classes. This is

consistent with our hypothesis, that networks that model

temporal information better perform better in the tempo-

ral classes. Similarly, we observe better performance on

temporal classes when using flow as input, than when us-

ing RGB as input. This difference is more clearly observed

in Fig. 3(b), which shows the correlation between the net-

works’ ability to capture temporal information, and its gain

in temporal classes, as expected. At the same time, we do

not observe this pattern in the control experiment of sam-

pling subsets of classes at random. With this we conclude

that the relative gain in temporal classes compared to the

static classes is a good measure for evaluating a network’s

temporal capabilities.

5. Temporal Classes as a Benchmark

In this section we evaluate the ability to capture tempo-

ral information of a set of current state-of-the-art networks.

We propose to use two measurements, based on the exper-

iments of Sec. 4.2. The first measurement is the accuracy

on temporal classes. The second, is the relative gain in ac-

(a) Absolute Accuracy (%).

(b) Relative Accuracy (%).

Figure 3. The better a network represents temporal informa-

tion, the better it performs on temporal classes. R2D(RGB)

has similar performance in the temporal and static classes (a).

However, R(2+1)D(RGB) which adds temporal convolutions and

shows better performance on temporal than static classes. This is

consistent with our hypothesis, that temporal classes help identify

a network’s ability to model temporal information. This pattern is

consistent when we switch from RGB to Flow. This difference is

clearly observed in (b).

Figure 4. Relative Gain vs. Accuracy in Temporal Dataset. This

plot gives a more complete picture, since it contains both relative

and absolute accuracies.
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Network Input
Relative

Gain (∆%)

Traditional

Accuracy (%)

R2D RGB 1.13 41.14

R2D Flow 8.74 26.87

R(2+1)D RGB 4.21 56.01

R(2+1)D Flow 9.50 51.53

I3D RGB 3.60 57.37

I3D Flow 6.29 49.00

R3D RGB 5.19 56.40

R3D Flow 7.36 50.24

Table 2. Evaluation of popular action recognition networks.

The ranking of methods changes when we use the traditional score

and when we use the proposed temporal score.

curacy on temporal classes with respect to the accuracy on

static Dataset, as we have observed that it correlates with a

networks ability to represent temporal information.

We argue that these two measurements are complemen-

tary. While the first captures the actual ranking on the

dataset, this metric is influenced for example by the ca-

pacity of the network, i.e. a network may perform better

in this dataset simply because it is larger, but not necessar-

ily because the architecture represents temporal information

better. We try to account for this by using a second mea-

surement, which is the relative gain in accuracy on tempo-

ral classes with respect to the accuracy on static classes.

We compute the relative gain simply as the difference be-

tween the accuracy on temporal classes and static classes.

We compare to the traditional accuracy, computed as the

average per-class accuracy over all classes. Results of eval-

uating a suite of popular methods are shown in Table 2.

We make several observations. First, using optical flow

shows to be more useful. This reveals that the perception

that optical flow is not useful in recent datasets is more a

product of the task (i.e., solving Kinetics) than the true na-

ture of the visual world. Second, we observe that the top-

performing method (I3D) according to traditional accuracy,

scores poorly in the temporal score. This is possibly a direct

consequence of the training process using inflation based

on image filters learned from ImageNet. While this pro-

cess is useful for action recognition, it biases the network

to excel in static classes. Since R(2+1)D and R3D are not

pre-trained on Imagenet, their overall performance on the

datasets is lower, but they do shine on the temporal classes.

In Fig. 4 we show results of the two measurements together:

accuracy in temporal classes and relative gain. This figure

allows us to have a more complete picture, where both the

absolute and relative accuracies are represented.

Finally, for further analysis, in Fig. 5 we plot the ac-

curacy on temporal and static classes with respect to the

traditional accuracy. We observe that the accuracy on

static classes is rather correlated with the traditional accu-

Figure 5. Accuracy on Static and Temporal Classes vs. Tra-

ditional Accuracy. The top figure shows the accuracy of several

networks on the static classes with respect to the traditional ac-

curacy. It is obvious that these two measurements are very well

correlated, showing that most classes in current datasets are in fact

static. However, in the bottom figure we observe that accuracy in

the temporal classes is not as strongly correlated with the tradi-

tional accuracy, and in fact, it shows a “plateau” effect.

racy, showing that overall current datasets are dominated by

static classes. However, accuracy on temporal classes does

not follow such a strong correlation, and actually shows a

“plateau” effect on the accuracy on temporal classes. Note

that the difference in accuracy among models with flow in-

put is quite large, showing a strong ranking of about 3%

difference among R(2+1)D, R3D and I3D.

6. Effect of Training on Temporal Classes

We also explore the effect of training using temporal

classes. In particular, we are interested in observing the

behavior of the training in the absence of discriminative

image information. In principle, this should force the net-

work to learn stronger temporal features, which may help

generalization. For the experiments we use the R(2+1)D

architecture with RGB as input.

Training on Temporal Classes avoids image bias and

generalizes better. In this experiment we measure the
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Figure 6. Effect from training on temporal classes. (a) Learn-

ing from temporal classes generalizes better to unseen classes than

training on static classes. (b) Shuffling at test time has a much

stronger effect on networks trained on temporal classes.

ability of a network to generalize to unseen classes when the

network has been trained on temporal classes, and on static

classes. We take each of the two datasets, which contain

50 classes, and we train on 40 of them, and leave the other

10 as unseen classes to test. After training a network on 40

classes, we freeze all weights except for the last layer, which

we change to map to 10 classes, and we finetune it. Re-

sults are shown in Fig. 6 (a). We would expect that training

on temporal classes would be better for testing on temporal

classes, and that training on static would be better for test-

ing on static. However, we find that testing on static shows

on par performance for both training processes. We hypoth-

esize that in the absence of discriminative image cues, the

network cannot “cheat” and is forced to learn better tempo-

ral information, which is useful both for static and temporal

classes. More importantly, we find that training on temporal

performs much better testing on temporal, which shows the

need of temporal data to learn good temporal features.

For a set of videos of unseen classes, we plot the

activation maps [29] of the models trained on temporal and

static classes, in Fig. 7. We observe that the activation maps

of the model trained on temporal classes are much more

meaningful than those from the model trained on static

classes. The maps focus on the entire area where the action

is happening, presumably because the network focuses on

the motion, instead of the objects or scenes.

Figure 7. Meaningful activation maps from models trained on

static and temporal classes. Each column shows frames of a par-

ticular video, corresponding to the classes “country line dancing”,

“robot dancing” and “skiing (not slalom)”. The top row shows ac-

tivation maps from a network trained on static classes, while the

bottom row shows activation maps from a network trained on tem-

poral classes. Both are tested on unseen classes. We observe that

the activation maps from the network trained on temporal classes

are more meaningful and centered around the action, even though

these are unseen classes.

Training on Temporal Classes produces features more

sensitive to temporal changes. Shuffling frames at test

time has been noted to not harm performance dramati-

cally [30]. This observation reveals that features are not

very sensitive to changes in temporal structure. Does train-

ing on temporal classes produce more temporally-aware

features? We measure the effect of shuffling frames on net-

works trained on static and temporal classes. Results are

shown in Fig. 6 (b). We observe that the performance of a

network trained on temporal classes drops much more than

one trained on static classes. This is consistent both when

shuffling at video and clip level. We argue that training on

temporal classes leads to larger sensitivity to temporal or-

dering, and therefore stronger temporal features.

7. Conclusion

We have presented a methodology to discover the rele-

vance of temporal information in action classes based on

human perception. We use it to identify categories that

contain temporal information and we called them tempo-

ral classes. We use temporal classes to benchmark various

video models, revealing their abilities to model temporal in-

formation. We also use these classes for training and ob-

serve they boost accuracy on temporal categories, even on

unseen classes. We hope that the proposed meta-dataset of

temporal classes will help guide future research in temporal

modeling for better video understanding.2

2Answers to first page riddle: “yawning”.

542



References

[1] Kolmogorov–Smirnov Test, pages 283–287. Springer New

York, New York, NY, 2008.

[2] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video

benchmark for human activity understanding. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 961–970, 2015.

[3] João Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. 2017

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 4724–4733, 2017.

[4] Anoop Cherian, Basura Fernando, Mehrtash Harandi, and

Stephen Gould. Generalized rank pooling for activity recog-

nition. arXiv preprint arXiv, 170402112, 2017.

[5] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,

Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-

vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price,

and Michael Wray. Scaling egocentric vision: The epic-

kitchens dataset. In European Conference on Computer Vi-

sion (ECCV), 2018.

[6] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2625–2634, 2015.

[7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2625–2634, 2015.

[8] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 6202–6211, 2019.

[9] Basura Fernando, Efstratios Gavves, José Oramas, Amir
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