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Figure 1: Overview of AutoRetouch: (1) input portraits cropped to the head, (2) the images pass through the fully con-

volutional architecture of AutoRetouch, (3) the output portraits are retouched while preserving fine textures. (4) Sample

before-after patches scaled up. We empirically show that our final models have desirable generalization properties.

Abstract

Face retouching is one of the most time-consuming steps

in professional photography pipelines. The existing auto-

mated approaches blindly apply smoothing on the skin, de-

stroying the delicate texture of the face. We present the first

automatic face retouching approach that produces high-

quality professional-grade results in less than two seconds.

Unlike previous work, we show that our method preserves

textures and distinctive features while retouching the skin.

We demonstrate that our trained models generalize across

datasets and are suitable for low-resolution cellphone im-

ages. Finally, we release the first large-scale, professionally

retouched dataset with our baseline to encourage further

work on the presented problem.

1. Introduction

Phone cameras have reached an unprecedented level of

image quality and resolution [1]. With the advancement

of these consumer-level products, demand for image en-

hancement software has also increased significantly. Soft-

ware features such as DeepFusion, Night Sight, and Bokeh

now exist in virtually all high-end consumer phone cameras.

Further improvement of phone cameras will only increase

the demand for high-quality software enhancement.

On the other side, photography studios process thou-

sands of high-quality portraits a day. In the USA alone and

within the niche market of school photography, studios pro-

cess over 56 million photos annually. One of the most time-

consuming steps in a typical studio production pipeline is

face retouching. On average, professional skin retouching

† The author produced the results at Skylab Technologies Inc.
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requires two minutes of laborious work per portrait. Sur-

prisingly, face retouching is still not automated in North

America’s largest studios that we were able to reach. Most

studios that we surveyed were not happy with the quality

of existing automation products, instead, relying on human

labor. We show that the previous work on retouching does

not adequately address the practical requirements of the do-

main. Furthermore, the lack of publicly-available datasets

has stifled the research and development of working solu-

tions. We take a close look at the skin retouching problem,

discuss our findings, present our novel solution inspired by

the most recent developments in computer vision and ma-

chine learning, and show that average consumers and pro-

fessionals can use our model to enhance their photos. Fi-

nally, we release the first large-scale face retouching dataset

with our baseline.

Figure 1 shows an overview of our AutoRetouch

pipeline. Since we are developing a practical solution for

real-world applications, we require the pipeline’s output

to be impeccable – the output image should not be de-

formed or degraded in any way. Furthermore, since we pro-

cess high-resolution images, we need to design resource-

sensitive models: a 24-megapixel image uncompressed in

floating-point precision occupies over 250MB memory. We

first present the problem and discuss the subtleties that pre-

vent a direct application of the existing methods. Then, we

present our new strategy to address the specific challenges

of the application. Our contributions are:

1. We present a carefully-designed and validated fast face

retouching neural architecture with a low memory footprint

that preserves the skin’s distinctive features while removing

blemishes. Our solution enables quick and high-quality au-

tomated face retouching for the first time, producing output

superior to the groundtruth data. We compare our method

with previous related work qualitatively and quantitatively.

We show that our method generalizes across datasets and is

useful for mobile phone applications.

2. We release the first large-scale professional face retouch-

ing dataset Flickr-Faces-HQ-Retouched (FFHQR), with our

baseline to encourage more research on this problem.

2. Related Work

To the best of our knowledge, very little prior work ex-

ists for face retouching. Lin et al. [13] present an exemplar-

based freckle retouching technique using a small dataset of

cosmetic laser therapy. In the commercial domain, there

is Visage Lab, BeautyPlus, Meitu, and Facetune, to men-

tion a few. All of the available products provide face re-

touching and beautification tools, but none of them are fully

automatic. Furthermore, none of these tools can provide

high-quality, high-resolution face retouching even when all

the parameters are carefully tuned. The existing methods

Figure 2: Automatic face retouching. The original image

on the left. The middle image is the AI-assisted retouching

of BeautyPlus. The result of our method is on the right.

Figure 3: Three samples from the Flickr-Faces-HQ-

Retouching (FFHQR) Dataset. The left image is the original

image from FFHQ [10], and the right image is the retouched

version in our dataset. The figure is best viewed on a screen.

apply “blind” smoothing, where moles and freckles disap-

pear, and fine skin-texture is destroyed (see Fig. 2). Our

method preserves the identifying features of skin while re-

moving blemishes at a high-resolution. We also release the

first large-scale retouching dataset with our baseline to en-

courage further work on this problem (see Fig. 3).

A natural starting point for skin texture synthesis dur-

ing retouching is thorough generative adversarial networks

(GANs) [5]. GANs are a broad class of generative models

within which two neural networks, a generator and a dis-

criminator, compete against each other. During the training,

the generator G produces samples from a fake distribution
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D̃ while the discriminator D tries to detect whether the in-

coming samples are from the target distribution D, i.e., if

the image is real or fake. The objective of GANs is to learn

a generator G such that the real distribution and the fake

distribution are approximately equal, i.e., D̃ ≈ D. Over the

previous years, the research community has focused on im-

proving the training time, stability, quality, and analysis of

samples generated by GANs [2, 6, 3], while simultaneously

identifying new applications [10, 7, 17].

One of the major developments based on GANs is the

image-to-image translation method Pix2Pix [7]. Pix2Pix

uses a conditional GAN loss plus ℓ1 loss to learn a map-

ping x → y. The authors use a U-Net [16] generator and a

PatchGAN [12] discriminator. The PatchGAN discrimina-

tor model assumes independence between pixels separated

by more than the patch window width. The authors present

several use cases of Pix2Pix applications with impressive

results. Our approach is similar to Pix2Pix [7] in the way

that we learn a mapping function from original images to re-

touched images. However, our (i) network architectures, (ii)

training loss function, and (iii) data augmentation schemes

are different and demonstrably necessary to perform pro-

fessional face retouching. We will further discuss the dif-

ferences in Sec. 4 and will provide comparisons in Sec. 5.

3. Flickr-Faces-HQ-Retouching (FFHQR)

Dataset

Before discussing our method, we first introduce a

new face retouching dataset based on the Flickr-Faces-HQ

(FFHQ) dataset [10]. The original FFHQ dataset consists

of 70,000 1MP face-aligned images that are collected from

Flickr. We chose FFHQ as the basis of our new dataset be-

cause of the variety of ages, ethnicity, lighting conditions,

and the large number of images that could benefit from face

retouching. To create the new dataset, we hired a team of

professional image editors to retouch the images. See Fig. 3

for samples of our dataset. To the best of our knowledge,

FFHQR is the first publicly available retouching dataset.

One of the key features of professional retouching is that

the image updates are sparse – most of the pixels do not

change. This attribute is unlike the result of commonly used

blurring in the commercial applications where the entire

skin is smoothed to remove blemishes. The FFHQR dataset

reflects this professional retouching style. Figure 4 shows

a scatter plot of the percentage of pixel change versus the

mean absolute value of pixel updates (range [0, 255]). In the

majority of images, less than 40% of the pixels are edited.

Furthermore, most pixel value changes are in the [100, 200]
range. This observation has implications in model design:

the retouching methods should facilitate learning a function

that preserves the input values strictly.

We also experiment with studio data and measure cross-

dataset performance. We present more information about

Figure 4: The scatter plot of FFHQR pixel update statistics.

The y-axis is the percent of updated pixels per image. The

x-axis is the mean absolute value of pixel updates. For the

majority of images, less than 40% of pixels change.

the studio in the next section. The FFHQR dataset and the

evaluation scripts are publicly available.1

4. AutoRetouch

Professionally retouched images must retain moles,

freckles, and other distinctive features. Furthermore, the

output must preserve the color tone of the original image

(color-correction is a separate task in professional photogra-

phy). The model must distinguish the features of the image

that must be retained and the features that must be removed.

Skin smoothing, which is the common algorithm in existing

applications, will not preserve the identifying features. Fur-

thermore, a blind smoothing alters the delicate texture of

the original skin (see Fig. 2). Therefore, a desirable and

practical retouching model needs to:

i Preserve the image structure.

ii Preserve the image texture while also performing skin

retouching.

iii Generalize to a variety of skin tones and lightings.

To address these concerns, we carefully build a fully

convolutional neural network that filters the input image.

For (ii), a safe strategy is to train models that only retouch

known blemishes. Since we need to process high-resolution

images, even the slightest error will be visible. We empir-

ically verify that our final model only removes the known

skin blemishes and preserves everything else. Furthermore,

we show that our method performs automatic face retouch-

ing while preserving the natural quality of the image. Inter-

estingly, we present empirical results that indicate that our

1https://github.com/skylab-tech/ffhqr-dataset
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final model produces a higher quality skin retouching than

the training data.

4.1. Architecture

In our experiments, we observed that downscaling the

image tensors to a factor smaller than half leads to slight

pixel displacement and loss of the original texture in the

output space. This observation eliminates most of the typi-

cal architectural choices such as U-Net [16] in Pix2Pix [7]

since there are usually several levels of down-sampling in

the architecture. We limited the downscaling in our network

architecture search to preserve fine details.

Furthermore, we observed that incorporating additive

skip-connection shortcuts decreases the random jitters in

the output. Since we expect the majority of the pixels to re-

main unchanged, the skip connections also allow for more

direct transfer of the input to the output.

Since we do not perform much downscaling, the depth

of the architecture and the number of kernels would typi-

cally become limited by the available GPU memory. How-

ever, face retouching is mostly a local operation – the cor-

rection of any pixel does not depend on the far away pix-

els. This feature is unlike typical Pix2Pix-like applications,

where the network takes the global context of the input im-

age into account to generate the output. This problem struc-

ture enables a sliding-window strategy that we exploit with

convolutional architectures [14]. Without loss of generality,

we utilize more kernels and deeper architectures by limiting

the input to a large-enough w × w sub-window.

Given that we limit our network’s receptive field, the re-

sulting models are not statistically dependent on the entire

image – this provides more robustness to out-of-distribution

test images, which enables a broader application than just

the training image distribution. Combined with our data

augmentation schemes, we show that our models can gen-

eralize across datasets with substantial domain shift. See

Fig. 1 for our final generator architecture. We use the same

discriminator architecture as Pix2Pix [7].

4.2. Training

The loss function that we use for training consists of

(i) Relativistic Average GAN loss [9, 5], (ii) perceptual

loss [8], and (iii) direct mean squared-error (MSE) loss:

LG = α · LG
ragan + β · Lperceptual + γ · Lmse (1)

We set α = 10−3, β = 6 · 10−3, γ = 0.5 in our experi-

ments. For the Relativistic Average GAN, we use a running

estimate of 300 previous predictions. For the perceptual

loss, we use mean squared-error on the output features of

the 14th layer in the 19-layer VGG model [18].

We experimented with the original GAN [5] as well as

other variants such as WGAN [2]. Overall, we were able

to achieve the best results using RAGAN [9]. We also ex-

perimented with ℓ1 loss, but we found that the model with

mean-squared-error loss converges much faster. Similar

to Pix2Pix [7] we combine traditional loss functions with

GAN-type loss functions. However, we (i) specifically use

RAGAN, we (ii) also include a perceptual loss function, and

(iii) use mean-squared-error instead of ℓ1 loss. In Sec. 5,

we do an ablation study to show how much each term of the

loss function contributes to the output retouching quality.

Our results indicate that each term contributes to the overall

performance, and the synergy of the loss functions creates a

strong baseline for automated professional face retouching.

We show that our final model yields retouching results that

are qualitatively better than the groundtruth data.

We repeatedly perform one gradient descent step on D

and one gradient descent step on G to train our models. We

train the studio data model for approximately two weeks on

three 2080 Ti GPUs and one 1080 Ti. We train a model on

the FFHQR dataset in just five days. We run the training for

500 epochs and set w = 150 px. We set the batch-size to

75, the learning rate of Adam [11] to 2 · 10−4 for our model

and 10−4 for RAGAN discriminator.

4.3. Data Preprocessing

We use before-after professionally retouched image pairs

for the training. We sample w × w image patches from

the training data and perform mirror augmentation and

color perturbation during the training. To encourage scale-

invariance, we randomly downscale the images before sam-

pling. Since there are quadratically more w × w windows

in larger images than the spatially smaller ones, uniformly

random scaling under-represents the patches in the larger

images. To fix the under-representation, we first take a ran-

dom scaling factor s ∼ Unif(smin, 1), where smin is the

smallest acceptable image scale cubed, and downscale the

image to s
1

3 . This change of variable ensures all windows

in all image scales are equally likely (see appendices).

We evaluate our model using both the newly presented

FFHQR dataset and also studio data. The FFHQR data con-

sists of 70,000 image pairs of original and retouched im-

ages. We use 56,000 images for training, 7000 images for

validation, and 7000 images for testing. The studio data

contains 203,725 image pairs of original and retouched im-

ages. We split the studio data into 158,683, 22,409, and

22,633 for train, validation, and test. Following the same

procedure as Karras et al. [10] (FFHQ), we pre-process the

studio data by cropping the images to the head. While

FFHQR is free-form in-the-wild photos of faces, the stu-

dio data is captured in strictly controlled, well-lit conditions

with DSLR cameras.
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Figure 5: Outputs of Pix2Pix, FFHQR model, and the studio model on the FFHQR test set. The studio model generalizes

well to FFHQR data even though there is a considerable domain shift. The Pix2Pix results often contain artifacts.

5. Experimental Results

Face retouching evaluation presents a similar set of chal-

lenges as the super-resolution (SR) literature. While the as-

sessments in the SR literature primarily rely on reproducible

measures such as PSNR and SSIM [19], Blau et al. [4] show

that none of these metrics translate into a better perceptual

result beyond a certain accuracy. In face retouching, this

issue is more severe. Since professional retouching mostly

produces sparse image updates, the before and the after im-

ages are already very similar before any processing. As a re-

sult, both of these metrics yield very high values, with only

a slight variation across experiments. Our evaluation re-

sults on face retouching also confirm the findings of Blau et

al. [4]: neither PSNR nor SSIM are reliable performance

indicators for high-quality face retouching methods.

An alternative assessment in the SR literature is the sub-

jective mean-opinion-score (MOS), where human subjects

compare the perceptual quality of images generated with

multiple algorithms. The MOS score is generally regarded

as not reproducible and expensive to obtain. However, this

approach can perceptually validate and compare different

methods to produce reliable rankings.

To the best of our knowledge, there is no scalable and ob-

jective measure of quality for our application at the time of

writing. We provide quantitative PSNR and SSIM compar-

isons as well as user-oriented studies. To perform the user

study, we present professional retouchers with two meth-

ods’ outputs and ask them to either choose the best output or

skip if the images are too similar. We capture their choices

and the time that it takes to make a decision. See Supple-

mentary Material for more details of our setup.

For evaluation, we use a single RTX 2080Ti GPU. For

Pix2Pix [7], we use the provided code and the recom-

mended configuration by the authors. Figure 5 shows the

output of our method when trained on FFHQR and the stu-

dio data. The studio model is only trained with the con-

trolled studio data, whereas the FFHQR model is directly

trained on FFHQR. Both of our models perform retouch-

ing well. However, Pix2Pix [7] fails to perform retouching

and degrades the image. Figure 6 shows the test samples of

retouched image patches based on our trained model on the

studio data. Our model consistently preserves the moles and

other identifying features while removing the blemishes.

Figure 7 compares the retouching output of our model

with the groundtruth patches on the studio data. Notice

that our model preserves the fine texture better than the

groundtruth images. We suspect this happens because, in

real-life retouching, the professionals may use large brushes

for correction that would inadvertently affect areas of the

image that do not require retouching. Our model, how-
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Figure 6: Sample outputs of our retouching model. The

figure is best viewed on a screen.

Figure 7: The output of our model versus the groundtruth

retouching. The left column is the input, the middle col-

umn is groundtruth retouching, and the right column is our

output. Our model preserves the fine details more than the

groundtruth. See Supplementary Material for more images.

Figure 8: Sample input/output of retouched images cap-

tured with cellphones. The figure is best viewed on a screen.

See Supplementary Material for more images.

ever, operates at the pixel level and can preserve details at

no extra cost. Furthermore, in Sec. 5.1, we perform abla-

tion studies on the effect of each term in the loss function.

We observe that adding the RAGAN loss term encourages

the model to preserve the input as much as possible. The

preservation of the details produces retouching models that

produce better images than the groundtruth retouching data.

We observe the same trends in our user study.

We also test our studio retouching model on lower-

resolution smartphone camera images. The images are cap-

tured with iPhone 6 or iPhone X. Figure 8 shows sam-

ple outputs from our tests. Although the studio model is

not trained on cellphone images, it generalizes to lower-

resolution and noisy images.

In Fig. 9, we test if the retouching network would cor-

rect unfamiliar patterns in the image. We manually add

brush strokes of different colors and brush sizes with vary-

ing opacity to an image and process it using our model.

Fig. 9 shows that our model did not change the added brush

strokes. This behaviour is a desirable feature in professional

face retouching since we wish to preserve the distinctive

features as much as possible – it is safer for the model to

retouch only known blemishes that require correction.

Figure 10 shows some of the failure cases of our retouch-

ing model. The images that our model fails to correct usu-

ally contain severe skin blemishes. Although our model im-

proves the output image, it does not eliminate the blemishes.

5.1. Ablation Study

We perform a qualitative and quantitative ablation study

to compare the effect of each term in Eq. 1. We run the

following experiments on the loss function L:

1. Only mean squared error (MSE) (α = β = 0).

2. MSE and Perceptual (α = 0).

3. MSE, Perceptual, and RAGAN.

For this evaluation, we run the experiment on a subset of

7905, 950, and 988 studio images for train, validation, and
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Figure 9: Our retouching model does not change unfamiliar

patterns in the image. The model appears to be only re-

sponding to known skin blemishes. This behaviour is desir-

able in professional retouching to ensure distinctive features

are preserved.

Figure 10: Failure cases when the blemishes are severe.
Table 1: Quantitative results using PSNR and SSIM. (1) is

trained on studio data, (2) is trained on FFHQR.

Studio Data FFHQR

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

No edit (input → output) 39.12 0.9807 45.58 0.9938

(1)

MSE 39.58 0.9858 40.53 0.9876

MSE + Perc. 39.41 0.9875 39.04 0.9889

MSE + Perc. + RAGAN 41.04 0.9865 44.82 0.9944

Pix2Pix [7] 28.12 0.8893 29.58 0.9224

(2)

MSE 40.01 0.9844 45.88 0.9949

MSE + Perc. 39.88 0.9851 45.00 0.9952

MSE + Perc. + RAGAN 39.65 0.9849 44.92 0.9952

Pix2Pix [7] 30.29 0.9152 33.45 0.9585

test, respectively. On FFHQR, we train on the entire train-

ing data. We run the training for 300 epochs and leave the

other parameters as the original experiment. The training of

each configuration takes 19 hours on studio data and three

days on FFHQR. For each configuration, we use the model

with the lowest validation loss.

Figure 11: The effect of loss function on retouching. Using

MSE loss alone leads to smooth images, which is improved

by adding a perceptual loss. However, a perceptual loss

still does not preserve fine details. Adding an adversarial

loss encourages the network to make as few changes on the

image as possible. The figure is best viewed on a screen.

Table 1 shows the quantitative results. Since the be-

fore and after images are almost identical (except for the

sparsely retouched regions), both PSNR and SSIM metrics

will be too high. While in the super-resolution literature

the best PSNR ≈ 25, and SSIM ≈ 0.75 [15], the “no edit”

baseline already achieves PSNR = 45 and SSIM = 0.99 on

FFHQR. Except for one case, the numerical results indicate

that adding more terms to the mean-squared error (MSE)

hurts the performance in terms of PSNR and SSIM. How-

ever, our user study reveals that the addition of perceptual

loss and RAGAN improves the quality of retouching by a

large margin (see Tab. 2 and Fig. 11). This observation is

consistent with Blau et al. [4] – a higher PSNR or SSIM

does not necessarily translate into higher perceptual qual-

ity.

Figure 11 shows the qualitative results of our ablation

study. While MSE yields impressive results in retouching,

it is easy to see the output of this network is smoothed, and

sometimes fine textures (e.g. freckles) are removed. Al-

though the images may appear pleasant at a low resolution,
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Table 2: Human perceptual test. In each evaluation, we asked the subjects to chose their favourite method between two

options. The participants could skip if the images were too similar. We measure how often a method is chosen and how long

it took to make a decision. (1) Models are trained and tested on FFHQR; (2) models are trained and tested on studio data.

Voted 1 ↑ Voted 2 ↑ Undecided

# Method 1 Method 2 % Median Time (s) % Median Time (s) % Median Time (s) n

(1)

MSE+Perc.+RAGAN MSE 50.1% 28.0 17.9% 24.0 32.0% 26.3 730

MSE+Perc.+RAGAN MSE+Perc. 28.3% 30.9 22.9% 30.3 48.8% 26.1 791

MSE+Perc.+RAGAN Pix2Pix [7] 100.0% 1.9 0% - 0% - 508

(2)

MSE+Perc.+RAGAN MSE 94.6% 12.2 4.4% 19.5 1.0% 19.6 802

MSE+Perc.+RAGAN MSE+Perc. 95.7% 9.8 3.4% 17.5 0.9% 15.7 898

MSE+Perc.+RAGAN Pix2Pix [7] 99.9% 1.3 0.1% 0.9 0% - 1008

MSE+Perc.+RAGAN Groundtruth 76.3% 8.4 18.7% 12.0 5.0% 19.0 672

they do not possess the level of quality that is essential to

professional high-resolution production. Adding perceptual

loss improves the output by sharpening the image, but the

network still does not preserve the input’s delicate texture

at all times. When we add the RAGAN loss, the network

(seemingly) learns to minimize the output space changes,

which results in minimal retouching that preserves the in-

put details as much as possible. This quality leads to a better

retouching than the groundtruth data (see Fig. 7).

Table 2 shows a summary of our user study results. We

present the users with randomly ordered images of two test

methods and ask them to pick the best photo. See Supple-

mentary Material for a complete description of the setup.

We run this experiment on both studio data and FFHQR,

comparing against Pix2Pix [7] and models produced by our

ablation study. Our proposed loss combination is favoured

over the alternative more frequently across all the experi-

ments. The preference gap between our method and the

two alternatives is much larger on the studio data than for

the FFHQR dataset. Furthermore, it took the users much

longer to pick the best output on FFHQR than studio data.

This gap is due to the higher quality imaging of the studio

data compared to the in-the-wild FFHQR. While our pro-

posed method still outperforms the alternatives, the differ-

ence is much more evident in the higher quality photos.

We also compare the output of our method with the

groundtruth on the studio data. Since the studio images

contain more details in perfect lighting, it is much easier

to compare and perceive the difference. The skin-quality of

our method is more frequently favored over the groundtruth

data. Pix2Pix is seldom chosen, mainly because of the visi-

ble artifacts in the image. It took the users an average of two

seconds to determine which output is better on both of the

experiments that involved Pix2Pix models. Our proposed

method perceptually outperforms alternative design choices

despite having a slightly lower PSNR and SSIM.

We also have validated our automatic retouching model

in real-world applications. Over the past year, our work-

flow has assisted professional retouching of over 1,000,000

portraits. Typical failures that we have encountered (< 2%)

are when the image patches require a substantial amount of

change, or the skin blemish is atypical. This usually hap-

pens when an extended region of the skin is covered in hard

blemishes, and the natural color of the skin is no longer ap-

parent (see Fig. 10). In these cases, the model removes the

blemishes most often, but the area remains slightly red.

Our retouching model is only 20 MB and requires

2580 MB GPU RAM to process an input image of 1024 ×

1024 in 1.1 s on a Titan RTX 2080Ti, or 1.9 s on a 1080Ti.

The processing window size could be optimized according

to the available resources down to a w × w sub-window at

a time, while still producing an identical image. In contrast,

the Pix2Pix [7] model is 208 MB and occupies 1340 MB

memory while processing each image in 1.82 s on a 1080Ti.

6. Conclusion

We presented the AutoRetouch pipeline for automatic

professional-grade face retouching. We explained the sub-

tleties of face retouching, discussed the shortcomings of the

previous work, and introduced our novel solutions to ad-

dress the application’s specific challenges. We presented

qualitative and quantitative comparisons with previous re-

lated work. We compared our retouching models with sev-

eral baselines on two datasets and highlighted the improve-

ments, the generalization power, and the desirable proper-

ties that produce high-quality retouched images. We release

the first large-scale retouching dataset FFHQR and invite

the community to improve upon the presented work. The

code to replicate our results is publicly available online.2
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