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Abstract

We address the challenging Voice Activity Detection

(VAD) problem, which determines “Who is Speaking and

When?” in audiovisual recordings. The typical audio-

based VAD systems can be ineffective in the presence of

ambient noise or noise variations. Moreover, due to tech-

nical or privacy reasons, audio might not be always avail-

able. In such cases, the use of video modality to perform

VAD is desirable. Almost all existing visual VAD meth-

ods rely on body part detection, e.g., face, lips, or hands.

In contrast, we propose a novel visual VAD method op-

erating directly on the entire video frame, without the ex-

plicit need of detecting a person or his/her body parts. Our

method, named S-VVAD, learns body motion cues associ-

ated with speech activity within a weakly supervised seg-

mentation framework. Therefore, it not only detects the

speakers/not-speakers but simultaneously localizes the im-

age positions of them. It is an end-to-end pipeline, person-

independent and it does not require any prior knowledge

nor pre-processing. S-VVAD performs well in various chal-

lenging conditions and demonstrates the state-of-the-art re-

sults on multiple datasets. Moreover, the better general-

ization capability of S-VVAD is confirmed for cross-dataset

and person-independent scenarios.

1. Introduction

Voice Activity Detection (VAD) answers the question

“Who is Speaking and When?” in audiovisual record-

ings. VAD is a key process for a number of technolo-

gies, e.g., multiparty dialog problem in human-human [16]

and human-robot interaction systems [18], social behavior

analysis [4], automatic speech recognition [13], speech en-

hancement [34], and emotion recognition [37]. Since VAD

is applied at the initial stage of such technologies, its ac-

curacy and robustness are essential. Despite its crucial role

in such application domains, VAD remains a challenging

problem due to wide diversity of speakers, the possible pres-

ence of multiple persons and simultaneous speakers as well

as the inconvenient position of persons badly located with

respect to the microphone/camera, which may affect the in-

put data quality [15].

The traditional way to perform VAD is based on au-

dio signal processing. Audio-based VAD systems are chal-

lenged by the presence of ambient noise, and they are sensi-

tive to noise variations that are very common in real-world

conditions [29]. Moreover, they suffer from complications

occurring when there is overlapping speech [17]. Recently,

multimodal VAD approaches become attractive due to their

more accurate performances, e.g., [8, 25, 33, 2]. However,

multimodal VAD might not be applicable when the audio

data is not available, e.g., due to technical, ethical or legal

issues. In such cases, the use of information from visual

modality only, so-called “visual VAD” is very desirable.

Visual VAD (VVAD) literature is limited as compared

to audio-based solutions. Almost all VVAD approaches

require body part detection, which brings extra computa-

tional cost and the success of VAD is dependent to the

success of the body part detectors. Mostly, face detection

[32, 17, 25, 2] or specifically lips detection has been used

[31, 19, 14, 8]. Lately, it is shown that during speech there

are important visual cues beyond face and lips movements,

e.g., head activity [11], hand motion [16, 11], gaze [16], and

upper body motion [7, 27, 28, 5], which are effective cues

to be considered.

Unfortunately, to date, VVAD methods have usually

been evaluated on datasets either having a single-person

frontal view [16, 32] or supplying the person/face extracted

[7, 25, 2, 27, 28, 5]. Nevertheless, VAD methods should

cope with more difficult scenarios and situations in practi-

cal applications, such as multiple speakers’ turns, variable

person/face pose, camera position and environmental con-

ditions [17].

In this paper, we present a novel VVAD methodology
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(Section 3), named Visual Voice Activity Detection by mo-

tion Segmentation – S-VVAD. Given that the importance

of modeling body motion during speech has been acknowl-

edged in several studies [16, 17, 7, 28, 28, 29, 5], we de-

cided to examine this information more thoroughly for tar-

geting VAD. This aspect is of clear relevance in the current

global pandemic emergency as the lips-based methods (the

most frequently used body part for realizing VAD) would

completely fail in case of wearing a face mask, while body

motion-based VAD can still perform well.

S-VVAD utilizes the “holistic” body motion of a per-

son (without relying on a specific body part) represented

in terms of dynamic images [6]. The body motion cues

associated with speech activity (speaking/not-speaking) is

learned in conjunction with a weakly supervised segmenta-

tion scheme. Therefore, S-VVAD is not only able to deter-

mine whether someone is speaking or not, but also localizes

that person simultaneously.

S-VVAD processes without any usage of prior informa-

tion, e.g., training samples of faces [32], having informa-

tion identifying the mouth as the lower half of the video

frames [21], knowledge of the number of persons present

[30] or the structure of the conversation (e.g., small group

meetings [16]). Also, it does not require the face onscreen

[25, 29, 2] nor it does need synchronized video and audio

tracks [8, 25, 2], or access to the subtitles [29]. Moreover,

even though it is proved that person-dependent models per-

form substantially better than person-independent models

[17], S-VVAD is person-independent and generic, meaning

that it can be applied to any new person without re-training.

Finally, it is an end-to-end method, in which visual features

are directly learned from the data, it works on the entire

video frame without applying additional person detection at

test time (unlike all methods except [29]). All these features

are very important and have never been addressed altogether

by any of the existing VAD approach.

S-VVAD applied to real-world datasets having sin-

gle/multiple persons in a video frame shows performance

not only better than the state-of-the-art (SOA) VVAD meth-

ods, but also better than the SOA multimodal VAD ap-

proaches. Cross-dataset experiments show that our method

has an effective potential to be applied to different real-

world situations, while being trained on other settings.

The contributions and highlights of S-VVAD can be

summarized as follows:

• This is the first attempt that VVAD is performed by

body motion cues learning with weakly supervised seg-

mentation. As a result, S-VVAD is able to determine

speech activity of a person while simultaneously localiz-

ing her/him. It should be noted that so far such localiza-

tion have been performed only by using speaker diariza-

tion techniques [3], which are based on audio processing.

Whereas herein we perform this in visual domain.

• S-VVAD demonstrates effective results when tested on

various conditions: single/multiple subjects in the same

video frame, simultaneous speakers/silence, occlusions,

background motion and so forth.

• S-VVAD is practical: it does not require any prior knowl-

edge, does not have any constraints on the number of per-

sons as well as it is person-independent (can be applied

to any new person without re-training). Moreover, it is

end-to-end, processing on the whole video frame in the

test time, not relying on accurate detection of body parts

(lips, hands, etc.), and learns the features directly from

the data.

2. Related Work

Visual Voice Activity Detection. VVAD has been per-

formed using facial cues (e.g., facial landmarks move-

ment, lips motion), body motion cues (e.g., hand gestures,

head movement, upper body motion), or a combination of

both. As an earlier work, Liu and Wang [23] utilize hand-

crafted features describing lips region. Head and lips mo-

tion are combined in [17], showing that lips motion per-

forms the best. For human-machine interaction, [14] indi-

cated that head motion is a significant cue while its fusion

with lips motion performs better. More recently, face fea-

tures extracted from a CNN, are modelled with an LSTM

to predict the speech status of a face [32]. These methods

[23, 17, 14, 32] might be ineffective when face/lips detec-

tion fail, e.g., when the speaker presents a profile view to

the camera, she/he is far away from the camera, her/his face

is occluded or the camera resolution is low.

On the other hand, Hung et al. [16] use hand motion and

gaze (implying head orientation) to perform VAD in small

group meetings. Hand motion is examined assuming that

the speaker is the one who moves the most. Gaze is investi-

gated by claiming that the majority of the subjects should be

looking towards the speaker. Results demonstrate that gaze

can be a good indicator to detect the speaker [16]. However,

gaze might not be feasible for the scenarios, which people

sit in a single row, as it is rare that they face each other. Ad-

ditionally, accurate gaze estimation is very challenging and

its implementation in-the-wild is still an ongoing research

topic. Later on, for the same dataset, it was shown that mo-

tion history images extracted from upper body performs as

good as gaze [12].

For the first time, real-world datasets (not a role-play)

were used to test a VVAD approach in [7]. Audio is used

for cross-modal supervision of the training of a personal-

ized VVAD, which is based on improved trajectory features

of upper body [7]. Using the same dataset, several body mo-

tion descriptors (e.g., optical flow images, dynamic images

[6]) are compared for person-independent VVAD in [27].

The results show that RGB-based dynamic image represen-
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tation of upper body performs the best [27]. Subsequently,

in [28, 5], RGB-based dynamic images are combined with

an unsupervised domain adaptation technique, demonstrat-

ing improved results compared to [7, 27, 8].

As can be noticed, the majority of the methods are based

on body part detection [16, 23, 17, 14, 32]. Furthermore,

some of them [23, 16, 12] were tested on images having

one person, while others [7, 27, 28, 5] used highly ac-

curate, manually extracted person/face detections in train-

ing and test. Recently, the first VVAD approach that does

not require additional person/face detection was presented

in [29]. This method operates on the entire video frame:

in training a video of an individual person is divided into

short segments, which are modelled with unconnected 3D-

CNNs and then combined with an LSTM [29]. Similarly,

our method does not apply separate/additional person detec-

tion but, unlike [29], we use RGB-based dynamic images,

summarizing the motion and related appearance of a video

segment. Also, we learn localizing the VAD-related motion

cues within a weakly supervised segmentation framework.

3. The S-VVAD

First, body motion cues representing a speech activity

are learned by fine-tuning a ResNet50 (Section 3.1, Fig-

ure 1C1). Then, that model is used to obtain class activa-

tion maps (CAMs), which are further used for the training

of a Fully Convolutional Network (FCN), performing seg-

mentation as speaking, not-speaking and background (Sec-

tion 3.2, Figure 1C2). In test, the trained FCN is used to

localize subjects and their speech activity in an input video

segment (Section 3.3, Figure 2). These are described in de-

tail as follows and illustrated in Figures 1 and 2. Code is

publicly available at1.

3.1. ResNet50 Fine­tuning with Body Motion Cues

Recent works [27, 28, 5] have showed that body motion

represented in terms of dynamic images (DIs) [6] can be

very effective for VVAD (see [27] for VVAD performance

comparisons among different motion representation meth-

ods; optical flow images (OFI), RGB-based DI, OFI-based

DI and, etc.). Moreover, training a deep model with DIs

as compared to RGB frames is less computational complex

as one DI is built from multiple frames. We have adapted

that representation and obtained one DI from 10 consecutive

RGB frames. The resulting image summarizes the short-

term spatio-temporal content, i.e., the body motion of the

subjects (also background motion if any) and the appear-

ance associated with these. A DI is, then cropped into sub-

dynamic images (sub-DIs), each contains a single subject.

In our implementation, we do not apply image cropping in

the way that it tightly surrounds a subject but instead we

1github.com/IIT-PAVIS/S-VVAD

include the background as well (i.e., the length of vertical

axes of the sub-DI and the corresponding DI are the same).

Later, we fine-tune ResNet50 (pre-trained on ImageNet)

with multiple sub-DIs with speaking/not-speaking VAD la-

bels, as follows. The input sub-DIs are either i) resized to

256×256, which is called single-scale setting or ii) each of

them is first resized to K×K when K is a randomly gen-

erated number between 256 to 320, and then a random

256×256 chunk of obtained image is used as the input. The

latter strategy is called as multi-scale setting, which has not

been applied in [27, 28, 5]; however, it improves the VAD

performance of S-VVAD. Unlike [27, 28, 5], we train the

convolutional layers shown as Block 3, 4, 5 in Fig. 1 and

the Softmax layer. The weights of blocks are randomly ini-

tialized before training. Training is performed with a de-

cay learning rate e.g., starting from 5×10−6, using cross

entropy loss function, and Adam optimizer while in each

batch 128 randomly selected sub-DIs (64 speaking and 64

not-speaking) are used. Data augmentation is also applied

such that some randomly selected sub-DIs are horizontally

flipped and/or a 64×64 randomly selected patch is replaced

with the mean value of the images. 10% of the training data

is randomly selected as the validation data and when the

loss on validation data increases, training is stopped.

3.2. CAM­based Mask Generation & FCN Training

Class activation maps (CAMs) have been actively ex-

ploited in many computer vision tasks to explain what a

DNN architecture learns [35, 36, 10]. These maps provide

a viable option for trained models to pinpoint the region of

interest of an image. We adapted Grad-CAM [26], which

needs the target class gradient information reaching to the

final convolution layer and the convolution feature maps of

trained model.
Given that 10 consecutive RGB frames are used to con-

stitute one DI; X containing t number of participants with
labels Cl = [C1, ...., Ct] when Ci ∈ [0, 1] (0:not-speaking,
1:speaking), first, we apply the trained ResNet50 (Sec-
tion 3.1) to obtain the last layer convolution feature maps
ΥJ = ψ(X, θ)ǫRJ×U×V ; ψ is a function parameterized
with θ, U , V represent the size and J is the number of fea-
ture maps. In case of ResNet50, Υ is 32 times downsampled
with respect to the size of DI. Afterwards, the weights are
computed using the gradient of speaking class score yS (be-
fore the softmax) and not speaking class score yNS (before
the softmax) corresponding to the convolution feature maps
given in Eq. 1. For each class, a CAM (λC(u,v)), is com-

puted using the convolution feature maps and the computed
weights as in Eq. 2, when Z is equal to U × V .
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Figure 1. S-VVAD has successive two components: C1) ResNet50 fine-tuning with body motion cues: a ResNet50 is fine-tuned with sub-

dynamic images (sub-DIs) having labels either speaking (green bounding box) or not-speaking (red bounding box). Each sub-DI includes

spatio-temporal information of one subject. C2) CAMs-based mask generation and FCN training: CAMs; one for speaking, other for

not-speaking are obtained when a dynamic image (DI; M×N) is the input to the ResNet50 trained in C1. A mask (M×N), shown as y,

is formed using these CAMs and the ground-truth (Y ). An FCN composed of ResNet50 pre-trained in C1, is trained with DIs (M×N).

For each DI, FCN makes a pixel-wise prediction (M×N×3) with channels: background, speaking or not-speaking. The pixel-wise cross

entropy loss (L) of FCN is calculated between y and pixel-wise prediction.

Figure 2. At test time, a single dynamic image (M×N), constructed from 10 consecutive RGB frames, is first segmented using the trained

FCN. Segmentation results in an image called as final prediction (M×N) containing pixels predicted as: background (shown in black),

speaking (shown in white) and not-speaking (shown in grey). The location of speaking and not-speaking pixels are clustered individually.

Pixels belonging to the same cluster are merged into a bounding box form. Then, the location of these bounding boxes are projected onto

10 RGB frames. Green and red dashed bounding boxes indicate the speaking and not-speaking persons detected, respectively.

Then, CAMs (λC(u,v)) are upsampled to the size of DI us-

ing bi-cubic interpolation. Given the image obtained from

λS(u,v), we keep the pixels, which intersect with the pixels

belonging to the speaking persons in the ground-truth, as

they are, and set all others to zero. The same procedure is

applied to the image obtained from λNS
(u,v) as well. This is
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so-called using weak annotations [24]. The two images ob-

tained are then thresholded separately using OTSU method

[22], resulting in two binary images. To obtain a mask,

these binary images are merged such that speaking pixels

are multiplied by 255 and not-speaking pixels are multiplied

by 127. A mask can have pixels having up to three seman-

tics: speaking, not-speaking and background. Unlike some

studies [36, 10], we do not re-train the used DNN recur-

sively to improve CAMs. Instead, it is effective to use the

ground-truth and apply independent thresholding to create

the masks.

Finally, the trained ResNet50 (Section 3.1) is integrated

to FCN-8 network architecture [20]. The final fully con-

nected layer of ResNet50 is removed. Starting from Block

5, an upsampling is applied to reach the size of Block 4.

The result is summed up with Block 4 and then upsampled

to reach the size of Block 3. That result is then summed

up with Block 3. In that way, a multi-channel feature map

having the same size of the input image is obtained. The

final layer of FCN-8 is a 1×1 convolutional layer, pro-

ducing three channels having the meanings: speaking, not-

speaking and background (called pixel-wise prediction in

Fig. 1).

This described network is trained with an end-to-end

manner when a DI is the input, the corresponding generated

mask is the ground-truth and the pixel-wise cross entropy

loss is calculated between the mask and pixel-wise predic-

tion. As masks are generated from weak annotations, the

performed segmentation is weakly supervised. Also, this is

the first time that DIs are being used within a segmentation

problem. The Adam optimizer with learning rate of 10−5

is applied until the loss in validation data (see Section 3.1

for description) increases. For the training of FCN, two set-

tings are applied. In the first setting, ResNet50 is freezed

such that its weights are not updated through FCN training.

Whereas in the second setting, Block 3, 4 and 5 of ResNet50

are updated. The latter setting results in improved VAD per-

formances.

Examples of dynamic images, class activation maps

(CAMs) and masks, which are obtained during the training

of S-VVAD, are given in supplementary material.

3.3. S­VVAD in Test Time

At test time, first, a single DI is constructed from 10

consecutive RGB frames. Using the trained FCN, that DI

is segmented such that pixel-wise prediction having three

channels: background, speaking, and not-speaking, is ob-

tained. These predictions are merged into a single image

as applied for mask generation in Section 3.2 and called as

final prediction (see Figure 2). The size of final prediction

image is the same with the input DI (as well as the RGB

frames), and it contains pixels having one of the three se-

mantics: background, speaking or not-speaking. The loca-

Figure 3. Example video frames from datasets used. All datasets

are from a real-world panel discussion. (a) Columbia dataset [7]:

supplies the image position of each panelist’s upper body. (b)

Modified Columbia dataset: there are two/three sitting panelists in

a video frame freely moving, camera motion exist in some video

frames. (c) RealVAD dataset [5]: Nine panelists in a video frame.

They are freely moving. Occlusions and background motion ex-

ist. The distances between panelists and camera are diverse. More

images can be seen in supplementary material Figure 5.

tion of speaking pixels and not-speaking pixels are clustered

individually using Affinity Propogation (AP) [9] algorithm.

We preferred using AP as it does not require the number of

clusters. For each cluster (recall that each cluster is either

speaking or not-speaking), we find a bounding box (bbox),

which tightly surrounds it. In an optimum scenario, a bbox

should correspond to a person in the scene and VAD label of

the cluster indicates whether she/he is speaking or not. The

location of bboxs are projected onto the 10 RGB frames

with the VAD labels.

To evaluate S-VVAD, we calculate the intersection-over-

union (IoU) score between projected bboxes and ground-

truth bboxes (showing the location of persons). Only the

bboxes having IoU > 0.5 is used to further compare the

detected VAD label with the ground-truth. Thus, the bboxes

that does not obey the IoU rule are directly considered as

misclassified VAD (i.e., false negative or false positive).

4. Datasets

S-VVAD was tested using all publicly available VAD

datasets constructed from real-world situations, which sup-

ply the ground-truth of body location of persons (Fig. 3). In

other words, the datasets that i) were captured in lab envi-

ronments, having simple and unrealistic scenarios as well

as ii) the ones providing only the location of face or lips

were not included. The lattermost is particularly important

to perform fair evaluation and comparison.
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4.1. Columbia Dataset

Columbia dataset [7] was constituted from a YouTube

video of a panel discussion. The annotated data is 35 min-

utes, containing image location of the panelists (bounding

box ground-truth), and VAD ground-truth (speaking/not-

speaking). This corresponds to in total five panelists (Bell,

Bollinger, Lieberman, Long, Sick). In some of the frames

camera motion exist.

As the evaluation protocol F1-score and leave-one-

panelist-out cross validation (at each fold of cross valida-

tion, training set contains the data belonging to four pan-

elists and test set includes the data belonging to one re-

maining panelist) were used. In that setting, S-VVAD was

trained and tested on images having one panelist. We cre-

ated one DI from 10 consecutive RGB frames. All these

settings are in line with SOA methods given in Table 1.

4.2. Modified Columbia Dataset

In order to evaluate S-VVAD in real-world scenarios

having multiple persons in a video frame, we have modi-

fied the Columbia dataset as follows. First, we extracted the

video frames having VAD ground-truth. This resulted in

images containing either two or three panelists, each has an

individual VAD label. Then, we assigned these images into

cross validation folds such that the panelists in a training

fold and the corresponding test fold do not overlap. Such a

setting decreased the number of frames in the training folds

as compared to the setting in Section 4.1. The total number

of frames and panelists differ at each cross validation folds,

i.e., some training folds have more data than others. We ob-

tained six folds, named as groups, and the cross validation

applied is referred as leave-one-group-out. This data split

is available here2. The evaluations are still performed in

person-level as the task is detecting whether each person in

a video frame is speaking or not, while each test image has

either two or three VAD labels depending on the number of

panelists it contains.

4.3. RealVAD Dataset

RealVAD dataset is constructed from a YouTube video

composed of a panel discussion lasting for approx. 83 min-

utes [5].There is only one static camera capturing all pan-

elists, the moderator and audiences. The VAD annotations

belong to 9 panelists who are sitting in two-rows. Panelists

are not looking at the camera but instead they can be gazing

audience, other panelists, their laptop, the moderator or any-

where in the room while speaking or not-speaking. Thus,

they were captured not only from frontal-view but also from

side-view varying based on their instant posture and head

orientation. It is possible to observe panelists doing various

spontaneous actions (e.g., drinking water, checking their

2github.com/IIT-PAVIS/S-VVAD

cell phone, using their laptop, etc.), resulting in different

postures. Their body parts are sometimes partially occluded

by their/other’s body part or belongings (e.g., laptop). The

distance between camera and each panelist is also varied.

The background of the front and back row panelists are also

different. For the panelists sitting in the front row, there

is sometimes background motion occurring when the per-

son(s) behind them moves. There are also natural changes

of illumination and shadow rising on the wall behind the

panelists in the back row.

We follow the same evaluation protocol with the

SOA (F1-score and leave-one-panelist-out cross validation)

while we created one DI from 10 consecutive RGB frames

that is in line with SOA.

5. Experimental Analysis & Results

The experimental analysis include: i) comparisons with

SOA VVAD and multimodal VAD approaches, ii) an abla-

tion study, iii) cross-dataset experiments and iv) qualitative

assessment.

5.1. Comparisons with the State­of­the­Art

Table 1 compares the performance of different methods

using Columbia dataset [7]. Studies [7, 27, 28, 5] perform

body motion-based VVAD. Chung and Zisserman [8], Roth

et al. [25] and Afouras et al. [1] apply multimodal VAD.

Studies [28, 5] include unsupervised domain adaptation.

The results of [28, 5] given in Table 1 corresponds to the

setting that whole testing data was input to the unsupervised

domain adaptation component. Chung and Zisserman [8]

models audio and lips motion jointly (so-called SyncNet).

Roth et al. [25] uses three architectures: a) visual embed-

ding network (CNN) in which face images are the inputs,

b) audio embedding network (CNN) and c) prediction net-

work (either fully connected layers followed by softmax or

a Gated Recurrent Units followed by fully connected layer

and softmax). Afouras et al. [1] presents a model using

audio-visual attention to localize sound sources and aggre-

gate the extracted information over time via optical flow.

As seen in Table 1, our method (S-VVAD) outperforms

all the SOA approaches, on average. Importantly, it has the

lowest standard deviation (STD) while performing the best.

This shows that S-VVAD is able to generalize well, result-

ing similar performance independent to test person.

The performance of S-VVAD is a very important

achievement given that i) it analyzes only one modality:

the body motion, thus, does not require synchronization of

video and audio (opposite to [8, 25]), ii) it operates on whole

body of a person without requiring body part detection (op-

posite to [8, 25, 1]), iii) at test time, it does not apply an

additional person detection algorithm, instead works on en-

tire video frame (opposite to all SOA), iv) during training, it

does not rely on bounding boxes tightly surround a person
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Table 1. F1-scores (%) on the Columbia dataset. FT, and NA stand for fine-tuning (see the corresponding reference for details) and not-

available, respectively. All results were obtained by processing with 10-frame window as in [25]. The best result of each column is

emphasized in bold-face.

Method Bell Bollinger Lieberman Long Sick Avg. Std.

[7] 82.90 65.80 73.60 86.90 81.80 78.20 8.00

[27] (Softmax) 86.07 93.30 91.88 73.62 86.34 86.24 8.00

[27] (SVM) 86.34 93.78 92.34 76.09 86.25 86.96 7.00

[8] 93.70 83.40 86.80 97.70 86.10 89.54 6.00

[28, 5] (FT1) 87.28 96.35 92.15 83.03 87.21 89.20 5.00

[5] (FT2) 91.92 98.90 94.05 89.07 92.84 93.36 4.00

[25] NA NA NA NA NA 92.80 NA

[1] 92.60 82.40 88.70 94.40 95.90 90.80 5.41

S-VVAD 92.36 97.23 92.27 95.50 92.48 93.97 2.00

(opposite to [7, 8, 25]), v) it is an end-to-end detector and

does not require applying domain adaptation to generalize

well (opposite to [28, 5]).

Using Modified Columbia dataset, the performance of S-

VVAD is compared with [5]. Beyan et al. [5] is the best per-

forming VVAD method out of all SOA in Table 1, thus we

included it to the comparisons. We also reported the results

of random guess, which was computed by randomly gen-

erating VAD labels and then calculating the F1-score based

on them, for 1000 individual times. The reported score is

the average of these 1000 scores.

Modified Columbia is more challenging than Columbia

dataset as it includes fewer training data at each fold. Addi-

tionally, having multiple persons in a frame introduces ex-

tra challenges for S-VVAD. Instead, for [5], bounding box

ground-truth (implying perfect person detection) was used

in training and test. As seen in Table 2, S-VVAD performed

significantly (p-value < 0.05) better than [5] on average as

well as performing the best for each group (G1-G6).

Table 2. F1-scores (%) on Modified Columbia dataset. G1-G6 re-

fer to groups (see text). The best result of each row is emphasized

in bold-face.
Method Random Guess [5] S-VVAD

G1 42.03 72.09 86.12

G2 50.00 72.49 75.10

G3 40.00 70.00 83.96

G4 39.99 87.49 87.67

G5 50.02 83.88 94.25

G6 40.02 96.46 96.73

Avg. 43.68 80.40 87.30

Std. 5.00 11.00 8.00

5.2. Ablation Study

We carried out an ablation study using Modified

Columbia dataset to evaluate the benefit of the components

of S-VVAD. Corresponding results are given in Table 3.

The ablation study shows that using multi-scale setting

in training as compared to single-scale setting (Section 3.1)

generally improves the performance of the first component

of S-VVAD (C1), resulting in better VAD score on average.

FCN was trained with two settings: by freezing ResNet50

or by updating Blocks of ResNet50 (Section 3.2). The re-

sults show that the further (S-VVAD) performs better than

the former (C1 with multi-scale setting + C2 with freezed

ResNet50). Overall, it can be seen that each component has

a positive contribution.

5.3. Cross­Dataset Analysis

The cross-dataset analysis performed is: training S-

VVAD with the whole Modified Columbia dataset (i.e., the

images are composed of two or three persons) and testing

the trained S-VVAD on the entire video frames of RealVAD

dataset [5]. The corresponding results are given in Table 4,

which are compared with the baseline results. The baselines

include the method of Beyan et al. [5] that is i) trained and

tested on RealVAD dataset (so-called the same-dataset anal-

ysis) while both training and testing images include a single

person at a time and ii) trained on Columbia dataset (i.e.,

the images composed of single person) and tested on Re-

alVAD dataset’s images composed of single person. These

experimental settings are illustrated in supplementary ma-

terial in addition to the localization results of S-VVAD for

the aforementioned cross-dataset analysis.

S-VVAD performs slightly (52.55%) better than [5]

(51.52%) on average, in cross-dataset setting. This is an im-

portant improvement particularly, given that i) the domain

gap between train and test images in our cross-dataset set-

ting (2-3 persons in training, crowd in test) is bigger than

the cross-dataset setting in [5] (single person both in train-

ing and test) and ii) we do not apply any domain adaptation

techniques while [5] is based on unsupervised domain adap-

tation. On the other hand, 53.04% F1-score can be seen

as the upper bound as being obtained by the same-dataset

analysis. There is no statistically significant performance
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Table 3. Ablation study performed on Modified Columbia dataset. G1-G6 refer to groups (see text). See C1 and C2 in Fig. 1. S-VVAD can

be written as ”C1 with (w/) multi-scale setting + C2”. The best result of each column is emphasized in bold-face.

Method G1 G2 G3 G4 G5 G6 Avg. Std.

C1 w/ single-scale setting 60.20 68.77 66.81 86.88 78.69 92.72 75.68 13.00

C1 w/ multi-scale setting 70.58 70.78 69.15 82.35 82.14 91.76 77.79 9.00

C1 w/ multi-scale setting + C2 w/ freezed ResNet50 80.51 74.52 81.11 86.88 89.16 94.61 84.47 7.00

S-VVAD (C1 w/ multi-scale setting + C2) 86.12 75.10 83.96 87.67 94.25 96.73 87.30 8.00

Table 4. Cross-Dataset Analyses: the test set is RealVAD dataset [5], training set is given in bracket for each method. The best result of

each column is emphasized in bold-face.

Method P1 P2 P3 P4 P5 P6 P7 P8 P9 Avg. Std.

[5] (Trained w/ RealVAD) 51.63 53.49 42.92 51.70 44.40 50.48 58.73 67.94 55.75 53.04 7.50

[5] (Train w/ Columbia) 53.56 51.08 41.09 50.22 37.29 50.32 56.74 53.58 69.79 51.52 9.25

S-VVAD (Train w/ Modified Columbia) 58.33 59.28 47.97 44.76 37.28 57.38 55.60 71.34 41.05 52.55 10.69

difference between our method (52.55%) and the result of

the same-set analysis (53.04%).

5.4. Qualitative Assessment

Example qualitative VAD and localization results of S-

VVAD are given in Figure 4. These results were ob-

tained when our method was applied to Modified Columbia

dataset. More results including S-VVAD applied to other

datasets can be found in supplementary material.

In Figure 4, the localization results imposed on the mid-

dle RGB video frame (left) -recall that one dynamic image

is obtained from 10 consecutive RGB video frames- and

then the corresponding bounding boxes (right), if and only

if they are classified correctly, are shown. S-VVAD is able

to differentiate the body motion of the speakers and non-

speakers, which can be observed from the localization re-

sults. Some activities resulting in body motion are changing

the head and/or body pose, opening a bottle, drinking wa-

ter. They have been correctly differentiated from the body

motion due to speaking. On the other hand, there are some

cases, where the localization is performed correctly, i.e., S-

VVAD is able to detect the body motion associated with

speech activity correctly, however, the predicted bounding

boxes are not plotted. This is because the predicted bound-

ing boxes do not supply the IoU rule applied.

6. Conclusions & Future Work

We have demonstrated a novel visual voice activity de-

tector, named S-VVAD, which learns body motion cues re-

lated to speech activity within a weakly supervised segmen-

tation. S-VVAD works on a single modality, is end-to-end,

models the body motion of a person without relying on body

part detectors. At test time, it operates on the whole image,

i.e., it does not apply additional person detectors to localize

a person. It is very practical as it works without any prior

Figure 4. Example localization results (red for not-speaking, green

for speaking) imposed on the middle RGB video frame (left). The

corresponding predicted bounding boxes (red for not-speaking,

green for speaking), which are correctly detected (right).

information, does not have constraints on the number of per-

sons present in a scene or on the structure of the interaction.

It is a generic, person-independent approach.

S-VVAD was validated on various challenging con-

ditions and demonstrated improved results on multiple

datasets. It is able to generalize well, thus, can be applied to

different datasets while being trained on others. S-VVAD

will be extended to process on distributed camera systems.
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