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Abstract

Existing Image Captioning (IC) systems model words as

atomic units in captions and are unable to exploit the struc-

tural information in the words. This makes representation

of rare words very difficult and out-of-vocabulary words im-

possible. Moreover, to avoid computational complexity, ex-

isting IC models operate over a modest sized vocabulary

of frequent words, such that the identity of rare words is

lost. In this work we address this common limitation of

IC systems in dealing with rare words in the corpora. We

decompose words into smaller constituent units ‘subwords’

and represent captions as a sequence of subwords instead of

words. This helps represent all words in the corpora using

a significantly lower subword vocabulary, leading to bet-

ter parameter learning. Using subword language modeling,

our captioning system improves various metric scores, with

a training vocabulary size approximately 90% less than

the baseline and various state-of-the-art word-level mod-

els. Our quantitative and qualitative results and analysis

signify the efficacy of our proposed approach.

1. Introduction

Image captioning is a challenging task that bridges two

different domains of Artificial Intelligence (AI), Computer

Vision (CV) and Natural Language Processing (NLP). It

takes both visual as well as linguistic understanding for a

system to translate visual information into well-formed sen-

tences. Over the past decade, numerous frameworks have

been proposed for captioning [2], [19], [41], amongst which

encoder-decoder based neural models have been very pop-

ular. In this particular framework, encoder transforms the

visual input into a visual embedding, whereas, the decoder

uses the encoded embedding as an input to generate text.

Various encoder-decoder based models differ in the way

of encoding the visual information. While some have used

features from penultimate layers of CNN classifiers [19],

others have focused on extracting the most relevant visual

features, using attention [2]. Leveraging semantic concepts

Figure 1. Our proposed model, which uses subword information,

generates better captions compared to the baseline, which operates

at the word-level. This example shows captions generated by our

model and the baseline for an image. Our model generates the rare

word ‘crochets’ in the output caption. Compared to state-of-the-art

models (UpDown [2], GCN-LSTM [40], Obj2Word [10], AoANet

[11]), our model achieves a higher SPICE score on the MSCOCO

dataset, using a significantly smaller training vocabulary size.

[37], object attributes [41] and relationships [40] has also

garnered interest. In short, a lot of work has been done in

terms of representing the visual input into meaningful latent

representation(s). Such representations play an important

role in IC and can be reflective of a model’s visual under-

standing.

The decoder in an encoder-decoder based IC framework

is usually a language model, which learns to generate cap-

tions as a sequence of words/tokens, given a visual encod-

ing. Existing State-of-The-Art (SOTA) captioning systems

have modeled individual words as atomic units. Captions

have been treated as a sequence of words, completely ignor-

ing the fact that words are also composed of smaller units

called morphemes. To deeply understand the meaning of
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a caption, it can be useful to also leverage upon the com-

position of words. Limitations of the existing word-level

captioning models are: 1) they assume a limited vocabulary

of frequent words, thus poorly generalize rare words into

a single category of ‘unknown words’, 2) these models are

unable to exploit the relationship between the composition

and meaning of words. For example the word ‘dog’ and

‘dogs’ might be considered as two individual words by a

word-based model. However, ‘dogs’ is actually a plural of

‘dog’ and is composed of ‘dog’, and ‘s’.

To alleviate these major limitations of the existing cap-

tioning models, we introduce subword-informed image cap-

tioning (SubICap). Subword units have become preva-

lent in various NLP models over the past few years [27],

[42]. The subword-informed models represent words as

a composition of subwords. Identifying similar subwords

amongst words, can be helpful in exploiting the relation-

ship between word segments, their meanings and compo-

sitionality. Since, the number of plausible subwords in a

corpora is comparatively minuscule vs. the number of plau-

sible words, subword-level models have a smaller number

of trainable parameters compared to the word-level models.

Moreover, subword-level models can effectively represent

rare words. Since words that have similar substrings (such

as ‘flower’ and ‘flowers’) can share similar representations,

the model can see words that share the same sub-strings

with rare words during training, resulting in rare words hav-

ing more informative representations. In addition, the aver-

age frequency of subwords is higher than the frequency of

words, which helps reduce the sparsity issue in the corpora

and leads to better parameter learning and probability esti-

mates. Our contributions in this work are:
1. We propose subword-based language modeling for im-

age captioning as a better alternative to word-level lan-

guage modeling, to adequately handle rare words in the

training set, reduce the training parameters (Sec. 6.1)

and to improve the quality of captions (Sec. 6.2, 7.2).

2. To the best of our knowledge, this is the first work that

employs a learned subword tokenizer for captioning.

3. We demonstrate the impact of choosing different vo-

cabulary sizes for the subword tokenizer on various

metric scores, number of learning parameters and per-

centage of unique captions (Sec. 6.1).

4. An in-depth quantitative (Sec. 6.2, 7.1) and qualitative

analysis (Sec. 7.2) to show that our model improves

upon the word-level baseline not only in terms of pop-

ular metric scores but also on uniqueness and descrip-

tiveness of captions.

2. Related Literature

2.1. Image Captioning

Image captioning is a multi-modal task that aims at

translating visual information into linguistic descriptions.

Over the past decade, image captioning has seen remark-

able progress. Image Captioning (IC) leverages the progress

made in both CV and NLP, by using SOTA deep visual [24],

[14] and linguistic models [9] as building blocks of the IC

framework. Moreover, various strong IC frameworks, such

as encoder-decoder [13], [35] and attention-based models

[2], [11], [38] have been inspired from a closely related

domain, i.e., Machine Translation (MT). Various language

models such as RNNs [20] and Transformers [33] that have

shown promise in MT, have worked very well for IC as well.

2.2. Understanding Composition of Words

The task of image captioning involves both visual and

linguistic understanding. Our focus is more towards im-

proving the later, so that the model can better express the

visual information. Linguistic understanding in humans en-

compasses various aspects. Though it is beyond the scope

of this research to cover all of those, we want to shed

light on one of the stepping stones in language develop-

ment i.e., acquiring phonemic awareness. Phonemic aware-

ness involves the understanding that words are composed of

sounds, sounds are made up of letter(s) (subwords), and let-

ters fit together in different ways to convey different mean-

ings [31]. The ability to decompose words or put them back

together to make new words is one of the foundational skills

that helps in acquiring meaning from text [31]. Therefore,

training language models to compose words from subwords

can in some way be considered analogous to teaching hu-

mans to compose words out of phonemes. Moreover, a lan-

guage model that learns to compose sentences using sub-

word tokens, develops the understanding of both sentence

as well as word composition.

While, phoneme is the smallest units of sound, mor-

pheme is the smallest meaningful part of a word [32]. In

order to understand the meaning of a caption, it is impor-

tant to understand the meaning and composition of individ-

ual words. However, supervised morphological analysis is

very expensive and not that straightforward [32]. Identify-

ing similar subwords which are ‘characters, n-grams, or

word segments’, can be helpful in exploiting the relation-

ship between word segments and their composition. Zhu.

et al, [42] showed that subword-informed models are use-

ful across all language types, with better performance over

subword-agnostic word embeddings.

2.3. Subword Segmentation

Since it is very challenging to perform supervised mor-

phological segmentation of words, unsupervised methods

to autonomously discover segmentations for the words are

widely used [27]. Subwords obtained from such methods

often resemble linguistic morphemes [6]. FastText [4] is

a character n-gram model, which represents each word

as a sum of character n-grams (n belongs to {3,4,5,6}).
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Figure 2. Word-level and subword-level tokenization of a caption

Character-level models learn to form words from charac-

ters instead of character strings/segments.

Subword models that represent words as segments out-

perform character-level models [21], have zero out-of vo-

cabulary rate, and are smaller in size. Byte Pair Encoding

(BPE) [27] is one of the most popular subword tokenization

technique, which given a dataset, learns a fixed-size vocab-

ulary of subwords. Initially, it splits the sentences into in-

dividual characters, then it iteratively merges the pairs of

characters based on their frequency of occurrence; result-

ing in more frequent words not being segmented. How-

ever, BPE is deterministic and splits words into unique se-

quences, which may prevent a model from learning the bet-

ter composition of words. A similar word segmentation

algorithm which is used in BERT [7] is called WordPiece

[26]. While both BPE and WordPiece require data to learn

word segmentations, WordPiece forms the new subwords

based on likelihood instead of pairing frequency.

Unigram language model [16] is a more flexible segmen-

tation algorithm compared to BPE. It is based on a proba-

bilistic language model and is capable of outputting mul-

tiple subword segmentations along with their probabilities.

The final vocabulary contains all individual characters in the

corpus and a mixture of subwords and words. In this paper,

we use unigram language model for subword segmentation.

We also provide a comparison between different subword

segmentation methods in the supplementary material.

2.4. Leveraging Subword Information

Subword-level information is useful in various NLP

tasks such as learning word representations [43], sequence

tagging [7] and machine translation [27]. The subword-

level architectures leverage the structural knowledge of

words, assuming that a word’s meaning can be inferred

from the meaning of its constituents (i.e., subwords).

Subword-based neural architectures decrease data sparsity

by relying on parameterization at the subword-level [16].

To the best of our knowledge, the existing encoder-

decoder based IC approaches for English language ig-

nore the syntactic composition of words from sub-

words/morphemes, except for [30]. Assigning only a sin-

gle vector to each word causes the data sparsity problem.

Subword-agnostic word-level representation models do not

take these structural features into account and are unable

to represent rare words accurately, or unseen words at all.

The closest research to our work is [30], which uses radix-

encoding to transform words into a higher-base to train a

compact LSTM-based IC framework. In contrast to [30]

we use a ‘learned subword segmentation’ algorithm along

with a ‘transformer-based’ IC baseline [10].

2.5. Language Models

Given a visual representation, an IC model seeks to

translate it into a sequence of words. For that task, vari-

ous language models (LMs) have been used in the literature

such as, Maximum-Entropy LM [8], Recurrent Neural Net-

works (RNNs) [35] and LSTMs [2]. Though LSTMs/RNNs

have been a popular choice in IC, they struggle in handling

long-term dependencies and are slow to train. Recently,

Transformer networks [33] have been used in IC [29], [10],

which address various limitations of LSTMs and have also

shown promising results in MT [33], text generation [7] and

understanding [23]. Transformers are becoming the de facto

choice for sequence modeling in NLP. Therefore, we also

use a Transformer based IC model [10], as a baseline for

our work.

3. Subword-informed Image Captioning

Our proposed approach involves using subword-

information for IC. Our model represents each caption as

a sequence of subwords, where subwords are a combination

of strings such as ‘ing’ or ‘ed’. Figure 2 shows an example

of word-level, and subword-level tokenization of a caption.

Tokenization refers to the process of segmenting a stream of

characters into individual units, known as tokens. Tokeniza-

tion is one of the most important steps in language modeling

because it impacts the way a model sees the textual input,

i.e., as a sequence of words, subwords or characters. In this

work, we transform an existing word-level IC model [10]

into a subword-level model. Figure 3 shows the architec-

ture of our model.

3.1. VisualGeometric Feature Extraction

Given an input image I, a number of bounding boxes are

generated for the detected objects. A subset of these over-

lapping bounding boxes are discarded if their intersection-

over-union (IoU) exceeds a threshold t (0.7 in our case).

Furthermore, we only keep those bounding boxes which

have a class prediction probability greater than a thresh-

old of 0.2. For each bounding box we extract a 2048-

dimensional feature vector by applying mean-pooling over

the spatial dimension. The extracted feature vectors are fi-

nally processed through an embedding layer to generate vi-

sual appearance embeddings. These visual appearance em-

beddings are used as input tokens to the first Encoder layer

of the Transformer. For each bounding box, we also ex-

tract geometric features, such as center coordinates (xl, yl),

(xm, ym)), widths (wl, wm) and heights (hl, hm).

98783542



Figure 3. Overview of our proposed model, which consists of an encoder-decoder based Transformer pipeline [10]. During the training

process, the decoder leverages encoded embedding q and a sequence of subwords to predict the masked subword. The subwords generated

by the decoder are detokenized to obtain the output caption. For deeper insight into the encoder architecture, we refer readers to [10]

3.2. Object Relational Transformer

Our transformer based architecture, consists of an en-

coder and a decoder, both of which are comprised of

stacked multihead self-attention and point wise, fully con-

nected feed forward layers. The encoder transforms se-

quence of visual appearance {y1, y2, ..., yN} and geomet-

ric {g1, g2, ..., gN} embeddings to a sequence of continu-

ous embeddings q = (q1, q2, .., qN ). Given q, the decoder

generates a sequence of tokens (t1, t2, .., ts), using output

tokens (previously generated and masked) as an additional

input [33]. In contrast with [10], the decoder in our model

generates subwords, instead of words as output tokens.

The encoder consists of six layers, where each layer is

composed of a multi-head self-attention layer and a feed-

forward neural network. The multi-head self-attention layer

consists of eight identical heads, each of which computes a

query Q, key K and value V for the N input token embed-

dings, given by:

Q = YWQ,K = YWK ,K = YWV (1)

where, Y is the input token matrix containing the visual

embeddings {y1, y2, .., yN} and WQ, WV , and WK are the

learned projections. The attention weight matrix θ for the

visual features is formulated as:

θA =
QKT

√
dk

(2)

where, θA is an attention weight matrix (N × N ), whose

element ωlm
A corresponds to the attention weights between

the lth and mth tokens. θA is modified by incorporating

relative geometric features {g1, g2, ..., gN} of objects. The

visual appearance-based attention weights ωlm
A between the

lth and mth object are multiplied by geometric attention

weights, given by:

ωlm
G = ReLU(Emb(λ(l,m))WG) (3)

where, Emb(·) computes a positional embedding, de-

scribed in [10], WG is a transformation matrix and λ(l,m)
is a displacement vector corresponding to objects l and m

(See supplementary material for details). The geometric

and visual-appearance attention weights ωlm
G and ωlm

A re-

spectively are combined to form visual-geometric attention

wights ωlm, which are computed as:

ωlm =
ωlm
G exp(ωlm

A )
∑N

i=1 ω
li
G exp(ωli

A)
(4)

The output of each attention head is formulated as:

Head(Y ) = softmax(θ)V (5)

where, θ is an NxN matrix, whose elements are the visual-

geometric attention wights ωlm. The outputs of all the at-

tention heads (8 in our case) are concatenated and then mul-

tiplied to a learned projection matrix Wo. Next, the output

of the self-attention layer (MultiHead) is fed to a point-wise

feed-forward network (FFN). The FFN consists of two lin-

ear projection layers with a ReLU activation function in be-

tween.

The decoder uses the encoded visual-geometric embed-

dings q generated from the last encoder layer, to generate

a sequence of subwords. We refer the reader to [33] for

more details on the decoder, as we use adopt their decoder

architecture in this work.
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3.3. Subword Tokenization

In this work we use Unigram Language Model (ULM)

[16] to segment/tokenize words into a vocabulary of sub-

words. Given a set of captions, ULM models the probabil-

ity of a subword sequence s = (s1, s2, ..., sT ) as a product

of the subword occurrence probabilities p(si).

P (s) =

T∏

t=1

p(si) (6)

s∗ =argmax
s∈Z(S)

P (s) (7)

where, s∗ is the most probable segmentation of the input se-

quence and is obtained via viterbi algorithm [36]. Z(S) is a

set of subword candidates for the input sequence S. In order

to obtain the probability of subwords p(si), an Expectation-

Maximization algorithm is used, and we refer the readers to

[16] for more details.

For ULM-based segmentation, a desirable vocabulary

size k has to be pre-defined and then the model seeks to cre-

ate a Vocabulary Vu of subwords by following an iterative

algorithm, which is discussed in [16]. The final vocabulary

Vu obtained through the model contains a mixture of char-

acters, subwords and words in the corpus. Using subword

tokenization, we manage to re-represent the entire corpus

vocabulary V of size j to a vocabulary Vu of size k, where k

is significantly smaller than j. This reduction in vocabulary

size also brings down the model complexity. For example,

the training vocabulary used by the SOTA models [2], [10]

for the MSCOCO dataset is usually around 9,000-10,000

words, which we choose to represent in approximately 1000

subwords. This accounts to about 90% reduction in the vo-

cabulary size. See Table 1 for results.

Detokenization: To allow for a deterministic recovery

of words for output captions, a ‘ ’ marker is attached at

the start of subwords to represent the intra-word boundary.

Subwords are concatenated to form complete words. For

example in Fig. 2, ed will be combined with head to form

a word headed. A sequence of words are then concatenated

with whitespaces in between to form a caption.

3.4. Subword Language Modeling

Given an image I and caption S, let s = (s1, s2, ...,sT ) be

the segmented subword sequence, and q = (q1, q2, ..., qN )

be the visual-geometric embeddings corresponding to S and

I respectively. Our captioning system models the caption

generation probability as P (S|I) = P (s|q), and generates

target subword st conditioned on the target history s<T and

visual embedding:

P (s|q; Θ) =

T∏

t=1

siP (st|q, s<T ; Θ) (8)

where Θ is a set of model parameters. To generate a cap-

tion at the inference stage, we use beam search and apply

post-processing (de-tokenization) to the output tokens. The

post-processing involves converting the segmented subword

sequence to a sequence of words.

4. Implementation Details

4.1. Captioning Model

In this work, we use the PyTorch implementation of [10]

as our baseline, which is a word-level IC model. For our

model, we modify the baseline implementation, to include

subword modeling. All the models in our experiments are

first trained for 30 epochs with a cross-entropy loss, with

an initial learning rate of 5x10−4, using ADAM optimizer,

and a batch size of 15. We decay the initial learning rate by

a factor of 0.8 every 3 epochs. We further train our mod-

els for 10 epochs, with a batch size of 10, using reinforce-

ment learning [25] targeted at optimizing the CIDEr-D [34]

score. We perform early stopping based on the best per-

formance on the validation set. We ran our experiments on

single NVIDIA Titan Xp GPU, on which it took about 1 day

and 3.5 days for cross-entropy and reinforcement learning

based training, respectively.

4.2. Tokenizer

For our baseline model, we use word-based tokeniza-

tion, which uses whitespace as a separator between words

in a caption. We filter out the words that appear less than 5

times in the training set, resulting into a vocabulary of 9,486

words/tokens.

For our model, we use SentencePiece [17], which is a

language independent subword tokenization and detoken-

zation tool. SentencePiece works on raw data and does not

require any initial tokenization of words. It employs various

efficient techniques for training and segmentation with raw

data, to perform subword tokenization. The raw input text

is treated as a sequence of Unicode characters and even the

whitespace is treated as a normal symbol ‘ ’ (U+2581).

Using SentencePiece, we specify Unigram language

model as our choice of subword segmentation algorithm

and also set out the required vocabulary size. We experi-

ment with different vocabulary sizes and analyze the differ-

ence in performance, the details of which are in Section 6.1.

Moreover, to train the baseline and our proposed models we

truncate all the captions in the training set which are longer

than 16 words.

5. Dataset and Metrics

For all our experiments we use one of the most widely

used public captioning dataset MSCOCO [5] which con-

tains 123,287 images, each paired with atleast 5 captions in

English language. To maintain consistency with literature,
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Models
Vocab

Size

Model

Parameters
B1 B2 B3 B4 M R C S

Baseline 9,486 54.9M 75.2 58.8 44.6 33.7 27.5 55.5 111.0 21.0

SubICap-3k 3,078 48.3M 75.3 59.1 45.1 34.3 28.1 55.5 107.0 19.7

SubICap-2k 2,079 47.3M 76.7 60.8 47.0 36.1 29.4 56.7 114.6 20.9

SubICap-1k 1,085 46.3M 76.7 60.8 47.1 36.2 29.7 56.9 116.1 21.1

SubICap-500 579 45.8M 75.8 59.7 46.1 35.4 29.5 56.4 114.0 21.0

SubICap-300 335 45.5M 75.9 59.7 45.9 35.2 29.3 56.1 113.7 21.0

Table 1. Shows the comparison between, training vocabulary size, trainable model parameters, and metric scores of models on the

MSCOCO offline test set. All the models are trained for the standard cross-entropy loss for 30 epochs and use a beam size of 2 for

inference. Highest values are shown in boldface

Figure 4. Comparison between the percentage of unique captions

generated on the MSCOCO offline test set.

we use the publicly available split of MSCOCO1 which pro-

vides 5,000 images for validation and testing each. We re-

port our results on the offline MSCOCO test set, compris-

ing of 5000 images. We evaluate the performance of cap-

tioning models, using the commonly used metrics such as

BLEU [22], METEOR [3], ROUGE-L [18], CIDEr-D [34]

and SPICE [1]. We obtain the scores of these metric us-

ing MSCOCO evaluation toolkit 2. For the sake of brevity,

we re-label the metric names BLEU1, BLEU2, BLEU3,

BLEU4, METEOR, ROUGE-L, CIDEr-D and SPICE to

B1, B2, B3, B4, M, R, C, and S respectively in our Tables.

6. Experiments and Results

6.1. Influence of the Vocabulary Size

Unigram language model based tokenizer requires a pre-

defined vocabulary size of tokens/subwords, to perform un-

supervised segmentation. As explained in Sec. 3.3, once

the desirable vocabulary size is defined, the unigram model

then seeks to iteratively create a vocabulary of subwords.

Therefore, the vocabulary size is an important parame-

ter and can impact the learning of a language model. We

seek to analyse the impact of various vocabulary sizes on

the performance of our captioning model. An optimal bal-

ance is searched between the compactness of the subword

1https://cs.stanford.edu/people/karpathy/deepimagesent/
2https://github.com/tylin/coco-caption

vocabulary and that of caption representation. Generally, a

lower subword vocabulary size leads to a less compact cap-

tion representation and vice versa. As specifying a smaller

vocabulary enforces the unigram model to represent all the

words in the corpus with fewer subwords, it has to break-

down words into smaller subwords, and the resulting cap-

tions are longer sequences of subwords. Following is an

arbitrary example of token sequences generated by the uni-

gram language model tokenizer based on different vocabu-

lary sizes.

• Raw Caption: a cat is climbing a tree

• ULM-1k: [a][cat][is][climb][ ing][a][tree]

• ULM-300: [a][cat][is][c][ l][ i][ m][ b][ ing][a][tree]

where, ULM-1k, and ULM-300 are the names of the Un-

igram language models based on 1k, and 300 vocabu-

lary size, respectively. Various variants of our model are

named SubICap-3k, SubICap-2k, SubICap-1k, SubICap-

500, SubICap-300, where the suffix represents the vocab-

ulary size. For example SubICap-1k uses a vocabulary of

1k subwords.

Table 1 shows the comparison of vocabulary size, train-

able parameters and metric scores of our models, trained

on MSCOCO dataset for 30 epochs using cross-entropy

loss. It can be seen that various variants of our model

outperform the word-level baseline in terms of the met-

ric scores, where, SubICap-1k shows the best performance

amongst all. As discussed in literature, subwords generated

by learned segmentation algorithms often resemble linguis-

tic morphemes [6]. The subword vocabulary size tends to

impact the quality of morphemes/subwords generated by

the Unigram model and that is one of the reason why we

observe a difference in performance due to the vocabulary

size. Moreover, to our understanding SubICap-1k segments

the words in a better way compared to other variants.

We also compare the percentage of unique captions gen-

erated by the baseline and our proposed model, shown in

Figure 4. Note that the training vocabulary sizes of our

proposed models are significantly smaller than those of the

baseline, however, the percentage of unique captions gener-

ated by our models (except for SubICap-3k) is greater than

98813545



Models
Vocab.

Size

Unique

Captions (%age)

Avg. Caption

Length (words)

Baseline 9,486 83.5 9.4

SubICap-1k 1,085 89.0 10.1

Table 2. Comparison between our model (SubICap) and baseline

in terms of percentage of unique captions and descriptiveness after

optimizing both for CIDEr-D score for 10 epochs.

that of the baseline.

Based on our comparison, we choose our model

SubICap-1k for further experiments as it strikes a balance

between the vocabulary size and compactness of caption

representation. Moreover, it also achieves the highest met-

ric scores compared to the other models.

6.2. Caption Uniqueness and Descriptiveness

Uniqueness is an important aspect of caption quality.

Humans tend to be canny in terms of generating diverse

captions, and avoid repeating same generic captions. Exist-

ing neural models suffer from the problem of regurgitating

captions from the training set. The output captions are usu-

ally generic, which can safely attain a higher metric score,

but are less discursive [10]. Table 2 shows that our model

generates a higher percentage of unique captions (89.0%)

compared to the baseline (83.5%). Moreover, the captions

generated by our model are more descriptive, which is re-

flected by the higher average length (no. of words). This

demonstrates the usefulness of subword modeling for the

caption generation task, which not only helps improve the

quantitative scores but also the uniqueness and descriptive-

ness of captions.

7. Comparison with State-of-the-art Models

7.1. Quantitative Analysis

Table 3 shows the comparison between the metric scores

and training vocabulary size of our model against the SOTA

models. First and foremost, it can be observed from Ta-

ble 3 that all the SOTA models, except for [30] have been

trained on a vocabulary 8 to 10 times greater than our

model. COMIC [30] does use the smallest vocabulary, how-

ever, it significantly lags behind in terms of the metrics’

scores. In the case of cross-entropy loss based training,

SubICap-1k not only improves upon the baseline, but it also

shows a competitive performance to AoANet (best perform-

ing model), which uses 10 times larger vocabulary than our

model. We believe that integrating the subword-information

to any SOTA model can improve its performance as we have

demonstrated for the baseline.

We further optimize our model SubICap-1k and the base-

line for CIDEr-D score [25] using self-critical training. Ta-

ble 3 also shows the comparison of metric scores of our

model against the SOTA, after self-critical training. We no-

tice an improvement in METEOR and SPICE scores (2.01%

and 3.13% respectively) of SubICap-1k compared to the

baseline. SubICap-1k also achieves the highest SPICE and

METEOR scores amongst the SOTA models. This shows

that our model generates captions which are semantically

better than those generated by other models [28].

From Table 3, we also observe that our model achieves

a lower CIDEr score (3.2%) compared to the the baseline.

CIDEr is an n-gram based metric, which predominantly

captures the lexical/syntactic correspondence between the

generated and reference captions. As mentioned in the lit-

erature [1], n-gram based metric scores might not always be

the best reflection of caption quality [1]. It is quite possi-

ble for two captions to differ in terms of words or structure,

but carry the same meaning. Another reason behind our

model’s lower CIDEr score compared to the baseline can

be that the baseline tends to regurgitate a higher percent-

age of the training captions (Table 3), which are syntacti-

cally closer to the ground truth (since they are written by

humans), and thus achieve a higher CIDEr score.

SPICE which captures the semantic quality of captions

[1], shows a comparatively higher correlation with human

scores in terms of captioning model assessment [1]. Higher

SPICE and METEOR scores represent better semantic as

well as lexical quality of captions. We also share some qual-

itative examples in Sec. 7.2 to clarify our point of view.

7.2. Qualitative Analysis

While it is a standard practice to compare models in

terms of metric scores, it is also important to have a quali-

tative analysis, because the commonly used measures have

various limitations [15]. Figure 5 and Figure 6 show various

examples of captions generated by our model and the base-

line for qualitative comparison. As our model achieved the

SOTA SPICE scores on MSCOCO offline test split, we pro-

vide a further breakdown of SPICE metric in Table 4. It can

be observed from Table 4, that our metric improves upon

the color, attribute, object, relation and size scores of the

baseline. In Figure 5, we provide examples of captions gen-

erated by our model which achieve a higher SPICE score

compared to the ones generated by the baseline.

As discussed earlier in Sec. 7.1, the n-gram based mea-

sures tend to overlook the semantics and only focus on the

lexical properties of the captions. CIDEr, which is an n-

gram based measure, [28] prefers captions which have a

higher lexical correspondence to the ground truth caption.

However, in various cases, it is quite possible that two cap-

tions which have different words or structure, might carry

the same meaning and vice versa. To present our point of

view, we show a few examples in Figure 6, where CIDEr

gives an equal or a lower score to the caption generated by

our model over the baseline’s. It can be observed that the

captions generated by our model, better reflect the visual
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Cross-Entropy Loss CIDEr-D Optimization

Models Vocab size B1 B4 M R C S B1 B4 M R C S

ReviewNet [39] 9,520 - 29.0 23.7 - 88.6 - - - - - - -

ACVT [37] 8,791 74.0 31.0 26.0 - 94.0 - - - - - - -

COMIC [30] 258 72.9 32.8 - - 100.1 18.5 75.3 34.4 - - 105.0 19.0

UpDown [2] 10,010 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4

GCN-LSTM [40] 10,201 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0

RFNet [12] 9,487 76.4 35.8 27.4 56.8 112.5 20.5 79.1 36.5 27.7 57.3 121.9 21.2

AoANet [11] 10,369 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4

Baseline* [10] 9,486 75.2 33.7 27.5 55.5 111.0 21.0 80.2 38.1 28.7 58.2 127.3 22.3

SubICap-1k 1,085 76.7 36.2 29.7 56.9 116.1 21.1 79.5 37.1 29.8 58.2 123.2 23.0

Table 3. Comparison against state-of-the-art models trained for cross-entropy loss and fine-tuned using self-critical training, on MSCOCO

offline test set. To maintain consistency with literature [10], we generate captions for models (baseline and SubICap) trained with cross-

entropy loss and CIDEr-D optimization, setting beam size to 2 and 5, respectively. * indicates the results obtained from a publicly available

model. Highest scores are shown in bold face.

Color Att. Obj. Rel. Card. Size

Baseline 5.8 10.9 40.5 6.6 5.0 1.2

SubICap-1k 6.2 12.1 40.9 7.0 4.6 1.9

Table 4. Shows the breakdown of SPICE metric scores of our

model and baseline for various categories (Color, Attributes, Ob-

jects, Relationships, Cardinality and Size). The scores reported

are of fine-tuned models using self-critical training for 10 epochs.

Figure 5. Shows the examples of captions and images for which

our model (SubICap) achieves higher SPICE score. Our model

performs better in terms of objects (a), color and object (b), size

(c), and relationship (d). Improvements are shown in green color.

content and are semantically closer to the ground truth cap-

tion, thus they gain a higher SPICE score. Moreover, the

captions generated by our model are also lexically sound

(high METEOR score) and more descriptive (Fig. 5, Ta-

ble 2). Overall, our model shows a promising qualitative

and quantitative performance.

7.3. Conclusion

In this work we proposed a subword-informed caption-

ing model, which treats captions as a sequence of subword

units. In contrast to the existing IC models, which do not

leverage upon the semantic composition of words, and ig-

nore rare words, our model exploits the relationship be-

tween word segments and effectively handles rare words.

Figure 6. A comparison of captions generated by our model

(SubICap-1k) vs. baseline, which are optimized for CIDER-D.

Scores of CIDEr-D (C) and SPICE (S) are provided, along with

the generated and ground truth captions. Mistakes are shown in

red color.

Our experimental results show that our model, not only re-

duces the trainable model parameters, but also significantly

improves upon the quality of captions in terms of unique-

ness and descriptiveness. Moreover, our model achieves

state-of-the-art (SOTA) performance in terms of SPICE and

METEOR scores. SPICE and METEOR are the two metrics

which correlate higher with human judgments compared to

the other commonly used ones [1]. In future, we plan to

investigate the impact of subword tokenization for image

captioning models developed for other languages such as

Chinese and Japanese.
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