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Abstract

Calibrated estimates of uncertainty are critical for many

real-world computer vision applications of deep learning.

While there are several widely-used uncertainty estimation

methods, dropout inference [11] stands out for its simplic-

ity and efficacy. This technique, however, requires multi-

ple forward passes through the network during inference

and therefore can be too resource-intensive to be deployed

in real-time applications. We propose a simple, easy-to-

optimize distillation method for learning the conditional

predictive distribution of a pre-trained dropout model for

fast, sample-free uncertainty estimation in computer vision

tasks. We empirically test the effectiveness of the proposed

method on both semantic segmentation and depth estima-

tion tasks, and demonstrate our method can significantly

reduce the inference time, enabling real-time uncertainty

quantification, while achieving improved quality of both the

uncertainty estimates and predictive performance over the

regular dropout model.

1. Introduction

Uncertainty exists in many machine learning problems

due to noise in the observations and incomplete coverage of

domain. How certain can we trust the model built upon lim-

ited yet imperfect data? Reliable uncertainty estimates are

crucial for trustworthy applications such as medical diag-

nosis and autonomous driving. Many algorithms have been

proposed to estimate the uncertainty of neural networks

(NN) [3, 23, 26, 37]. Among these, the MC dropout [11] is

arguably one of the most popular approaches due to its sim-

plicity and scalability. This approach has been adopted in

different computer vision tasks recently [1, 10]. A follow-

up work [22] further enhanced quality of uncertainty esti-

mates by incorporating both aleatoric and epistemic uncer-

tainty into deep neural networks. Despite its success, MC

dropout requires test-time sampling to obtain uncertainty.

This costly sampling process can introduce severe latency
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Figure 1: An illustration of the proposed method. Given

a trained teacher, a deterministic student is used to ap-

proximately parameterize the predictive distribution of the

teacher model, enabling sample-free uncertainty estimation.

in real-time prediction tasks such as the perception system

of self-driving vehicles and lead to undesired consequences.

In order to eliminate the expensive dropout sampling at

the test-time, prior work [5] has explored distilling knowl-

edge from MC dropout samples of a teacher model into a

student network (Dropout Distillation or DD). Neverthe-

less, DD has several limitations. Specifically, the student

model only learns from the predictive means of the dropout

teacher model, and the dispersion of the teacher’s predic-

tion which entails important uncertainty information asso-

ciated with the predictions [31], is completely neglected in

their approach. To address the problem, in this paper, we

propose an easy-to-optimize, generally applicable distilla-

tion framework for fast, sample-free uncertainty estimation.

Specifically, we approximate the entire predictive distribu-

tion produced by a MC-dropout teacher with flexible para-

metric distributions. At test time, the parameters of the dis-

tribution are output by a single deterministic student net-

work to obtain reliable uncertainty estimates in one forward

pass. In addition, we show that our method can distill both

epistemic and aleatoric uncertainty with little extra compu-

tation.

We examine the effectiveness of the proposed method

on regression and classification with high resolution, real-

world datasets. For regression, we experiment on monocu-
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lar depth estimation using NYU Depth V2 [33] and KITTI

[14]. For classification, we experiment on semantic seg-

mentation using CamVid [4] and VOC2012 [9]. In addition

to significant faster inference time, quantitative and qual-

itative results show the student network produces uncer-

tainty estimates of better quality than those of the teacher

model, i.e. MC dropout pre-trained model. We also demon-

strate the predictive mean and uncertainty obtained with our

method are superior to those learned from DD [5].

2. Related Work

Uncertainty estimation can be obtained for deep learn-

ing in a principled manner through Bayesian neural net-

works [28, 34]. However, they typically suffer from sig-

nificant computational burdens due to the intractability of

posteriors. As such, computational tractability has been a

primary focus of research. One such direction is through

Markov Chain Monte Carlo (MCMC) [34]. For instance,

stochastic gradient versions of MCMC have been proposed

[7,15,27,36] to scale MCMC method to large datasets. Nev-

ertheless, these approaches can be difficult to scale to high-

dimensional data. An alternative solution is through varia-

tional inference in which parametric distributions are used

to approximate the intractable true posteriors of the weights

of neural networks [3, 23, 26, 37]. However, the variational

inference can suffer from sub-optimal performances [2].

There have also been Non-Bayesian techniques for

uncertainty estimation. For instance, an ensemble of

randomly-initialized NNs [25] has shown to be effective.

However, it requires training and saving multiple NNs,

which can be costly in practice. Methods to more efficiently

obtaining ensembles exist [13,18], but these can come at the

cost of quality of uncertainty estimates. Most of the above-

mentioned methods require multiple forward passes of NNs

at test time, which prohibits their deployment in real-time

computer vision systems. Several techniques have been pro-

posed to speed up uncertainty estimation. Postels et al. [35]

proposed a method for sampling-free uncertainty estima-

tion through variance propagation. However, the simplis-

tic assumptions they made about the covariance matrices

of NN activation might lead to inaccurate approximations.

Another approach speeds up the sampling process by lever-

aging the temporal information in videos [19]. However,

the method cannot be generically applied and results in a

non-trivial drop in predictive performance. Ilg et al. [20]

proposed the use of a multi-hypotheses NN with a novel

loss function to obtain sample-free uncertainty estimates in

the optical flow estimation task. However [20] uses an ad-

ditional network to merge the hypotheses that incurs extra

memory cost at inference time.

Distillation-based methods have also been explored. [5]

proposed to distill predictive means from a dropout teacher

to a student network. As addressed above, this leads to the

loss of the epistemic uncertainty of the MC dropout teacher.

Most similar to our method is [32], which uses the Dirich-

let distribution to approximate predictive distribution of an

ensemble of networks. However, the proposed method re-

quires a large size of ensemble to effectively train a student

network, which can be prohibitively expensive for challeng-

ing computer vision tasks. In addition, the proposed use of

the Dirichlet distribution is not only practically hard to op-

timize, but also not applicable for regression tasks.

3. Method

Suppose we have a dataset D = (X,Y ) =
{(xi,yi)}ni=1

, where each (xi,yi) ∈ (X × Y) is i.i.d. and

X ⊆ R
d corresponds to the feature space. Most tasks in

computer vision can be considered as either regression or

classification. For regression, Y ⊆ R
k for some integer k,

and in the context of k-class classification, Y = {1, · · · , k}
is the label space. We define fw(x) to be a neural net-

work such that f : X → Y , and w = {Wi}Li=1
cor-

responds to the parameters of the network with L-layers,

where each Wi is the weight matrix in the i-th layer. We

define the model likelihood p(y|x,w) = p(y|fw(x)). For

regression tasks, it is common to assume p(y|fw(x)) =
N (fw(x), σ2), for some noise term σ. For classification

tasks, p(y|fw(x)) = Softmax(fw(x)) is commonly as-

sumed. To capture epistemic uncertainty, we put a prior

distribution on the weights of the network, p(w). A com-

mon choice is the zero mean Gaussian N (0, I). Bayes The-

orem can then be used to obtain the posterior p(w|X,Y ) =
p(Y |X,w)p(w)/p(Y |X), with which the predictive dis-

tribution can be determined by

p(y|x,Dtrain) =

∫

p(y|x,w)p(w|Dtrain) dw. (1)

3.1. Preliminary: Dropout for Bayesian Deep
Learning

The marginal distribution p(Y |X), and thus

p(w|X,Y ) are often intractable. Variational inference

uses a tractable family of distributions qθ(w) paramaterized

by θ to approximate the true posterior p(w|X,Y ), thereby

turning the problem into a tractable optimization task. MC

dropout, which casts the dropout regularization as approx-

imate Bayesian inference, is one such example [11]. It

involves training NNs with dropout after each weight layer.

With an optimized model, the approximate predictive distri-

bution is given by q(y|x,Dtrain) =
∫

p(y|x,w)qθ(w) dw.

The integral can be approximated through performing

Monte Carlo integration over qθ(w). This corresponds to

dropout at test time. In classification for example,

p(y = c|x,Dtrain) ≈
1

T

T
∑

t=1

Softmax(fwt
(x)), (2)
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where wt ∼ qθ(w) are dropout samples from the NN.

Epistemic uncertainty can be computed with the approxi-

mate inference framework as derived above. For regression,

epistemic uncertainty is captured by the predictive variance,

which can be approximated by computing the variance of

the dropout approximate distribution:

σ2

y ≈ 1

T

T
∑

t=1

fwt
(x)T fwt

(x)− µT
yµy, (3)

where µy =
∑T

t=1
fwt

(x). In the context of classification,

numerous measures have been proposed as uncertainty es-

timates [12]. In this paper, we use the mutual information

between the predictions and the model posterior (BALD),

I [y,w|x,Dtrain] = H [y|x,Dtrain]− E [H [y|x,w]]
(4)

as the uncertainty estimates in classification tasks.

As proposed by Kendall and Gal [22], aleatoric uncer-

tainty can also be incorporated into the dropout model for

concurrent estimation of both the epistemic and aleatoric

uncertainty. To do so, an input-dependent observation noise

parameter σ̂
2

is output together with the prediction

[

µ̂, σ̂2
]

= fw(x), (5)

where σ̂
2

is a vector with the same dimension as ŷ that

represents a diagonal covariance matrix. σ̂ can be opti-

mized with maximum likelihood estimation by assuming

that aleatoric uncertainty follows a parametric distribution

(e.g Gaussian) for regression. For classification, this Gaus-

sian distribution is placed over the logit space. Although

the epistemic and aleatoric uncertainties are not mutually

exclusive, the total uncertainty can be approximated using

Var(y) ≈ 1

T

T
∑

t=1

µ̂
T
t µ̂t − µT

yµy +
1

T

T
∑

t=1

σ̂
2

t (6)

where µy =
∑T

t=1
µ̂t and the first and second term in the

above expression approximates the epistemic and aleatoric

uncertainties respectively.

3.2. A Teacher­Student Paradigm for Sample­free
Uncertainty Estimation

Despite the success of the MC dropout, inferring uncer-

tainty at test-time often requires multiple forward passes to

generate samples of prediction, limiting its application to

many time-sensitive applications. In this paper, we pro-

pose to use a deterministic neural network fφ(x) to param-

eterize a distribution r(y|x,Dtrain) that approximates the

predictive distribution q(y|x,Dtrain) of the dropout model.

Specifically, fφ(x) learns to directly output the parame-

ters of r(y|x,Dtrain). When trained, fφ(x) only requires

one forward pass to infer both predictive mean and un-

certainty from the parameterized distribution r(y|x,Dtrain),
thus eliminating expensive sampling processes at test time.

Training fφ(x) is straight-forward using a teacher-

student paradigm similar to the knowledge distillation [17].

We first train a Bayesian neural network (BNN) fw(x) (e.g.

a dropout model) on Dtrain. We then generate samples of

predictions from the pre-trained fw(x). These samples

serve as “observations” from the distribution q(y|x,Dtrain)
for fφ(x) to learn the parameters of r(y|x,Dtrain) given

each input x ∈ Dtrain. Eventually fφ(x) learns an ef-

ficient mapping from input images to the parameters of

the distribution r(y|x,Dtrain) that accurately approximates

q(y|x,Dtrain). For simplicity, in the following illustration

we term the BNN fw(x) as the teacher model and fφ(x) as

the student model.

3.2.1 Sampling from the Bayesian Teacher

As mentioned above, predictive samples {ŷt =
fwt

(x)}mt=1
are generated from the teacher to train

the student. In the more complicated scenario where

aleatoric uncertainty is modeled by teacher, we incorporate

aleatoric uncertainty into each predictive sample with

ŷt = µ̂t + σ̂tǫ, ǫ ∼ N (0, I). (7)

where σ̂t is the aleatoric uncertainty output by the teacher

given an input. In practice, σ̂t can be noisy. To stabilize

training, instead of σ̂
2

t , we first compute empirical mean

σ̃2
, 1

T

∑T

t=1
σ̂

2

t , and use σ̃2 to generate all samples

{ŷt}mt=1
.

The larger the number of samples, the more accurate the

student approximation can be to the teacher predictive dis-

tribution. However, sampling a large number of samples re-

quires intensive computational resources. To cope with this

challenge, we generate a small number of m predictive sam-

ples from the teacher for each input on-the-fly at each epoch

during training. In order to learn aleatoric uncertainty, we

further get k random samples from N (0, I) for each predic-

tive sample
[

µ̂t, σ̃
2
]

(see Eq. 7). In practice we use m = 5
and k = 10. As we demonstrate in the experimental sec-

tion, a small number of m and k per input is sufficient to

learn student model with excellent performance.

3.2.2 Optimizing the Student

We use maximum likelihood estimation (MLE) to opti-

mize fφ(x). Given the samples {ŷt}mt=1
generated by the

teacher, we minimize the negative log likelihood for each

input x

Ls = −
∑

t

log r (ŷt|x;φ) . (8)
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where r(ŷt|x;φ) is parameterized by fφ(x). In order to

avoid division by zero and enable unconstrained optimiza-

tion of the variance, we use log variance s = log(σ̂2) as the

output of the student. Thus, we have [µ̂, s] = fφ(x).
For regression problems, we use the Laplace distribu-

tion to approximate the variational predictive distribution.

For simplicity, we assume independence among all the di-

mensions of outputs so that log variance s is a vector of

the same dimension as µ̂. Given the Laplace assumption,

a numerically stable MLE training objective can be derived

from Eq. 8 as

Ls =
1

N

1

M

∑

i,t

√
2 exp

(

−1

2
si

)

|ŷti − µ̂i|+
1

2
si (9)

where i and t corresponds to the summation over the output

space and the generated samples respectively and N and M
are number of instances (e.g pixels) in the output space and

the generated predictive samples from teacher, respectively.

The reason to choose Laplace distribution over Gaussian

distribution is because it is more appropriate to model the

variances of residuals with ℓ1 loss, which usually outper-

forms ℓ2 loss in computer vision tasks.

For classification problems, we use a logit-normal dis-

tribution to model teacher’s approximate predictive distri-

bution q(y|x,Dtrain) on the simplex1. In practice, we use a

Gaussian distribution with a diagonal covariance matrix to

approximate the teacher’s predictive distribution on the logit

space. As a result, the student model outputs µi and si as

the mean and log variance of the Gaussian for each member

of the logits. Similar to the regression set-up, we derive a

numerically stable Gaussian MLE training objective

Ls =
1

N

1

M

∑

i,t

1

2
exp (−si) ||ŷti − µ̂i| |2 +

1

2
si (10)

where yti are predicted logits sampled from teacher. Since

close-form solution does not exist for the moments of a

logit-normal distribution, Monte Carlo sampling on the

logit space is performed at test time to obtain uncertainty

estimates. This only incurs a tiny computational overhead

during inference as it amounts to multiple forward passes

of one layer of the student network (the softmax function).

As shown in experiments, the student model still has a large

advantage in inference time over its teacher in addition to

better performance.

We empirically observe that training solely with the

above loss functions sometimes leads to sub-optimal pre-

dictive performance. This may be due to the noisy sig-

nal provided by the generated samples. Thus we leverage

ground truth labels in addition to predictive samples from

the teacher to stabilize the training of the student model. We

1Dirichlet distribution is an obvious alternative, but we empirically ob-

serve that training with logit-normal is much more numerically stable.

Figure 2: Example predictions on CamVid. Each uncer-

tainty map shows the sum of aleatoric and epistemic uncer-

tainty. Same for all the following example plots.

use the loss function for which the teacher model is trained

in conjunction with the Ls, leading to the total loss

Ltotal = Ls + λLt, (11)

where the λ is a hyper-parameter to be tuned and Lt cor-

responds to the categorical cross entropy loss for classifi-

cation tasks or L1 loss for regression tasks. We found that

λ = 1 generally performs well for our experiments.

3.2.3 Additional Augmentation

When the same training dataset is used for both the teacher

and the student training, the student may underestimate the

epistemic uncertainty of the teacher due to overfitting of the

teacher network to the training data. Ideally, in order to fully

capture the teacher predictive distribution, the dataset used

to train the student should not overlap with the one for the

teacher. However, training using only a subset of available

samples can lead to sub-optimal performance. To alleviate

this problem, we perturb the training set during the train-

ing of the student using extra data augmentation methods

unused when training the teacher, in order to synthetically

generate new samples unseen by the teacher model. We

choose color jittering as the augmentation method that aug-

ments each image via color jitter with random variation in

the range of [−0.2, 0.2] in four aspects: brightness, contrast,

hue, and saturation when training the student.

As we demonstrate below, this extra augmentation dur-

ing student training can be crucial for enhanced quality of

uncertainty estimates. We emphasize that the additional

gain in uncertainty estimates does not directly come from

data augmentation, but rather from teacher predictions that

more closely correspond to the test-time predictive distribu-

tions as a consequence of this augmentation. In the experi-

ments below, we show that the teacher model does not have

the same performance boost with the extra augmentation.

4. Experiments

We conduct experiments on two pixel-wise computer vi-

sion tasks: semantic segmentation and depth regression. We
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compare the performance of the proposed method with that

of the teacher models using MC dropout. For a holistic eval-

uation, we consider teacher networks trained both with and

without the aleatoric uncertainty. Following [22, 35], we

use 50 samples for MC dropout to evaluate teacher’s per-

formance and uncertainty. Architectures identical to that

of the teacher models without the dropout layers are used

as student models. As discussed in the previous section,

we use 50 samples from the logit space to evaluate uncer-

tainty (BALD) of student models for classification tasks. To

demonstrate the general applicability, we also show the ef-

fectiveness of the proposed method when the teacher net-

work corresponds to a Deep Ensemble [25].

4.0.1 Evaluation Metrics

On top of metrics to evaluate the performance of the predic-

tive means of our models, we measure both the Area Un-

der the Sparsification Error curve (AUSE) [20] and the ex-

pected calibration error (ECE) [16] as measures to evaluate

the quality of uncertainty estimates. In essence, AUSE mea-

sures how much the estimated uncertainty coincides with

true predictive errors. Brier score and the mean absolute er-

ror are used as predictive errors to compute AUSE for clas-

sification and regression tasks respectively. In the context

of classification, ECE measures how much the predictive

means of probabilities from the softmax function are repre-

sentative of the true correctness of predictions. In the con-

text of regression, we use ECE described in [24] to quantify

the amount of mismatch between the predictive distribution

and the empirical CDFs. We follow [24] and compute ECE

with the ℓ2 norm with a bin size of 30.

4.1. Semantic Segmentation

Bayesian SegNet [21], which contains dropout layers in-

serted after the central four encoder and decoder units, was

proposed to obtain uncertainty estimates for semantic seg-

mentation. In this work, we use the architecture with a

dropout rate of 0.5 as the teacher model for all our experi-

ments. We use the CamVid and VOC2012 datasets.

For CamVid, following Kendall et al. [21], we use 11
generalized classes and a downsampled image size of 360×
480. For the teacher network, we train using the Stochas-

tic Gradient Descent (SGD) with an initial learning rate of

10−3, a momentum of 0.9, and a weight decay of 5× 10−4

for 100,000 steps. In order to achieve faster convergence,

we initialize the student network using the weights of the

teacher network. To this end, a smaller initial learning rate

of 5 × 10−4 is used to train the student network for 80,000

steps. We employ a “poly” learning rate policy on both the

teacher and student networks as done by Chen et al. [6]. We

use a batch size of 4 for both per step.

For VOC2012, we use the same augmented “train” and

Figure 3: Example predictions on Pascal VOC2012.

“val” split as in [6]. Input images are resized to 224× 224.

For the optimal performance of the teacher model, SGD

with a higher initial learning rate of 10−2 is used instead,

with a batch size of 8 for 150000 steps. Similarly, we ini-

tialize the student model with the weights of the teacher.

The student model is trained for 100000 steps with an ini-

tial learning rate of 10−3 using a size of 8 per step. The

performance on the “val” split is reported in the results. We

also include the results of the student models trained using

Dropout Distillation (DD) [5] as a baseline comparison.

4.1.1 Evaluation

Results for both the teacher and the student are summa-

rized in Table 1. On top of a significant boost in run-time,

the student network also leads to improvements in terms of

most of the metrics evaluated. We believe the reason for

the observed improvements in both predictive performance

and uncertainty estimates is mainly due to learning the en-

tire predictive distribution implicitly through samples from

the teacher models with the proposed optimization objective

can have the loss attenuation effect as described in [22]. In

contrast, Dropout Distribution (DD) [5], which only distills

the mean prediction of the teacher as the standard knowl-

edge distillation, shows worse performances of the student

than those of the teachers in all the metrics. This further

demonstrates the benefit of distilling the entire predictive

distribution from the teacher.

Figure 2 and 3 are random selected examples from the

validation set of CamVid and Pascal VOC respectively. Vi-

sual examples suggest that the student model can accu-

rately capture both the predictive mean and uncertainty of

the teacher model. Furthermore, a closer comparison re-

veals the exceptional quality of the uncertainty estimates

produced by the student model. For instance, in the second

example from the CamVid dataset in Figure 2, a small part

of the ego vehicle is captured by the camera at the bottom

of the figure. While the teacher model confidently predicts

the area as “road surface”, the student model highlights this

subtle anomaly with high uncertainty estimates. A simi-

lar contrast is also observed in the top example of Figure
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Camvid

Model T S DD [5] T+AU S+AU

Accuracy ↑ 0.906 0.907 0.903 0.907 0.909

Classwise Acc ↑ 0.764 0.765 0.747 0.766 0.750

IOU ↑ 0.645 0.650 0.642 0.645 0.650

ECE ↓ (×10
−3 ) 3.78 2.23 6.73 3.67 2.86

AUSE ↓ (×10
−2 ) 1.47 1.60 2.59 1.63 1.60

Runtime (s) ↓ 1.6 0.078 0.078 2.1 0.078

Pascal VOC

Model T S DD [5] T+AU S+AU

Accuracy ↑ 0.834 0.851 0.828 0.831 0.848

Classwise Acc ↑ 0.813 0.828 0.806 0.809 0.827

IOU ↑ 0.697 0.727 0.691 0.693 0.722

ECE ↓ (×10
−3 ) 62.7 59.0 67.5 63.0 59.0

AUSE ↓ (×10
−2 ) 4.35 3.82 4.86 4.20 4.31

Runtime (s) ↓ 0.51 0.028 0.028 0.68 0.028

Table 1: Results on the segmentation problem. The “T”,

“S” and “AU” corresponds to the teacher and student model,

and the aleatoric uncertainty respectively. “T+AU” corre-

sponds to a teacher model trained with the aleatoric un-

certainty. “DD” corresponds to the student trained using

Dropout Distillation [5]. Best performing results for each

teacher-student pair are bold-faced.

3, where the boundary of people is assigned much higher

uncertainty by the student model. Besides, the bowls and

plates on the dining table, which are not in the list of labeled

classes for the dataset, also “confuses” the student model,

but not the teacher.

4.1.2 Run-Time Comparison

Figure 4 (a)-(c) illustrate a comparison of running time and

performance using different numbers of samples for MC

dropout. While the running time of MC dropout can be

shortened with fewer samples, it comes at the cost of quality

of prediction and uncertainty estimates. The running time

of MC Dropout is optimized by caching results before the

first dropout layer for a fair comparison.

We further demonstrate the merit of the proposed method

by comparing the running time of the student with sev-

eral other recently proposed sample-free methods for uncer-

tainty estimates. Figure 4 (d) illustrates the speed boost with

different methods on the CamVid dataset with Bayesian

SegNet. The ratios are computed with respect to the same

baseline of MC dropout with 50 samples at test time. Our

proposed method achieves a more significant boost in speed

than previously proposed methods for accelerating dropout

inference, in addition to other advantages such as wider ap-

plicability and improved predictive performance.

(a) (b)

(c) (d)

Figure 4: (a)-(c): Comparison of performance against the

running time for both the teacher (with the aleatoric uncer-

tainty) and student model using the CamVid dataset. (d)

Speed-up ratios of uncertainty estimates for the CamVid

dataset with the Bayesian SegNet compared to Huang et

al. [19] and Postels et al. [35], two other sample-free un-

certainty estimation methods.

Figure 5: Performance of models trained with CamVid and

evaluated on Cityscapes.

4.1.3 Performance under Distribution Shift

We also evaluate the performance of the proposed method

under a distribution shift using models trained with the

CamVid dataset. The Cityscapes dataset [8], which con-

tains street scenes collected from different cities, is an ideal

dataset for such evaluation. We emphasize that neither the

teacher nor the student sees images from the Cityscapes

dataset during training. The results are summarized in Fig-

ure 5, which is evaluated on the overlapped classes be-

tween CamVid and Cityscapes. Surprisingly, while both

the teacher and student models perform unsatisfactorily,

the student performs significantly better than the teacher

in terms of all of the metrics evaluated, suggesting its

enhanced robustness against the distribution shift when
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Figure 6: Top: Relative means of BALD for samples of seen

and unseen classes during training compared to the “Refer-

ence” models, which refer to models trained with both seen

and unseen classes. Bottom: Distribution of BALD for sam-

ples of seen and unseen classes during training.

Figure 7: Example predictions on CamVid when “pedes-

trian” and “bicyclist” are held out during training. “Refer-

ence” refers to models trained with all classes.

trained with the proposed teacher-student pipeline. We hy-

pothesis that by seeing the distribution of soft labels from

a bayesian teacher from the distillation process, the student

learns to output less confident, more generalizable outputs.

The true cause can leave for further works. This can be

important for lots of application domains with long-tail sce-

narios like autonomous driving.

4.1.4 Outlier Detection

In addition, we examine the effectiveness of the uncertainty

estimates for outlier detection using the CamVid dataset.

Following [35], we use “pedestrian” and “bicyclist” as held-

out classes and exclude them from training. Ideally, classes

unseen during training should have much higher uncertainty

estimates than that of the seen classes. We show in Fig-

ure 6 comparisons of relative means of the uncertainty es-

timates against those of “reference” models, which refer

to models trained with both seen and unseen classes, for

Figure 8: Example predictions on NYU.

both inlier and outlier classes. While both teacher and stu-

dent assign higher uncertainty to outlier classes compared

to the “reference” models on average, the relative mean is

much higher for the student. To further quantify the per-

formance, we also compute the Jensen–Shannon distance

between distributions of uncertainty estimates of inlier and

outlier classes [29]. Again, the difference in the inlier and

outlier distribution is larger for the student network, sug-

gesting its enhanced ability for outlier detection. Lastly, we

show in Figure 7 two randomly chosen examples to illus-

trate the difference between teacher and student. As seen

clearly, regions with pedestrians and bicyclists have higher

uncertainty estimates when they are not present in training

for both the teacher and student. The magnitude is much

larger for the student as represented by bright spots in the

uncertainty plot.

4.2. Pixel­Wise Depth Estimation

For pixel-wise depth estimation tasks, NYU DEPTH V2

(NYU) and the KITTI Odometry dataset (KITTI) are used

to conduct experiments. We follow the same ResNet-based

architecture to [30] for the training of both datasets in RGB

based depth estimation, with dropout p = 0.2 placed after

each convolutional layer except the final one. For NYU,

we use the same train/test split as in [30] and for KITTI

we train our models on sequences 00-10 and evaluate them

on sequences 11-21. Identical procedures are used to train

the teacher models for both NYU and KITTI. During train-

ing, SGD optimizer with an initial learning rate of 0.01, a

momentum of 0.9, and weight decay of 10−4 with ”poly”

learning rate poly is adopted for a total of 40 epochs. For

NYU, we initialize the student model with the weights of

the teacher and train the student model for 30 epochs using

a smaller learning rate of 0.005. We empirically observe

that initializing with the teacher model for KITTI leads to

overfitting to the training set and thus we train the student

model from scratch with the identical procedure as used for

teacher training. We use a batch size of 8 in all of the depth

estimation experiments.
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NYU KITTI

Model T S T+AU S+AU T S T+AU S+AU

RMSE ↓ 0.542 0.540 0.548 0.548 4.80 4.75 4.83 4.81

REL ↓ 0.155 0.152 0.158 0.154 0.123 0.122 0.117 0.117

log 10 ↓ 0.065 0.064 0.065 0.064 0.053 0.052 0.052 0.051

δ1 ↑ 0.793 0.798 0.794 0.799 0.843 0.847 0.845 0.846

δ2 ↑ 0.947 0.949 0.945 0.946 0.948 0.951 0.950 0.949

δ3 ↑ 0.985 0.984 0.982 0.981 0.981 0.982 0.981 0.981

ECE ↓ (×10
−2 ) 9.38 8.09 5.79 5.13 7.80 2.95 4.53 2.18

AUSE ↓ (×10
−2 ) 6.01 6.06 5.88 5.82 0.701 0.660 0.597 0.595

Runtime (s) ↓ 0.73 0.016 0.739 0.016 0.28 0.007 0.29 0.007

Table 2: Results on the depth estimation. The “T”, “S” and

“AU” corresponds to the teacher and student model, and the

aleatoric uncertainty respectively. “T+AU” corresponds to

a teacher model trained with the aleatoric uncertainty.

CamVid NYU

ECE (×10
−3 ) AUSE (×10

−2 ) ECE (×10
−3 ) AUSE (×10

−2 )

T w/o AUG 3.67 1.62 57.9 5.88

T w/ AUG 3.90 1.62 57.1 5.90

S w/o AUG 4.63 2.19 54.0 5.91

S w/ AUG 2.86 1.60 51.3 5.80

S w/ Ens T 2.96 1.91 56.3 5.93

Table 3: Top-4 Rows: Impact of adding augmentation in

training on quality of uncertainty produced on the CamVid

and NYU datasets. ”T” and ”S” represents teacher and

student models, and ”AUG” corresponds to augmentation.

Last Row: Uncertainty performance of student model when

a deep ensemble with five NNs is used as the teacher model.

4.2.1 Evaluation

The quantitative performance of both the teacher and the

student models is summarized in Table 2. Similar to seg-

mentation tasks, the student model outperforms the teacher

in most of the evaluation metrics. Example predictions

shown in Figure 8 again illustrate that the student network

is able to closely approximate the uncertainty estimates pro-

duced by the teacher model. Moreover, as more number of

dropout layers are inserted into the NNs for experiments

with depth estimation, the relative speed-up ratio achieved

by the student model is further increased due to less cached

computation for the teacher. For instance, the student model

achieves a speed-up ratio of 46 for the NYU dataset.

4.3. Ablation Study on Additional Augmentation

To demonstrate the importance of additional augmenta-

tion during student training, we also summarize in Table 3

results when the student is trained without extra augmenta-

tion. Using extra augmentation in the student training pro-

cess as discussed in Section 3.2.3 helps the student produce

much better uncertainty estimation. We can also see that the

same extra augmentation does not improve the performance

of the teacher’s uncertainty estimation, suggesting that the

student model benefits from seeing the teacher’s predictions

more closely aligned with the test-time predictive distribu-

tions, rather from data augmentation itself.

4.4. Distilling from Deep Ensemble

To examine the effectiveness of using deep ensembles as

teachers [32], we train an ensemble of deterministic neural

networks with aleatoric uncertainty [25]. The training detail

is identical to that described above. Due to limited computa-

tional resources, we fix the number of models in the ensem-

ble to five. Dirichlet distribution is not used to approximate

teacher’s predictive distribution for classification as in [32]

because we empirically found it very numerically unstable

and led to failure of convergence. We show the uncertainty

results in Table 3. Full results can be found in the Appendix.

As seen clearly from Table 3, the student obtained from the

ensemble teacher have worse calibration performance than

the student distilled from MC-Dropout teachers. The gap

is likely due to the difficulty in learning a good predictive

distribution with just 5 samples.

4.5. Discussion

Our experiments show that incorporating aleotoric un-

certainty can result in minimal improvements for both

teachers and students. This could be caused by signifi-

cant overlaps between the two types of uncertainties learned

by the teacher model, since the two types of uncertainties

are not mutually exclusive, and can coincide significantly

[22]. Nonetheless, aleatoric uncertainty can be beneficial

for other tasks and datasets. The goal of the paper is to pro-

pose a general distillation strategy capable of also incorpo-

rating aleotoric uncertainty. Using the proposed approach,

as clearly seen from the experimental results, students can

match or surpass their teacher models in performance with

or without aleatoric uncertainty.

We also stress that, since the student is supervised by

both the ground truth labels and the teacher’s predictions,

there can be discrepancies in predictive distributions be-

tween the teacher and the student models. Nevertheless, we

believe these discrepancies can be beneficial and account

for the improved performance of the student. As demon-

strated, student models produce well-calibrated uncertainty

maps that also semantically make sense without the need

for expensive multiple forward passes.

5. Conclusion

We presented a two-stage teacher-student framework for

fast uncertainty estimates. The proposed student training

procedure is not only capable of producing uncertainty esti-

mates at no extra cost but also leads to improved predictive

performance and more informative uncertainty estimates.

We believe the method gets us one step closer to the realm

of trustworthy deep learning for computer vision.
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