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Abstract

This paper presents a 3D human pose estimation sys-

tem that uses a stereo pair of 360° sensors to capture the

complete scene from a single location. The approach com-

bines the advantages of omnidirectional capture, the accu-

racy of multiple view 3D pose estimation and the portability

of monocular acquisition. Joint monocular belief maps for

joint locations are estimated from 360° images and are used

to fit a 3D skeleton to each frame. Temporal data associa-

tion and smoothing is performed to produce accurate 3D

pose estimates throughout the sequence. We evaluate our

system on the Panoptic Studio dataset, as well as real 360°

video for tracking multiple people, demonstrating an aver-

age Mean Per Joint Position Error of 12.47cm with 30cm

baseline cameras. We also demonstrate improved capabili-

ties over perspective and 360° multi-view systems when pre-

sented with limited camera views of the subject.

1. Introduction

3D human pose estimation is an often studied area of

Computer Vision, wherein we attempt to find the 3D coor-

dinates of a skeleton or model of a person, given only 2D

images or videos. Whilst its main application is in the enter-

tainment sector, 3D pose estimates can also be used in med-

ical and assisted living fields, as well as in bio-mechanical

applications. While entertainment fields traditionally used

special clothing or other actor-mounted markers, this is time

consuming and often impractical in unconstrained environ-

ments. To this end, markerless techniques were devised,

and are a major focus of modern 3D pose estimation sys-

tems.

Modern 3D pose estimation systems can be broadly de-

scribed in two categories, dependent on the camera arrange-

ment. Monocular systems use a single input camera, com-

bined with either deep learning approaches and/or a large

corpus of example poses to produce a 3D pose estimate.

These systems are lightweight and portable, due to the use

of a single camera, but suffer from depth ambiguity unless

the system is tuned to a specific performer[29][9]. Con-

versely, stereo or multi-view systems combine input from

2 or more cameras to provide accurate pose estimates, re-

moving depth ambiguity and placing the pose in a constant

world coordinate system. However, such systems are ex-

pensive, since achieving total scene coverage currently re-

quires a network of perspective cameras together with cali-

bration, synchronisation and data storage, and thus are gen-

erally located in purpose built studios. More pertinently,

both of these arrangements have a major drawback of cap-

ture space, restricted to either a single perspective camera in

the case of monocular systems, or to a tightly defined cap-

ture volume in the case of multi-view systems. In this paper,

we propose a single pair of 360° cameras that provide com-

plete scene coverage for 3D human pose estimation, one

that is free of these restrictions.

The motivation of this work, therefore, is to leverage

360° sensors to gain the benefits of both systems, while also

overcoming the capture space problem. We arrange a pair of

360° sensors vertically (Figure 2a) on a single tripod, which

can be placed at the centre of any “capture space”. Due to

the omni-directional nature of the sensors, our capture vol-

ume has no limit beyond the resolution of the camera, while

the 360° camera pair provides a compact system with com-

plete scene coverage, providing a practical, accurate and

low-cost alternative to existing 3D pose estimation systems.

1.1. Contribution

Our main contribution is a temporally consistent 3D hu-

man pose estimation system for a complete scene captured

using a pair of vertically aligned 360° cameras with a nar-

row baseline. State of the art approaches require a net-

work of more than 2 cameras for complete scene coverage,

while stereo estimation systems generally require a horizon-

tal baseline in order to reliably estimate depth information.

The proposed approach overcomes these limitations with a

single pair of vertically displaced 360° cameras. This con-

figuration combines the lightweight portability of a monoc-

ular system with the depth accuracy of a multi-view system,
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Figure 1: An overview of our system. Joint belief maps are obtained from input images using Openpose[4], then approxi-

mated as 2D Gaussians. Skeletons are then fitted to these Gaussians in each frame, before being smoothed across the entire

sequence.

while capturing the entire scene without the need of a large

camera count.

2. Related Works

At its core, 3D pose estimation needs to accurately re-

construct the position and motion of a given subject at each

frame. More specifically, we need to identify the individual

body components (as joints, body segments etc.), calculate

their 3D position and use the information to reason about

the location of any unidentified points, thus estimating the

full 3D pose in each frame.

As noted in Section 1, 3D human pose estimation sys-

tems can be split into two categories. Single camera, or

monocular pose estimation systems, use a single camera

and “lift” estimated 2D pose information to a 3D pose.

Stereo camera, or multi-view pose estimation systems, tri-

angulate between multiple cameras from different angles to

capture images that allow a 3D pose to be calculated from

multiple 2D pose estimates.

2.1. Single Camera 3D Human Pose Estimation

Monocular images have an inherent depth ambiguity, in

that without prior knowledge of the subject (for example,

their height), we cannot accurately determine their posi-

tion relative to the camera. A simple approach to solving

this problem is the use of a body model with the correct

dimensions. Bogo et al. [3] use a CNN to estimate 2D

joint locations, then optimise the parameters of a Skinned

Multi-Person Linear Model (SMPL) body model, using a

capsule approximation of SMPL to stop implausible body

poses from occurring. However, they require the camera

focal length in advance, as well as assuming the subject is

standing parallel to the the image plane.

Tome et al. [23] created a probabilistic skeletal model

from by applying Principal Component Analysis (PCA) on

the Human 3.6M dataset, then predict 2D pose positions

from an input image, iteratively fitting 3D model parameters

to the 2D joint positions and refining. This in turn informs

the 2D joint positions, which can be updated if the 3D pose

demonstrates their inaccuracy (for example, transposing the

left and right hand).

Using a mesh fitting approach rather than keypoint fit-

ting, Kanazawa et al. [14] attempt to fit the projection of

a 3D body mesh to a 2D image. SMPL model parameters

are optimised, then the resulting body model projected as

a mesh onto the input image, as well as being fed into a

discriminator, which determines if the resulting mesh con-

stitutes a person. This prevents results that minimise repro-

jection error but that are still improbable or anatomically

impossible.

Incorporating temporal information, Pavllo et al. [19]

use a multi-dimensional CNN with dilated convolutions to

optimise a skeletal path that best explains 2D pose estimates

across a block of hundreds of frames. An auto-encoder is

also trained to project unlabelled 2D joint information to 3D

joint positions, along with an auto-decoder that performs

the reverse. Skeletal path and 3D positions are then jointly

optimised during training.

Taking a hat mounted wide angle lens, Xu et al. [30]

make use of a CNN, trained on a large and bespoke syn-

thetic dataset. This trained CNN is capable of estimating 2D

joint locations from a fisheye projection, using two separate

branches to account for the distortion. These joint belief

maps are then fed into a distance module which estimates

the joint distance, before a full 3D pose is estimated. This

produces results relative to the camera, however given cam-

era position it becomes very easy to self occlude limbs.

Kolotouros et al. [15] provides another mesh deforma-

tion technique, again using the SMPL model. In contrast

to previous techniques, model parameters are not directly

optimised, but rather a proposed Graph CNN is utilized to

find a mesh deformation matching the input image. Once

found, this deformed mesh can be used to fit the parameters

of a SMPL model for use in other applications. This also

manages to achieve near real time inference, however chal-

lenging poses and multiple people in frame cause issues.

Xu et al. [28] makes use of a series of neural networks

to perform pose estimation. An initial network is trained to

learn the intrinsic parameters of a video sequence by com-

paring the projection of 3D ground truth joint positions to

the 2D joint estimate. This network is then used to ‘correct’
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(b) Example 3D estimates from 360° im-

ages captures in indoor and outdoor envi-

ronments, and novel view from behind

Figure 2: Camera configuration, capable of complete scene

coverage, and produced pose estimates

potentially unreliable 2D joint estimates. Next, a trained

kinematic skeleton is used to refine 3D joint positions ac-

cording to typical human motion, and a third network then

temporally interpolates the refined 3D joint information, re-

placing any 3D point found to be too inaccurate.

Finally, Habermann et al. [9] jointly optimise skeletal

pose and model distortion, fitting a pre scanned subject to

both Openpose[4] and a clean foreground segmentation of

the subject. Their system is trained on multi-view data, but

produces an inference from a single view. This combination

produces good depth results, however requires a large set of

motion captured in a studio environment by the subject, as

well as a 3D scan of the subject, limiting its portability.

2.2. Multi Camera 3D Human Pose Estimation

Multi camera setups have the advantage on levels of

input data, solving depth problems as well as giving lit-

tle to no occlusion of body parts. Early applications of

this include Carranza et al. [5], taking 7 calibrated cam-

eras, obtaining subject silhouettes and then optimising a

pre-constructed human body model to them. Temporal con-

sistency is obtained by minimising the energy required to

move to the next frame. Conversely, Starck and Hilton[22]

use 16 cameras with a chroma-key background to construct

a visual hull, before refining the visual hull using keypoints

detected on the subject.

De Aguiar et al. [6] and Vlasic et al. [27] take similar ap-

proaches, fitting a pre scanned mesh and/or a template mesh

to image keypoints obtained from calibrated cameras. This

approach allows for loose clothing to be accounted for, al-

beit at the cost of either laser scanning the subject or manual

editing of the final mesh to tidy it up.

Liu et al. [16] use pre-scanned individuals, creating an

articulated skeleton which can then be fitted onto 2D image

segmentations. This approach has the advantage of being

able to handle multiple people in close proximity, assuming

they are all scanned in advance. Trumble et al. [24] utilizes

a deep learning approach, creating a probabilistic visual hull

from multiview image data, to which joint positions are fit-

ted.

Making use of additional information in the form of In-

ertial Measurement Units (IMUs), Marcard et al. [26] ex-

pand from traditional multi-view stereo and combined the

IMU data, allowing all joints to be tracked across all input

frames, even in the event of total occlusion. Trumble et al.

[25] expands upon their previous work, adding IMU data

and a Long Short Term Memory (LSTM) to reduce tempo-

ral noise across both image and IMU data. Malleson et al.

[17] takes input video and IMU data to create a real time

robust and temporally consistent skeletal fitting system.

Huang et al. [10] expand upon the Bogo et al. monocu-

lar approach, fitting a SMPL model to the subject’s silhou-

ette from each view per frame, effectively fitting the SMPL

model to a visual hull, then applying temporal reasoning

across frame batches. This produces accurate results, as

well as maintaining the underlying capability to operate on

monocular sequences. Their system requires accurate sil-

houettes of the input images, however, as well as requiring

camera focal length information.

Performing a form of triangulation, Iskakov et al. [12]

create a network that learns how to triangulate. 2D joint

belief maps are “unprojected” into a 3D space, creating a

3D belief map for each joint identified. A bounding cube is

then placed around the central joint in order to limit search

space, and a network used to predict a 3D pose based upon

these 3D belief maps.

Expanding upon IMU work, Zhang et al. [31] estimates

joint belief maps for each view independently, then uses

IMU orientation data to fuse these belief maps in 3D space

relative to each other, rather than attempting to use IMU

information at a later stage to ‘fix’ poor performance. A

skeletal model with fixed joint lengths is then fit to these

belief maps.

2.3. 360° Camera 3D Human Pose Estimation

To our knowledge, relatively few works have attempted

to specifically utilize 360° cameras with pose, rather than

applying a perspective pose estimation system to 360° im-

ages. Fowler et al. [7] use a single 360° camera to create an

affordance map of a room. An individual is identified and

their activity is broadly categorised (walking, sitting, stand-

ing etc.). This information, along with position and depth,
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is used to produce an affordance map, as well as a 3D scene

reconstruction of the respective surfaces. It is limited, how-

ever, to 2D per frame pose estimation of a single individual

and does not reconstruct 3D pose nor handle multiple indi-

viduals.

Shere et al. [21] fit a pre-measured skeleton to keypoints

identified by two 360° cameras. Axis-angle rotations are

optimised to produce a skeleton, for which joint reprojec-

tion error and joint movement are minimised. Additionally,

joint angle acceleration is also minimised, in order to pre-

vent gross scale changes caused by joint mis-identification.

Notably, their system uses cameras placed 1-2 metres apart,

as well as needing the cameras to be close to the same hori-

zontal plane.

Both of these systems still maintain the weaknesses of

their perspective counterparts. Fowler et al. take some prior

knowledge of the subject, as well as being limited to in-

door scenes. Shere et al. still use two separate camera lo-

cations, resulting in a large footprint for the capture system,

and placing limitations on the capture volume in terms of

minimum size.

Our proposed system expands upon Shere et al. in both

representation and realism, by using non-rigid joint lengths

and allowing for minor motion in 3D joint positions without

penalty. The addition of the Principal Component Analy-

sis (PCA) model restricts the system to plausible poses in

the first stage, while our reprojection error uses joint be-

lief maps rather than absolute (2D) joint positions, allow-

ing us to exploit uncertainty when combined with flexible

joint lengths. Finally, our temporal consistency is vastly

improved with our smoothing step, since we use informa-

tion from both the previous and next frames. All of this

is achieved on a significantly lower baseline, 30cm for our

system against ≈3m for Shere et al. while demonstrating

increased accuracy.

3. Method

Our method takes a two step approach, first producing

a per frame 3D skeletal estimate, then performing tempo-

ral smoothing across the entire video sequence, optimising

each joint against its temporal neighbours. In both steps, we

perform a least squares optimisation using Ceres[2]

3.1. Initial Skeletal Estimate

The initial stage of our pipeline is to obtain our skele-

tal model to be used in our optimisation. We take a series

of capture sequences from the Panoptic Studio dataset[13],

each containing a single individual performing a series of

poses. This gives us a collection of 3D skeletal poses s ∈
D, where s is a 3D skeleton consisting of J joints and D is

the collection of 3D skeletons. Each joint ji = [x, y, z] ∈ s

is the 3D position of the joint, with i being the index of the

joint. We translate each skeleton such that the neck joint

is located at the origin, then rotate each skeleton so that

the vector from the left hip to the right hip is consistent in

each skeleton. Using this database D, we perform principal

component analysis (PCA)[20]. Combined with a transla-

tion vector and rotation scalar, this allows us to express a

skeleton as P (ψ, r, t), where ψ is a vector of parameters

with length p, r is the rotation about the z (vertical) axis,

and t is a 3D vector that translates the 3D skeleton to any

point in 3D space.

Using this representation, we can then perform our opti-

misation on a video sequence V , captured on two 360° cam-

eras α, β, and consisting of N frames, each of height h and

width w. Given a frame fn ∈ V , where n is the frame num-

ber, we obtain joint belief maps using Openpose[4], then

fit a 2D Gaussian δi (a, xmax, ymax, xσ, yσ) to each belief

map, with a being the maximum amplitude, xmax, ymax

being the x, y coordinates of the maximum amplitude, and

xσ, yσ being the standard deviation in the x and y axis re-

spectively. This produces a set of J Gaussians, denoted as

∆, and with each δi ∈ ∆ corresponding to a joint ji. Given

a suitable skeleton size l(j1,j2) ∈ L, where l(j1,j2) is the

length between joints j1 and j2, we attempt to minimise the

error function ǫsolve(ψn, rn, tn) for each frame fn, as de-

noted in Equation 1

ǫsolve (ψn, rn, tn) = ǫproj (sn,∆n, α)
uproj

+ ǫproj (sn,∆n, β)
uproj

+ ǫmove (tn, tn−1)
umove

+ ǫrot (rn, rn−1)
urot

+ ǫsize (sn)
usize + ǫlength (sn, L)

ulength

(1)

where sn = P (ψn, rn, tn). The first two components of

this error function are our reprojection errors for cameras

c = α, β, outlined in Equation 2

ǫproj (s,∆, c) =

J
∑

i=0

√

Γdist (ρ (ji, c) , δmax
i ) · γi (δi, ρ (ji, c))

(2)

where ρ (j, c) is the projection of joint j ∈ s onto camera c,

γ (δ, C) is the Gaussian distribution value of 2D coordinate

C = [x, y] with using the Gaussian δi ∈ ∆, and

Γ1 = ||a− b||

Γ2 =

{

||(a− [w,0])− b|| : for ax > bx
||(a+ [w,0])− b|| : for ax ≤ bx

Γdist (a,b) = min(Γ1,Γ2) (3)

is the shortest circular l2 norm between coordinates a,b,

with ||·|| being the l2 norm.
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The third and fourth components of Equation 1 minimise

the amount of joint movement from the previous frame,

both in terms of translation and rotation, and are defined

as

ǫmove (tn − tn−1) = max (||tn, tn−1|| , ωmove) (4)

ǫrot (rn, rn−1) = max (Γrot (rn, rn−1) , ωrotation) (5)

where ωmove, ωrot are the amount of translation and rota-

tion permitted between frames before accumulating error

respectively, and

Γ1 = θ1 − θ2

Γ2 =

{

Γ1 + 360 : for Γ1 < 0
Γ1 − 360 : for Γ1 ≥ 0

Γrot (θ1, θ2) = |min(Γ1,Γ2)| (6)

is the shortest circular angle between two angles.

The fifth component of the error function constrains the

x, y size of the skeleton against skeletal centroid, and is de-

fined as

ǫsize (s) =

J
∑

i=0

max

(∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ji −

∑J

k=0 jk

J

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, ωsize

)

(7)

where ωsize is the distance from the centroid the joint can

have before accumulating error.

Finally, we have the joint length error, which restricts the

skeletal joint lengths against those expected in L

ǫlength (s, L) =
∑

max (|Li,k − ||ji − jk||| , Li,k · ωlength)

for joint pairs i, k ∈ L

(8)

with ωlength as the maximum joint length variation before

error is accumulated. Note that a joint may have multiple

lengths associated for more rigid sections of the skeleton

(such as the left shoulder linking to the neck, right shoulder,

left hip and right hip)

Each error component is then weighted in order to em-

phasize that portion of the optimisation. From our ex-

periments, we found uproj = 3, umove = 1, urot =
1, usize = 3, ulength = 3, ωmove = 10, ωrot = 1, ωsize =
40, ωlength = 0.1 produced good results across all experi-

ments.

Figure 3: Example of a protocol 1 pose estimate from an

(unused) reference camera. Top: Equirectangular frame.

Left: Ground Truth. Right: Ours. Note the slightly rear-

ward skeletal position, caused by errors introduced during

projection process

3.2. Temporal Smoothing

Once we have initial skeletal estimates for each frame

(section 3.1), we perform temporal association and smooth-

ing. Unlike the previous section, our optimisation function

uses information from both previous and future frames to

smooth out errors introduced from either poor input or op-

timisation. We also run our optimisation in several passes,

in order to allow our smoothing to replace the aforemen-

tioned poor data. This stage therefore acts as a refinement

algorithm to our initial estimates produced in Section 3.1.

In order to give our system maximum flexibility, we op-

timise each joint position directly in terms of its x, y, z co-

ordinates. We therefore optimise the vector Ψ of length

3J , instead of the PCA parameters P (ψ, r, t) as in Equa-

tion 1. On each pass, we attempt to minimise the function

ǫsmooth(Ψn) as defined in Equation 9

ǫsmooth (Ψn) = ǫproj (sn,∆n, α) + ǫproj (sn,∆n, β)

+ ǫshift (sn, sn−1) + ǫalign (sn+1, sn, sn−1)

+ ǫsize (sn) + ǫlength (sn, L) (9)

where s is the joints optimised on the current pass, and

sn−1, sn+1 are the skeletons produced on the previous pass

for the previous and next frame (if they exist).
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Dataset
MPJPE (mm)

Triangulated Iskakov[12] Pavllo[19] Shere[21] Tome[23] Ours

171204 pose1 184.39 331.54 188.96 332.63 209.76 141.53

171026 pose3 184.48 430.70 286.38 455.52 266.68 218.38

161029 tools1 203.06 382.27 419.07 388.18 333.88 165.05

161029 sports1 238.74 520.84 575.02 362.33 336.72 151.62

Synthetic 1 717.10 N/A 590.31 733.99 667.44 492.58

Synthetic 2 901.59 N/A 685.82 778.75 795.59 239.60

Table 1: Protocol 1 results of each approach. MPJPE is averaged across all frames containing one person

ǫproj , ǫsize and ǫlength are defined in Equations 2, 7 and

8 respectively, while ǫshift (sn, sn−1) is defined as

ǫshift (sn, sn−1) =

J
∑

i=0

max (||ji − ki|| , ωshift)

ji ∈ sn, ki ∈ sn−1 (10)

and is the total movement of each joint with respect to

the previous frame, where ωshift is the maximum allowed

movement before error is accumulated. Finally

ǫalign (sn+1, sn, sn−1) =

J
∑

i=0

∣

∣

∣

∣

∣

∣

∣

∣

gi −

(

gi +

((

ki − gi

||ki, gi||

)

· (ji − gi)
T

)

ki − gi

||ki, gi||

)∣

∣

∣

∣

∣

∣

∣

∣

g ∈ sn−1, j ∈ sn, k ∈ sn+1

(11)

is the distance of the current frame joint to the vector de-

fined by the previous frame joint and the future frame joint.

Note we only move the current frame joint to be co-linear

with the past/future joints, rather than the midpoint of the

past and future joints.

This optimisation process is repeated O times, and from

our experiments, we found O = 20, ωshift = 10, ωsize =
40, ωlength = 0.1 produced good results across all experi-

ments.

4. Evaluation

We evaluate our system on three benchmark datasets.

We produce a quantitative evaluation, using 4 scenes from

the Panoptic Studio dataset[13], selecting two cameras

(hd 00 01 and hd 00 30) that are close to vertically aligned,

and projecting the frames into equirectangular space for

processing. We use a fifth scene (171204 pose2) for our

PCA, and compare against the pose estimates provided by

the dataset.

The scenes selected (detailed in Tables 1 and 2) are bro-

ken down into sequences containing a single person, and are

Figure 4: Example reference camera frames. Red is ours.

Green is Tome et al. White is ground truth

between 130 and 6950 frames in length. 171204 pose1 and

171026 pose3 cover a range of motion for an individual in a

static position. 161029 tools1 deals with fine hand control,

and 161029 sports1 contains sporting motions for baseball,

tennis, juggling and break dancing. We use this dataset as,

to our knowledge, no 360° datasets exist that contain both

vertical pairs of 360° sensors and ground truth 3D joint lo-

cations. As such, we also evaluate on a pair of synthetic

datasets (generated using Blender) using a closer camera

baseline (30cm, compared to ≈ 120cm for panoptic).

We compare against Shere et al. [21] as a stereo 360°

pose estimation system, Iskakov et al. [12] as a stereo

perspective pose estimation system, Tome et al. [23] as a

monocular perspective pose estimation system without tem-

poral information, and Pavllo et al. [19] as a monocular per-

spective pose estimation system with temporal information.

We also include a naive triangulation result for baseline per-

formance. We perform an additional qualitative evaluation
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Figure 5: Example pose estimates on a panoramic image (top and bottom removed for brevity). Each pose estimate was

performed separately.

on scenes captured using a pair of Ricoh Theta V[1] spaced

30cm apart. These scenes cover multi person scenes in both

outdoor and non-studio indoor environments, examples can

be seen in Figure 2b and Figure 5. Please refer to our sup-

plementary materials for further results.

4.1. Quantitative Evaluation

Each system is evaluated using Mean Per Joint Position

Error (MPJPE), which is defined as

MPJPE (sest, sgt) =

∑J

i=0 ||gi − ki||

J
(12)

g ∈ sest, k ∈ sgt

and measures the average distance between the joints of the

estimated skeleton and the ground truth skeleton. Since the

projection and rotation of the Panoptic Studio dataset into

360° is inexact, and error may be introduced during this pro-

cess (see Figure 3), we compare our system according to 2

different protocols. In protocol 1, we measure MPJPE of the

estimated skeleton against the ground truth skeleton, while

in protocol 2, we first perform Procrustes Analysis[8] be-

fore comparison. This is done to eliminate projection errors

for our system and Shere et al., as well as eliminating the

depth ambiguity for monocular systems, providing a fairer

comparison. No other processing is performed on the esti-

mated skeleton.

Under protocol 1 (Table 1), our system shows good per-

formance on the panoptic data sets, despite the inaccura-

cies from projection (Figure 4, 6). When the baseline is

lowered in the synthetic datasets, we maintain reasonable

performance while other systems struggle. As noted in Sec-

tion 2.1, monocular systems struggle with depth ambiguity

due to a single viewpoint, accounting for some of the er-

ror. However, when that ambiguity is removed in protocol

2 (Table 2), our system still outperforms Tome et al. and

Pavllo et al., even when comparing some of our protocol 1

results to monocular protocol 2 results.

Simultaneously, both Shere et al. and Iskakov et al. show

very poor performance, with protocol 2 only showing slight

improvements. For Shere et al., this can explained by both

projection issues described above, and with camera config-

uration, since their system was demonstrated with horizon-

tally placed cameras. In the case of Iskakov et al., we tried

using both the reference implementation (trained on Human

3.6M[11]) and a variant trained using only the intended ver-

tical camera pair from panoptic, however we were unable to

get close to their reported error of 13.7mm[12] on panoptic

when using 4 cameras. We were also unable to obtain re-

sults for Iskakov et al. on the synthetic data, due to the lack

of calibration information produced for this data.

4.2. Ablation Study

We performed several experiments to test the effect of

each component of our error functions in Equations 1 and

9. We eliminate error terms from each function and test

their accuracy on a small subsection of the 171204 pose1,

and results are presented according to Protocol 1.

As can be seen in Table 3, our presented combination

is most effective in minimising MPJPE. Each row shows

a specific error component removed from the initial solve,

while each column shows the removal from the temporal

smoother. Certain error function components appear to

have little effect (ǫlength, ǫmove for the solver, ǫalign for the

smoother), however their contribution is made more in the

smoothness of qualitative the output video sequence, rather

than in absolute error minimisation terms.

Figure 6: Reference camera frame during break dancing.

Red is our skeleton. Green is Tome et al. Note lower legs

and feet are out of frame in input images.
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Dataset
PA-MPJPE (mm)

Triangulated Iskakov Pavllo Shere Tome Ours

171204 pose1 66.59 219.51 116.66 273.14 76.62 57.88

171026 pose3 43.29 98.21 113.65 311.99 68.67 55.08

161029 tools1 73.21 136.82 117.14 256.09 79.29 77.99

161029 sports1 116.33 279.19 174.00 269.06 101.85 73.17

Synthetic 1 328.10 N/A 224.18 627.38 241.02 119.14

Synthetic 2 497.12 N/A 227.98 762.38 258.20 130.32

Table 2: Protocol 2 results of each approach. PA-MPJPE is averaged across all frames containing one person

Removed MPJPE (mm)

components None ǫalign ǫlength ǫshift ǫsize All

None 67.2 67.5 69.4 70.2 69.4 69.4

ǫlength 67.3 69.9 71.4 72.2 71.4 71.4

ǫmove 67.3 67.4 69.4 70.7 69.4 69.9

ǫrot 68.9 68.9 69.4 70.4 69.4 69.8

ǫsize 84.8 86.3 90.8 90.8 90.8 90.8

Table 3: Ablation study results. Rows show components

removed from the solver (Equation 1), columns are compo-

nents removed from the smoother (Equation 9)

4.3. Smoothing Effect

To better demonstrate this smoothing effect, we plotted

the mid hip joint distance from a camera throughout a se-

quence where a subject walks a straight line in front of the

camera and back again. From this movement, we would ex-

pect to see a double u shaped curve, as the distance starts

high, decreases, then increases and finishes high, twice in

succession. We compare the initial solved joints against the

smoothed joints, as well as adding pure triangulation for

reference.

As we can see from Figure 7, the triangulated skele-

ton is highly jittery, even when the person is stationary at

the start of the sequence. Quantitatively, the triangulated

skeleton gives a maximum depth change of 264.9mm be-

tween frames 214 and 215, and an average depth change of

59.5mm. The solved skeleton mitigates some of this, but

nonetheless still shows some considerable jumps, peaking

at 194.7mm between frames 186 and 187, and averaging a

depth change of 29.6mm. Our smoothed skeleton produces

a much smoother distance change, and while its maximum

depth change is 151.0mm (between frames 109 and 110),

this is the only frame with a change above 50mm, giving an

average depth change of 12.0mm per frame.

5. Conclusion

We have presented a temporally consistent 3D human

pose estimation system operating from a pair of 360° sen-
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Figure 7: Plot of mid hip joint distance from camera as a

subject walks a straight line in front the camera and back

sors. By aligning these sensors vertically, we have created a

system that can be easily deployed yet provide good results,

allowing its use in a variety of environments where time,

equipment, power or space limitations may be in place. We

demonstrate excellent accuracy, even when projecting per-

spective frames into an equirectangular projection with ap-

proximated rotations. As such, our system can also be used

with traditional perspective videos, albeit with an expensive

reprojection operation. For future work, we consider refin-

ing this to produce a system capable of operating from a

vertical pair of arbitrary camera lens angles.
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