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Abstract

RarePlanes is a unique open-source machine learning

dataset that incorporates both real and synthetically gener-

ated satellite imagery. The RarePlanes dataset specifically

focuses on the value of synthetic data to aid computer vision

algorithms in their ability to automatically detect aircraft

and their attributes in satellite imagery. Although other

synthetic/real combination datasets exist, RarePlanes is the

largest openly-available very-high resolution dataset built

to test the value of synthetic data from an overhead per-

spective. Previous research has shown that synthetic data

can reduce the amount of real training data needed and po-

tentially improve performance for many tasks in the com-

puter vision domain. The real portion of the dataset consists

of 253 Maxar WorldView-3 satellite scenes spanning 112

locations and 2, 142 km2
with 14, 700 hand-annotated air-

craft. The accompanying synthetic dataset is generated via

AI.Reverie’s simulation platform and features 50, 000 syn-

thetic satellite images simulating a total area of 9331.2 km2

with ∼ 630, 000 aircraft annotations. Both the real and

synthetically generated aircraft feature 10 fine grain at-

tributes including: aircraft length, wingspan, wing-shape,

wing-position, wingspan class, propulsion, number of en-

gines, number of vertical-stabilizers, presence of canards,

and aircraft role. Finally, we conduct extensive experiments

to evaluate the real and synthetic datasets and compare per-

formances. By doing so, we show the value of synthetic

data for the task of detecting and classifying aircraft from

an overhead perspective.

1. Introduction

Over the last decade, computer vision research and the

development of new algorithms has been driven largely by

permissively licensed open datasets. Datasets such as Ima-

geNet [9], MSCOCO [34], and PASCALVOC [14] (among

others) remain critical drivers for advancement. Convolu-

tional neural networks (CNNs), currently the leading class

of algorithms for most vision tasks [43, 71], require a large

amount of annotated observations. However, the develop-

ment of such datasets is often manually intensive, time-

consuming, and costly to create. An alternative approach

to manually annotating training data is to create computer

generated images and annotations (referred to as synthetic

data). After creating realistic 3D environments, one can

then generate thousands of images at virtually no cost. Such

data has been shown to be effective for augmenting and re-

placing real data, thus reducing the burden of dataset cu-

ration. Synthetic datasets continue to be developed and

have been notably helpful in various domains including: au-

tonomous driving [46, 47, 48, 17], optical flow [35, 46, 31],

facial recognition [30, 10, 29], amodal analysis [25, 11] and

domain adaptation [8, 26, 24, 59] (see Section 2.1 for fur-

ther detail).

Although synthetic datasets continue to become more

prevalent, no expansive permissively licensed synthetic

datasets exist in the context of overhead observation. Over-

head imagery presents unique challenges for computer vi-

sion models such as: the detection of small visually-

heterogeneous objects, varying look angles or lighting con-

ditions, and different geographies that can feature distinct

seasonal variability. As such, creating synthetic datasets

from an overhead perspective is a significant challenge and

simulators must attempt to closely mimic the complexities

of a spaceborne or aerial sensor as well as the Earth’s ever-

changing conditions. For example, to create a large and

heterogeneous synthetic dataset, one must account for each

sensors varying spatial resolution, changes in sensor look

angle, the time of day of collection, shadowing, and changes

in illumination due to the sun’s location relative to the sen-

sor. Furthermore, the simulator must be able to account

for other factors such as the ground appearance due to sea-

sonal change, weather conditions, and varying geographies

or biomes.

While synthetic datasets certainly have the potential

to be beneficial, they require a paired real dataset with

shared features to baseline performance and quantitatively
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Figure 1. Example of the real and synthetic datasets present in RarePlanes. The top two rows feature the real Maxar WorldView-3

satellite imagery and the bottom two rows show the synthetic data. The dataset features variable weather conditions, biomes, and ground

surface types.

test value. However, few permissively licensed overhead

datasets [13, 64, 51] exist that focus on detection or segmen-

tation tasks and feature very-high resolution real imagery

from an overhead perspective. Overhead datasets remain

one of the best avenues for developing new computer vision

methods that can adapt to limited sensor resolution, variable

look angles, and locate tightly grouped, cluttered objects.

Such methods can extend beyond the overhead space and

be helpful in other domains such as face-id, autonomous

driving, and surveillance.

To address the limitations described above, we intro-

duce the RarePlanes dataset. This dataset focuses on the

detection of aircraft and their fine-grain attributes from an

overhead perspective. It consists of both an expansive syn-

thetic and real dataset. We use AI.Reverie’s novel platform

which incorporates unreal engine[12] to develop realistic

synthetic data based off of real world airports. The platform

ingests real world metadata and overhead images to proce-

durally generate 3D environments of real world locations.

The weather, time of collection, sunlight intensity, look an-

gle, biome, and distribution of aircraft model are among the

multiple parameters that the simulator can modify to cre-

ate diverse and heterogeneous data. The synthetic portion

of RarePlanes consists of 50, 000 images simulating a total

area of 9331.2 km2 and ∼ 630, 000 annotations. The real

portion consists of 253 Maxar WorldView-3 satellite images

spanning 112 locations in 22 countries and 2, 142km2 with

∼ 14, 700 hand annotated aircraft. Examples of the syn-

thetic and real images are shown in Figure 1.

RarePlanes also provides fine-grain labels with 10 dis-

tinct aircraft attributes and 33 different sub-attribute choices

labeled for each aircraft. These include: aircraft length,

wingspan, wing-shape, wing-position, Federal Aviation

Administration (FAA) wingspan class [19], propulsion,

number of engines, number of vertical-stabilizers, canards,

and aircraft type or role. Although several other overhead

detection datasets exist [13, 64, 51, 32, 20, 62], no others

have multiple fine-grain attributes that detail specific ob-

ject features. Such fine-grain attributes have been partic-

ularly helpful for zero-shot learning applications [16] and

enable end users to create diverse custom classes. Us-

ing these combined attributes, anywhere from 1 to 110
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classes can be created for individual research purposes.

The dataset is available for free download through Amazon

Web Services’ Open Data Program, with download instruc-

tions available at https://www.cosmiqworks.org/

RarePlanes.

Contributions

• An expansive real and synthetic overhead computer vi-

sion dataset focused on the detection of aircraft and

their features.

• Annotations with fine-grain attributions that enable

various CV tasks such as: detection, instance segmen-

tation, or zero-shot learning.

• Extensive experiments to evaluate the real and syn-

thetic datasets and compare performances. By doing

so, we show the value of synthetic images for the task

of detecting and classifying aircraft from an overhead

perspective.

2. Related Work

RarePlanes sits at the intersection of three distinct com-

puter vision dataset domains: synthetic datasets, geospa-

tial datasets, and fine-grain attribution datasets. These three

domains are cornerstones around which computer vision re-

search has continued to rapidly advance and grow. We sum-

marize the key characteristics of modern synthetic, geospa-

tial, and attribute datasets in Table 1 and compare them to

the RarePlanes dataset.

2.1. Synthetic Datasets

Synthetic data has become prevalent across many com-

puter vision domains and has shown value as a replace-

ment for real data or to augment existing training datasets

[47, 29, 48, 1, 42]. Many synthetic datasets focus on the au-

tonomous driving domain; including the Synthia [48], GTA

[46, 47], and vKITTI [17] datasets. These synthetic datasets

are often paired with real-world data such as Cityscapes

[7], CamVid [3], or KITTI [18] to benchmark the value

of synthetic data. Other notable synthetic datasets such as

SUNCG [54] or Matterport3D [5] focus on indoor scenes

and include RGB-D data for depth estimation. Moreover,

other datasets focus on addressing challenging occlusion

(amodal) problems such as the expansive SAIL-VOS [25]

and DYCE [11]. Finally, the Synthinel-1 [28] Dataset is

the only other dataset that bridges the synthetic/satellite do-

main. It features synthetic data from an overhead perspec-

tive with binary pixel masks of building footprints. Overall,

combined synthetic and real datasets, similar to RarePlanes,

have been helpful with several different tasks including: en-

hancing object detection [56, 40, 42], semantic segmen-

tation [48, 21, 50], or instance segmentation performance

[63, 1]. Furthermore, such datasets continue to inspire

new domain adaptation (DA) techniques [8, 26, 24, 59, 56].

Such DA techniques could be particularly valuable for over-

head applications as there remains a dearth of openly avail-

able training data and models trained on one location often

do not generalize well to new areas.

Figure 2. Three annotation styles within RarePlanes. The

dataset features three annotation styles including: ’Bounding

Box’, ’Diamond Polygon’, and ’Full Instance Segmentation’ (syn-

thetic only).

2.2. Geospatial Datasets

Geospatial and very-high resolution remote sensing

datasets have continued to draw increased interest due to

their relevancy to many computer vision challenges. Such

datasets contain lower resolution images with tiny, closely

grouped objects with varying aspect ratios, arbitrary orien-

tations and high annotation density. The lessons learned

from such datasets continue to inspire new computer vision

approaches related to detection [69, 61, 58], segmentation

[27], super-resolution [52, 41], and even bridges to natural

language processing [57]. Some notable datasets include

SpaceNet [13, 64, 51] and xBD [20], which focus on foun-

dational mapping and instance/semantic segmentation for

problems such as building footprint and road network ex-

traction or building damage assessment. Others such as

xView [32], A large-scale dataset for object detection in

aerial images (DOTA) [66] and A Large-scale Dataset for

Instance Segmentation in Aerial Images (iSAID) [62] fo-

cus on overhead object detection or instance segmentation,

featuring multiple classes of different object types. The

Functional Map of the World (FMOW) [6] dataset cen-

ters on the task of classification of smaller image chips

from an overhead perspective. Other datasets such as

CORE3D [4], MVS [2], the ISPRS benchmark [49] and

SatStereo [38] target height extraction and 3D mapping

from space. RarePlanes builds upon these existing datasets

and contributes both synthetic and real data. Furthermore,

RarePlanes adds 10 unique object attributes, which enable

customizable classes, as well as three annotation styles

per object (Bounding Box, Diamond Polygon, and Full-

Instance (Synthetic Only)).

2.3. FineGrain Attribute Datasets

Many datasets focus on identifying general objects in

imagery, however, several others take an alternative ap-

proach and label unique attributes of each object. As previ-
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Dataset Gigapixels Classes Attributes
Labels

Real Synthetic

SpaceNet [13, 64, 51] 100.1 1 to 8 1 859,982 0

xBD [20] 9.8 1 to 4 1 850,736 0

xView [32] 56.0 60 0 1,000,000 0

iSAID [62] 44.9 15 0 655,451 0

FMOW [6] 1084.0 63 0 132716 0

Cityscapes [7] + GTA [46] 537.5 30/19 0 210,179 510,4434

COCOA [72] + SAIL-VOS [25] 115.7 -/163 0 46,314 1,896,296

Animals with Attributes 2 [67] 24.7 50 85 37,322 0

CompCars [68] 86.1 1,716 13 136,726 0

RarePlanes (Ours) 187.1 1 to 110 10 14,707 629,551
Table 1. Comparison with other synthetic, attribute and overhead imagery datasets. Our dataset has a similar scale as modern

computer vision datasets and provides both a real and synthetic component. For SpaceNet (Buildings + Road Speed), xBD (Building

Damage Scale), and RarePlanes we report the range of possible customizable classes that end-users can create using varieties of the dataset

attributes.

ously stated, RarePlanes features 10 attributes and 33 sub-

attributes. Such attribution has been particularly valuable

for constructing new zero-shot learning methods and algo-

rithms [16]. The Comprehensive Cars [68] dataset is similar

to RarePlanes and features attribute labels of 5 car attributes

and 8 car-parts, as well as different look angles of vehicles.

Several other similar datasets [67, 15, 60, 39, 70] feature

multiple classes with extensive ranges in attributes; most of

which are geared toward zero-shot learning research.

3. The RarePlanes Dataset and Statistics

3.1. Annotations, Features, and Attributes

The RarePlanes dataset contains 14,707 real and 629,551

synthetic annotations of aircraft. Each aircraft is labeled in

a diamond style with the nose, left-wing, tail, and right-

wing being labeled in successive order (Figure 2). This an-

notation style has the advantage of being: simplistic, eas-

ily reproducible, convertible to a bounding box, and en-

sures that aircraft are consistently annotated (other hand-

annotated formats can often lead to imprecise labeling).

Furthermore, this annotation style enables the calculation

of aircraft length and wingspan by measuring between the

first annotation node to the third and from the second to

the fourth. We employ a professional labeling service to

produce high-quality annotations for the real portion of the

dataset. Two rounds of quality control are included in the

process, a first one by the professional service and a second

by the authors.

After each aircraft is annotated in the diamond format, an

expert geospatial team labels aircraft features. The features

include attributes of aircraft wings, engines, fuselage, tail,

and role (Figure 7). We ultimately chose these attributes

as they were visually distinctive from an overhead perspec-

tive and have been shown to be helpful in aiding to visually

identifying the type or make of aircraft [45].

• Wings: We label aircraft Wing Shape: (‘straight’,

‘swept’, ‘delta’, and ‘variable-swept’), Wing Po-

sition: (‘high mounted’ and ‘mid/low mounted’),

Wingspan in Meters: (‘float’), and the FAA Air-

craft Design Group Wingspan Class: [19] (‘1’ to

‘6’) which determines which airports can accommo-

date different sized aircraft. Examples of wing-shape

and position can be seen in figure 3.

Figure 3. Wing Shapes [55] present in the RarePlanes dataset.

Note that the two left-most aircraft feature ‘high-mounted’ wings,

with the two right-most aircraft featuring ‘mid/low mounted’

wings.

• Fuselage: We label aircraft Length in Meters:

(‘float’) and if the plane has Canards: (‘yes’ or ‘no’).

Canards are small fore-wings that are added to planes

to increase maneuverability or reduce the load/airflow

on the main wing.

• Engines: we label the Number of Engines: (‘0’ to

‘4’) and the Type of Propulsion: (‘unpowered’, ‘jet’,

‘propeller’).
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Figure 4. Engine Types. From left to right: A single engine

propeller aircraft, a two engine propeller aircraft, a three engine

jet aircraft, and a four engine jet aircraft.

• Tail: We label the Number of Vertical Stabilizers:

(‘1’ or ‘2’) or tail fins that each aircraft possesses.

Figure 5. Examples of fuselage and tail attributes including ca-

nards and number of vertical stabilizers [55] present in the

RarePlanes dataset.

• Role: After labeling each attribute, we then use

these attributes to classify the Role or Type: of

an aircraft into seven unique classes. These in-

clude: ’Civil Transport/Utility’ (‘Small’, ‘Medium,

and ‘Large’ based upon wingspan), ‘Military Trans-

port/Utility/AWAC’, ‘Military Bomber’, ‘Military

Fighter/Interceptor/Attack’, and ‘Military Trainer’.

Further detail on role definitions and can be found in

the RarePlanes User Guide, hosted on AWS with the

dataset.

Figure 6. Aircraft by role at 1:150 scale. Note the heteroge-

neous aircraft styles and variation in sizes. Top Row: Small,

Medium and Large Civil Transports. Bottom Row: Military

Fighter, Bomber, and Transport.

Figure 7. The 5 features, 10 attributes, and 33 sub-attributes

contained in the RarePlanes dataset. The dataset and associated

codebase enables users to create custom classes using groupings

of these attributes.

3.2. Real Imagery and Locations

All electro-optical imagery is provided by the Maxar

Worldview-3 satellite with a maximum ground sample dis-

tance (GSD) of 0.31 to 0.39 meters depending upon sen-

sor look-angle. The dataset consists of 253 unique scenes,

spanning 2, 142 km2 with 112 locations in 22 countries. Lo-

cations were chosen by performing a stratified random sam-

pling of OpenStreetMap [36] aerodromes of area ≥ 1 km
2

across the US and Europe using the Köppen climate zone

as the stratification layer. We stratify by climate to increase

seasonal diversity and geographic heterogeneity. Seven ad-

ditional locations were manually chosen as they overlap

with preexisting datasets [64, 13], and we considered fur-

ther revisits over these locations to potentially have addi-

tional value. We then chose individual satellite scenes by

attempting to select scenes from different seasons for each

location. Many locations have several scenes taken at dif-

ferent points in time, which may enable future investigation
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Figure 8. RarePlanes dataset locations. The dataset features 112 real (blue points) and 15 synthetic locations (red points). Atlanta, Miami,

and Salt Lake City feature both real and synthetic data.

on the value of annotating the same areas using multiple

images. The imagery is collected from variable look-angles

(3.2 to 29.6◦), target azimuth angles (1.8 to 359.7◦), and

sun elevation angles (10.7 to 79.0◦). Imagery is collected

from all four seasons, with scenes featuring instances of

cloud cover (12.6%), snow (9.1%) and clear skies (78.3%).

Combined together, this leads to high variability in illumi-

nation, shadowing, and lighting conditions. Consequently,

the dataset should help to improve generalizability to new

areas. Finally, background surfaces are quite diverse with

grass, dirt, concrete, and asphalt surface types.

The collection is composed of three different sets of

data with different spatial resolutions: one panchromatic

band (0.31 − 0.39m), eight multi-spectral (coastal to NIR

(400 − 954µm)) bands (1.24 − 1.56m), and three RGB

(448− 692µm) pan-sharpened bands (0.31− 0.39m). Each

data product is atmospherically compensated to surface-

reflectance values by Maxar’s AComp [37] and ortho-

rectified using the SRTM DEM. RGB data is also converted

to 8-bit. Areas containing non-valid imagery are set to 0.

We distribute both 512× 512 pixel tiles (20% overlap) that

contain aircraft as well as as the full images, cropped to the

extent of the area of annotation.

3.3. Synthetic Data

The synthetic dataset contains 629, 551 annotations of

aircraft across 50, 000 images with an extent of 1920×1080

pixels at 15 distinct locations, simulating a total area of

9331.2 km2. All synthetic data is created via AI.Reverie’s

novel simulator software in a multi-step process. First,

individual real-world locations are simulated using a pro-

prietary procedural GIS framework integrated with Hou-

dini [53]. The framework ingests geospatial vector data

(OpenStreetMap [36]) and overhead images to procedu-

rally generate building and airport terminal models. Air-

port ground and runways are then generated through simple

planar shape and texture projections. Once the simulated

locations are generated, we import each location into unreal

engine 4 [12]. Capture modules and settings are config-

ured to spawn aircraft and simulate the environmental fac-

tors and biomes. Each image features a simulated GSD of

0.3 meters to closely approximate our real imagery and is

collected from variable look-angles ranging between 5.0 to

30.0◦ off-nadir. The imagery is evenly split across 5 distinct

biomes including: ‘Alpine’, ‘Arctic’, ‘Temperate Evergreen

Forests’, ‘Grasslands’, and ‘Tundra’. The biome parameter

controls the type of vegetation, its density, as well as the

ground textures. Four unique weather conditions are also

evenly distributed across the dataset including: ‘Overcast’,

‘Clear Sky’, ‘Snow’, and ‘Rain’. Other parameters include

the sunlight intensity, weather intensity, and the time of the

day. Ultimately, this produces an expansive heterogeneous

dataset with a wide variety of backgrounds. We believe

that this dataset will be helpful in improving model gen-

eralizability to new areas and developing new algorithmic

approaches that could move beyond aircraft detection.

4. Experiments, Results, and Discussion

In this section, we validate the synthetic dataset by run-

ning three experiments for two tasks: object detection and

instance segmentation. For each task, we train a benchmark

network on three subsets of data: on the real data only,

on the synthetic data only, and perform a fine tuning ex-

periment training on the synthetic data and then a portion

(∼ 10%) of the real dataset. Each experiment is validated

on the test real dataset and the results are shown Table 2. We

ran these experiments for two attributes: aircraft (detection

of an aircraft without classifying it) and civil role.

4.1. Training and Testing Splits

For the real world data, given the size of the raw satellite

scenes, we adopted a tiling approach. Each scene is split

into 512x512 tiles containing at least one aircraft. Further-

more, we ensure that the training and test split contains at
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network attribute dataset CS CM CL mAP mAP50 AR

aircraft Real N/A N/A N/A 73.32 (0.34) 96.80 (0.02) 77.16 (0.21)

aircraft Synth. N/A N/A N/A 54.86 (0.25) 87.03 (0.53) 60.67 (0.27)

Faster

R-CNN

aircraft FT N/A N/A N/A 69.16 (0.69) 95.29 (0.41) 73.03 (0.57)

role Real 66.68 70.26 67.68 68.21 (0.4) 92.16 (0.23) 75.39 (0.40)

role Synth. 27.70 37.09 42.85 35.88 (2.26) 59.09 (2.9) 53.82 (1.28)

role FT 56.73 66.05 66.52 63.10 (0.78) 89.15 (0.22) 71.06 (0.75)

aircraft Real N/A N/A N/A 73.67 (0.17) 96.81 (0.03) 76.46 (0.20)

aircraft Synth. N/A N/A N/A 56.28 (0.46) 87.54 (0.69) 60.71 (0.51)

Mask

R-CNN

aircraft FT N/A N/A N/A 70.51 (0.34) 94.73 (0.03) 73.72 (0.26)

role Real 65.60 72.13 70.97 69.57 (0.47) 91.89 (0.55) 76.16 (0.30)

role Synth. 29.12 41.78 47.47 39.46 (3.20) 62.31 (4.51) 57.33 (1.96)

role FT 58.96 70.02 72.33 67.11 (0.46) 90.03 (0.52) 74.40 (0.58)

Table 2. Results of the object detection and segmentation experiments. We report models performance trained on the real dataset

(Real) and the synthetic dataset (Synth.) as well as the fine tuning experiment (FT) using only 10% of the real training dataset. We show

the results of the single class experiments (‘aircraft’) and the three classes experiment: small (CS), medium (CM ), and large (CL) civil

transport aircraft. Performance is evaluated using the mean average precision (mAP) (IOU@[0.5:0.95]), the mAP50 (IOU@0.5) and the

average recall (AR) metrics, as well as the class APs when applicable. For the Mask R-CNN instance segmentation experiments, we only

report the segmentation AP. Each value reported is an average of 5 runs. The standard deviations for mAP, mAP50, and AR are also

indicated.

least one satellite scene per country to maximize geographic

diversity. As the dataset contains satellite images captured

over the same location at different dates, an airfield can ap-

pear in both splits but at different points in time. Moreover,

we created a subset of the real training split for the fine tun-

ing experiments. This subset contains roughly 10% of the

images of the training split, created by drawing a 10% ran-

dom sample of image tiles by location. All synthetic data

is included in the training split to maintain a domain gap.

For this study we train on 45, 000 of the 50, 000 images, re-

serving 5, 000 images for cross-validation purposes. Note

these cross-validation results are not reported here. Further

details on the initial training and testing splits used in this

study can be found at https://www.cosmiqworks.

org/RarePlanes. Ultimately end users are encouraged

to reorganize and create their own splits for their specific

research or use-case(s).

4.2. Implementation

In our experiments, we used a Resnet-50 [23] and FPN

[33] as the backbone for the Faster R-CNN [44] detection

network. A similar backbone was used for the Mask R-

CNN [22] instance segmentation network. Backbones are

pre-trained using ImageNet [9]weights and all experiments

are conducted with the Detectron2 framework [65], using

the default configurations for each network. The network

was optimized with Stochastic Gradient Descent (SGD) us-

ing a learning rate of 0.001, weight decay of 0.0001 and a

momentum of 0.9. Additionally, we used a linear warmup

period over 1K iterations. We maintain a consistent learning

rate for the fine tuning experiments. We found that decreas-

ing the learning rate or freezing some of the layers in the

backbone did not improve performance. The networks were

trained on a NVIDIA Tesla V100 GPU with 12GB mem-

ory. Each network was trained until convergence, which

was reached after around 60K iterations. We also applied

basic pixel level augmentations, such as blurring and mod-

ifying the contrast or the brightness. Finally, we performed

random cropping (512x512) when training on the synthetic

dataset.

4.3. Results and Discussion

We evaluated our network performances using the

COCO average precision (AP) metric. Table 2 reports the

average precision for each class as well as the mAP, mAP50,

and average recall (AR). Qualitative results are shown in

Figure 9.

In the first set of experiments, we focused on the per-

formance of the synthetic dataset only. As expected, we

observe a drop in performances when training on the syn-

thetic data only, due to the domain gap between the real and

synthetic datasets. We observe that the model trained on

the synthetic dataset tends to mislabel clutter or nearby ob-

jects as aircraft, as shown in Figure 9. Additionally, snow

patches, ground markings, airport vehicles are sometimes

detected as aircraft. This leads to a significantly lower AP

(55% to 75% of the real AP) when models are trained on the

synthetic dataset only. However, the AR is not as sensitive

213

https://www.cosmiqworks.org/RarePlanes
https://www.cosmiqworks.org/RarePlanes


(a) (b) (c) (d)

Figure 9. Example of aircraft detection results. (a) ground truth, (b) model trained real dataset (c) model trained on synthetic dataset (d)

model fine tuned on real subset.

to the domain gap (70% to 80% of the real AR), meaning

that the majority of aircraft are still detected when only the

synthetic dataset is used. Similarly, we observe that the drop

in AP50 is also lower relative to the AP metric. Ultimately,

the AP50 metric may be more informative as we are most

interested in accurately counting aircraft, rather than how

well they are localized.

Most importantly, when a small subset (∼ 10%) of real

data is added for fine tuning, we observe a significant gain

in mAP, leading to similar performance (91 to 96% of real

mAP) to the models trained on the real dataset only. We

hypothesize that the synthetic data helps to build a prior

model for aircraft detection and eases transfer learning, thus

greatly reducing the need for annotated real data. In Fig-

ure 9, we see how fine tuning on the real subset removes

some of the false positive predictions versus training on the

synthetic dataset only. However, the false positive detec-

tion rate still remains slightly higher compared to training

on the entire real training set. It’s important to note that

the goal of these experiments is to define a baseline for fu-

ture experimentation for other algorithms to improve upon,

particularly within the area of domain adaptation.

5. Conclusions

We present RarePlanes, a unique machine learning

dataset that incorporates both real and synthetically gener-

ated satellite imagery. This dataset is critical for expanding

and examining the value of synthetic data for overhead ap-

plications. Our benchmark experiments using the dataset

found that blends of 90% synthetic to 10% real can de-

liver nearly equivalent performance as 100% real data for

the task of aircraft identification. Additionally, we believe

that RarePlanes could be particularly valuable for develop-

ing new and extensible domain adaptation approaches. Fi-

nally, the detailed fine-grain attribution and annotation con-

tained in the dataset may enable various CV tasks and future

experiments in the fields of detection, instance segmenta-

tion, or zero-shot learning.
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