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Abstract

Clothing recognition is the most fundamental AI appli-

cation challenge within the fashion domain. While existing

solutions offer decent recognition accuracy, they are gener-

ally slow and require significant computational resources.

In this paper we propose a single-stage approach to over-

come this obstacle and deliver rapid clothing detection and

keypoint estimation. Our solution is based on a multi-target

network CenterNet [26], and we introduce several powerful

post-processing techniques to enhance performance. Our

most accurate model achieves results comparable to state-

of-the-art solutions on the DeepFashion2 dataset [4], and

our light and fast model runs at 17 FPS on the Huawei

P40 Pro smartphone. In addition, we achieved second

place in the DeepFashion2 Landmark Estimation Challenge

20201 with 0.582 mAP on the test dataset.

1. Introduction

Image recognition is often the first step towards pro-

cessing an image in many applications, and involves lo-

cating, classifying and, sometimes, identifying the objects

presented in the image. An object’s location can be esti-

mated with different levels of precision (bounding boxes,

keypoints, or segmentation masks), and each introduces a

new challenge.

Object detection aims to locate an object by estimating

its boundaries. A detected object is typically presented by a

tight bounding box and a predicted class label. A bounding

box can be used directly in applications such as pedestrian

detection [24], or to crop an object from the original image

for further processing.

1https://sites.google.com/view/cvcreative2020/

deepfashion2
2https://github.com/facebookresearch/detectron2
3https://github.com/open-mmlab/mmdetection

10 25 50 100 150 200 250

Single image processing time, ms

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

m
A
P 512x512

512x512

128x128

256x256

512x512

128x128

256x256

512x512 Mask R-CNN ResNet-50 FPN [4]

Mask R-CNN ResNet-50 FPN [4]

HTC + HRNet [10]

HTC [10]

DeepMark++:
Hourglass

DLA-34

mDLA-34
Boxes

Landmarks CompetitorsCompetitors

Figure 1. Speed/accuracy trade-off for object detection and land-

mark estimation on the DeepFashion2 validation dataset [4] using

an RTX 2080ti. Mask R-CNN [4] time is estimated with Keypoint

R-CNN model from Detectron22. HTC [10] detection time is esti-

mated with COCO detection model3. HTC + HRNet [10] is used

without test-time augmentations in the single (aggregated) config-

uration.

Keypoint detection aims to estimate the precise location

of an object’s keypoints, which are sometimes referred to

as landmarks. Given a set of correctly defined keypoints,

one can transform an object in various ways – for example,

position alignment for future processing. However, details

of keypoint locations are not enough to estimate an object’s

boundaries due to a variety of object forms and its orienta-

tion in space. Instead, object detection and keypoint estima-

tion are combined to provide enough information to locate

and process objects.

The performance of models that operate on keypoints de-

pends heavily on the number of unique keypoints defined in

the task. The Deepfashion2 dataset [4], one of the largest

and most diverse datasets in the fashion domain, provides

annotation for 13 classes of clothing, each characterized by

a certain set of keypoints (294 keypoints in total).

State-of-the-art methods used to solve keypoint estima-
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tion problems on the DeepFashion2 dataset rely on heavy

architectures such as Mask R-CNN [4] or HTC + HR-

Net [10], which require large amounts of GPU resources

and extended training time, and can not be considered to run

on mobile devices. The recently proposed DeepMark [19]

uses a one-stage anchor-free detection model called Cen-

terNet [26] to simultaneously detect clothing items and es-

timate clothing landmark locations. While this approach is

fast in the inference phase, it is still both time- and memory-

consuming at the training stage. The massive number of

unique keypoints in the DeepFashion2 dataset presents a

significant bottleneck.

In this paper we propose a keypoint grouping strategy

to drastically reduce the number of keypoints and to ac-

celerate the training process. In addition, we propose and

thoroughly study several post-processing techniques which

can improve the model’s accuracy without compromising

its performance. Through this approach, we will demon-

strate that our model is capable of achieving results compa-

rable to the state-of-the-art.

Finally, we propose a light and fast version of our model

capable of running on a mobile device. We will demon-

strate optimal real-time performance of 50 FPS and near

real-time performance of 17 FPS with an acceptable accu-

racy of 0.445 mAP for the keypoint estimation problem.

2. Related work

Object keypoints can typically be utilized in numerous

applications. For example, they can be used to identify a hu-

man pose [16], locate facial landmarks [25], or to estimate

3D or 6D object locations [6]. However, the application we

are most concerned with in this paper is clothing landmark

estimation.

There are two open datasets capable of providing cloth-

ing images annotated with bounding boxes and keypoints.

DeepFashion [13] defines between 4 and 8 keypoints for

three classes of clothing items - top, bottom and full-body.

Apart from a modest variety of clothing items and sparse

keypoint definition, DeepFashion is limited to one object

per image, making it less suitable for real-life applications.

DeepFashion2 [4] improves on some of these drawbacks by

providing annotations for 13 classes, each characterized by

a unique set of keypoints, from 8 to 39, for 294 keypoints

in total. Examples of keypoint definition are presented in

Figure 3. The number of objects on an image ranges from 1

to 5.

Several papers are aiming to solve the landmark estima-

tion challenge with regards to the DeepFashion2 dataset,

with the original solution proposed in [4] built upon the

Mask R-CNN architecture [5]. This solution uses the

ResNet-FPN [11] backbone and RoIAlign to extract fea-

tures from different levels of the pyramid map, which are

then processed by two different branches, one each for ob-

ject detection and landmark estimation, in order to obtain

final outputs.

In [2], authors introduce an attention module to aggre-

gate features from different levels and to produce an output

heatmap for landmark estimation. While this approach has

delivered an improvement of 0.02 mAP for landmark es-

timation, it does not provide bounding boxes and instead

offers only keypoint locations.

A recently proposed solution by Tzu-Heng Lin [10] of-

fers current state-of-the-art capabilities with 0.614 mAP for

landmark estimation and 0.764 mAP for object detection.

This top-down approach first uses Hybrid Task Cascade [1]

to perform object detection and obtain bounding boxes, and

then runs HRNet-w48 [20] on a cropped image to estimate

keypoint locations. This method also uses the aggregation

strategy to reduce the number of keypoints and finetune

the landmark estimation model for each class separately,

thereby enhancing performance.

As existing solutions rely on slow and resource-

consuming architecture, they are unsuitable for low-power

devices. At the same time, keypoint-based object detection

methods have gained significant popularity in recent papers

as they are simpler, faster, and more accurate than the cor-

responding anchor-based detectors.

Previous approaches, such as [12, 17], required anchor

boxes to be manually designed in order to train detectors. A

series of anchor-free object detectors were then developed,

aiming to predict the bounding box keypoints, rather than

trying to fit an object to an anchor. Law and Deng pro-

posed CornerNet [9], a novel anchor-free framework which

detected objects like a pair of corners, and predicted class

heatmaps, pair embeddings, and corner offsets on each po-

sition of the feature map. Class heatmaps calculated the

probability of a corner, corner offsets were used to regress

the corner location, and the pair embeddings grouped a pair

of corners that belong to the same object. Without rely-

ing on manually designed anchors to match objects, Cor-

nerNet achieved a significant performance improvement on

the MS COCO datasets. Subsequently, several other vari-

ants of keypoint detection-based one-stage detectors have

been developed [21, 27].

In [19], authors naturally treat landmark estimation as

a pose estimation problem, and use keypoint-based multi-

target architecture CenterNet [26] with slight modifications

to handle both object detection and landmark estimation.

We further develop that idea in this paper, and propose sev-

eral improvements to accelerate the training process and en-

hance performance.

Despite state-of-the-art performance in object detection

and keypoint estimation tasks, CenterNet’s approach can

produce overconfident incorrect predictions, leading to a

decrease in performance metrics. A separate line of re-

search exists in the field of deep learning which aims to
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Figure 2. Scheme of the proposed approach.

solve the problem of estimating the uncertainty of model

predictions. In this regard, a number of papers show how

the use of various techniques, aimed at obtaining a more ac-

curate estimate of the prediction uncertainty, can improve

the quality of detection [14, 8, 22]. The most popular

method for estimating model uncertainty, MC Dropout, re-

quires several forward passes through a network to be per-

formed, significantly increasing the inference time. In [22],

a sample-free method for uncertainty estimation in anchor-

based detectors was presented which uses a set of obser-

vations that relate to the same object, according to Jaccard

overlap (before applying NMS). Motivated by this idea, we

created a way to improve CenterNet’s performance by con-

sidering a set of predictions related to a single object instead

of point estimation.

3. Proposed approach

Our approach is based on the CenterNet [26] architec-

ture, and simultaneously solves the following two tasks: ob-

ject detection and keypoint location estimation. The archi-

tecture is presented in Figure 2. A backbone downsamples

the input image by a factor of 4 to produce a feature map,

which is then processed to obtain object bounding boxes

and corresponding keypoints.

As the DeepFashion2 dataset contains 13 classes, 13

channels are used in the center heatmap to predict the prob-

abilities for each pixel being the object center for each class.

The center of an object is defined as the center of a bounding

box, and a ground truth heatmap is generated by applying

a Gaussian function at each object’s center. Two additional

channels in the output feature map – △x and △y – are used

to refine the center coordinates, and both width and height

are predicted directly.

Another branch handles the fashion landmark estimation

task, which involves estimating 2D keypoint locations for

each item of clothing in one image. The coarse locations of

the keypoints are regressed as relative displacements from

the box center (keypoint regression in Figure 2). Conse-

quently, if a certain pixel has already been classified as an
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Figure 3. The semantic grouping approach. A number indicates

the group a keypoint belongs to, and the green arrows are examples

of merged keypoints.
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Figure 4. GPU memory consumption and training iteration time

using an RTX 2080ti and PyTorch 1.4. The input resolution is

256×256, while the batch size is 32 for both DLA-34 and ResNet-

50, and 8 for Hourglass. The time in ms was measured for 1 opti-

mization step: batch loading to GPU, forward pass and backward

pass. GPU memory was measured using the nvidia-smi tool.

object center, one can take the values in the same spatial lo-

cation from this tensor and interpret them as vectors to key-

points. The keypoint position obtained through regression

is not entirely accurate, so an additional heatmap with prob-

abilities is used for each keypoint type to refine a keypoint

location. Here, a local maximum with high confidence in

the heatmap is used as a refined keypoint position. Similar

to the detection branch, two additional channels – △x and

△y – are used to obtain more precise landmark coordinates.

During model inference, each coarse keypoint location is re-

placed with the closest refined keypoint position. As such,

keypoints that belong to the same object are grouped to-

gether.

3.1. Semantic keypoint grouping

One of the first steps involved in solving keypoint detec-

tion tasks is defining the model output. The number of key-
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Backbone
mAPpt mAPbox

294 kps 62 kps 294 kps 62 kps

ResNet-50 0.377 0.365 0.629 0.627

mDLA-34 0.434 0.422 0.649 0.651

DLA-34 0.466 0.456 0.679 0.679

Table 1. The detection accuracy for different backbones with

(62 kps) and without (294 kps) semantic keypoint grouping.

points for every category varies from 8 for a skirt, to 39 for a

long sleeve outerwear in the DeepFashion2 dataset, and the

total number of unique keypoints is 294. The straightfor-

ward approach is to concatenate keypoints from every cate-

gory and deal with each one separately. Directly predicting

294 keypoints leads to a huge number of output channels:

901 = 13+2+2+294 ·2+294+2 (13 – center heatmap, 2
– center offset, 2 – object size, 294 ·2 – keypoint regression,

294 – keypoint heatmap, 2 – keypoint offset).

It is evident that certain clothing landmarks are actually a

subset of others. For example, shorts do not require unique

keypoints as they can be represented by a subset of trouser

keypoints. The semantic grouping rule is defined as follows

(Figure 3): identical semantic meaning keypoints (such as

collar center and top sleeve edge) with different categories

can be merged into one group. This approach enables the

formation of 62 groups and reduces the number of output

channels from 901 to 205 = 13 + 2 + 2 + 62 · 2 + 62 + 2
(see Figure 2 for details).

The semantic grouping approach reduces training time

and memory consumption by up to 26% and 28%, respec-

tively, without notable decrease in accuracy (see Figure 4

and Table 1). In addition, the latter reduction enables the

use of larger batches during model training.

The semantic grouping approach also reduces inference

time and memory consumption by up to 26% and 37%, re-

spectively (see section 4.3 for details). An in-depth analysis

of the grouping approach is presented in [18].

3.2. Postprocessing techniques

We have developed 4 post-processing techniques that in-

crease the model’s accuracy without compromising perfor-

mance.

3.2.1 Center rescoring

It is evident that keypoint scores for the wrong category may

have low confidence (see Figure 5).

We use this insight to recalculate the detection con-

fidence score using keypoint scores from the keypoint

heatmap. Let Scorebbox be the original detection confi-

dence score from the center heatmap, and Scorekps be the

average score of the refined keypoints for the predicted cat-

egory from the keypoint heatmap. The final detection con-

Figure 5. Detection results for two different classes. The keypoint

score for the right class has a higher value. Short sleeved out-

wear on the left has Scorebbox = 0.31, Scorekps = 0.28. Long

sleeved outwear on the right has Scorebbox = 0.29, Scorekps =

0.36.
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Figure 6. A heatmap with center scores and a heatmap after rescor-

ing with Gaussian kernel (σ = 0.45).

fidence scores are calculated as a linear combination of the

bounding box score and the average keypoint score:

Score = α · Scorebbox + (1− α) · Scorekps, (1)

where α ∈ [0, 1].

3.2.2 Heatmap rescoring with Gaussian kernel

Applying smoothing operators on heatmaps is quite a com-

mon technique. For instance, it is used in CenterNet to gen-

erate ground truth labels for a heatmap during the training

stage. We propose a general approach that can be applied to

any keypoint-based architecture during the inference stage

as well.

Let H be a heatmap with center or keypoint scores. Tak-

ing the training procedure into account, you can expect the

8-connected neighbors of each item to be related to the same

object, and this fact can be used to improve the estimation

of each heatmap value (see Figure 6). Consequently, we

have applied the following formula:

Ĥ = H ⊛G(σ), (2)

where ⊛ is the convolution operation, and G(σ) is the 3× 3
Gaussian kernel with the standard deviation σ. Experimen-

tal results show that in our model, the proposed technique

2983



35 40 45 50 55 60

Slice, X

0.0

0.2

0.4

0.6

0.8

1.0

S
co
re

Original decode from CenterNet

Coarse keypoint position

Heatmap

Local maxima

Refined keypoint position

35 40 45 50 55 60

Slice, X

0.0

0.2

0.4

0.6

0.8

1.0

S
co
re

Keypoint heatmap rescoring

Mask

Coarse keypoint position

Masked heatmap

Local maxima

Refined keypoint position

Figure 7. In CenterNet, the refined location is defined as the clos-

est point to the coarse keypoint position, which in turn is defined

as a local maximum on the heatmap. This can lead to errors when

the closest prediction is not actually the best one (as evident in

the diagram above). In the proposed technique, the refined loca-

tion is determined as a global maximum of the keypoint heatmap

rescored by the Gaussian mask, improving keypoint localization.

improves the localization of peaks and their values that cor-

respond to object centers or keypoints and their scores. A

similar operation has been considered in [23] as a part of

the proposed method.

3.2.3 Keypoint location refinement

The third technique further corrects keypoint locations by

calculating a linear combination of the refined and coarse

keypoint positions (see Figure 8). Our experiments have

shown a small improvement when using this technique,

with no impact on performance.

Let (x, y)refined be the refined keypoint location from

the heatmap and (x, y)coarse be coarse positions predicted

as offsets from object centers. The final keypoint locations

are calculated through the following expression:

(x, y) = γ · (x, y)refined + (1− γ) · (x, y)coarse, (3)

where γ ∈ [0, 1].

3.2.4 Keypoint heatmap rescoring

In the fourth technique we propose the addition of a penalty

to the keypoint score in proportion to the distance from a

coarse keypoint position with the Gaussian function. Let

Coarse location

Refined location

Final location

Figure 8. A linear combination of the refined and coarse keypoint

positions.

No techniques Technique (2) Technique (4) Techniques (2) and (4)

Figure 9. The impact of post-processing techniques on keypoint

detection accuracy. Red dots highlight incorrect detections, and

green dots highlight fixes by post-processing techniques.

mask be a heatmap with zero values by default. We set 1
into the mask in the coarse keypoint position and fill neigh-

bor values with 2D Gaussian function with standard devi-

ation sigma = min(width, height)/9, where width and

height are the object size (see the second image in Fig-

ure 7).

The keypoint heatmap is rescored through the following

expression:

Ĥkps = Hkps ·mask. (4)

4. Results

All experiments were performed on the publicly avail-

able DeepFashion2 Challenge dataset [4], which contains

191,961 images in the training set and 32,153 images in the

validation set.

4.1. Postprocessing techniques

We considered 5 fast post-processing techniques: bound-

ing box non-maximum suppression and 4 techniques from

section 3.2. The individual and combined effectiveness of

each technique is shown in Table 2 and Figure 9.

Certain techniques can increase mAPpt and reduce

mAPbox simultaneously. Note that bounding box detec-

tion and keypoint estimation results for the same object may

have different IoU and OKS with the ground truth, for ex-

ample, when bounding box was detected correctly, but key-

points were not. In this case, technique (1) involves lower-

ing a score for false positive keypoints, which is advisable.

The corresponding true positive bounding box also suffers

from this lowered score.

We also evaluated proposed techniques on the COCO

keypoint detection task. Here, we took the DLA-34 model

for human keypoint detection on the COCO dataset with
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0.589 AP from [26], and applied 4 techniques from sec-

tion 3.2. Three datasets were selected for hyperparameter

optimization: 5000 random images from the COCO train

dataset; a subset of 100 images from the COCO validation

dataset, of which only 61 images contain people (Minival);

a subset of 100 images with people from the COCO valida-

tion dataset (Minival with people).

Each post-processing technique parameter was deter-

mined through grid searching with step 0.05 within the

range 0 to 1, resulting in 21 experiments for a single pa-

rameter. Grid search on a representative subset enables ac-

curacy very close to the global maximum (see Figure 10),

and the accuracy was increased by 0.021 AP (from 0.589

AP to 0.6104 AP) without model retraining. On Minival

with people we determined the following optimal parame-

ters: α = 0.75, center heatmap σ = 0.25, keypoint heatmap

σ = 0.65, γ = 0.8.

4.2. DeepFashion2 Challenge

We used the CenterNet MS COCO model for object de-

tection as the initial checkpoint and performed experiments

with the Hourglass backbone and Adam the optimizer to

achieve the best results (Table 3) for object detection and

keypoint estimation tasks on the DeepFashion2 validation

dataset. The Hourglass 512×512 model was trained for

100 epochs with a batch size of 46 images. The learning

rate schedule is: 1e-3 - 65 epochs, 4e-4 - 20 epochs, 4e-5 -

Post-processing mAPpt mAPbox
Total time,

ms

Baseline 0.422 0.651 54.50

NMS 0.422 0.652 54.57

Technique (1) 0.428 0.650 54.61

Technique (2) 0.430 0.651 54.44

Technique (3) 0.431 0.651 54.81

Technique (4) 0.430 0.651 55.95

Combined 0.445 0.652 56.76

Table 2. Different post-processing techniques applied indepen-

dently to mDLA-34 256×256 on the DeepFashion2 validation

dataset. The technique numbers correspond to the numbers in

section 3.2. Total processing time is measured on a Huawei P40

Pro. Technique (2) works faster than the base version, as it signifi-

cantly reduces the number of local maxima and increases the speed

of further decoding. The last line contains metrics for combined

techniques.

Approach mAPpt mAPbox

Mask R-CNN [4] 0.529 0.638

DeepMark [19] 0.532 0.723

DAFE [2] 0.549 —

Aggregation and Finetuning [10] 0.614 0.764

Hourglass 512×512 0.583 0.735

Hourglass 768×768 0.591 0.737

Table 3. Accuracy comparison between the proposed and alter-

native approaches with the DeepFashion2 validation dataset. All

models are trained with the released DeepFashion2 Challenge

dataset.

15 epochs. The Hourglass 768×768 model was fine-tuned

from Hourglass 512×512 for 25 epochs, with a batch size

of 22 images: 2e-5 - 20 epochs, 1e-5 - 5 epochs.

To optimize post-processing technique parameters with

grid search (subsection 4.1) we defined a small validation

subset (1285 images) from the DeepFashion2 validation

dataset. The following parameters were used for the Hour-

glass 768×768: α = 0.8, center heatmap σ = 0.45, key-

point heatmap σ = 0.90, γ = 0.75.

With the Hourglass 768×768 model we achieved the

second place in the DeepFashion2 Challenge 2020 with

0.582 mAP on the test dataset.

During all experiments, our target was to increase the

keypoint estimation accuracy instead of the object detection

accuracy. Consequently, object detection increased by only

0.042 mAPbox, but all the techniques added more than 0.07

to mAPpt (see Table 4).

4.2.1 Multi-inference strategies

We have considered 2 extra inference strategies: fusing

model outputs from original and flipped images with equal
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Metric mAPpt mAPbox

Resolution 512×512 768×768 512×512 768×768
Baseline 0.529 0.520 0.720 0.695

+ Post-processing 0.545 0.540 0.713 0.698

+ NMS 0.548 0.549 0.718 0.712

+ Flip 0.561 0.563 0.731 0.727

+ Multiscale 0.568 0.578 0.735 0.737

+ PoseFix 0.583 0.591 0.735 0.737

Table 4. Clothing detection and landmark estimation. Hourglass

with 512×512 and 768×768 resolution were used in the experi-

ments. The next technique is added to each of the previous ones,

and the post-processing refers to the application of all techniques

from section 3.2. We applied the following multipliers for the mul-

tiscale technique: 0.85, 0.95, 1.1. Our target was to increase the

keypoint estimation accuracy (also consider the note from 4.1), so

mAPbox accuracy is dropped after applying some of our techin-

ques.

weights; and fusing model results with the original image

downscaled/upscaled through certain multipliers. While

these proposed techniques increase accuracy, they require

several model inferences, and this significantly impacts pro-

cessing time.

4.2.2 Keypoint Refinement Network

At the final stage, detection results are refined with

the PoseFix [15] model-agnostic pose refinement method,

which learns the typical error distributions of any other pose

estimation method and corrects mistakes at the testing stage.

We trained a set of 13 PoseFix models using the number

of classes in the DeepFashion2 dataset, and the inference

results of our method on the training set are used to train

each of the 13 models. Subsequently, we applied the trained
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Figure 12. Single image processing time and memory consump-

tion with mDLA-34 on a Huawei P40 Pro with MNN. Total pro-

cessing time (pre-procesing + inference + post-processing) and

memory usage during inference are shown for models with di-

rect prediction of 294 keypoints and a prediction of 62 keypoint

groups.

PoseFix models to the result.

4.3. Experiments on a mobile phone

The DLA-34 model contains DCN [3] layers by default.

This increases model accuracy by 2-3 mAP, but most infer-

ence frameworks do not currently support DCN. In order

to run the DLA-34 model on a mobile phone, we replaced

all DCN layers with conventional convolution layers 3× 3.

This model is referred to as mDLA-34, and it contains 19.5

millions parameters. The number of floating point opera-

tions for the model is presented in Table 6.

The Huawei P40 Pro smartphone (complete with Kirin

990) is used for our experiments. To run the model on CPU

we use MNN [7] v1.0.2 (number of threads = 4), and on

NPU we use HiAI DDK v100.310.011. Both NPU and CPU

can run mDLA-34 at 14 FPS with relatively high accuracy

(see Figure 11).

We also estimated the influence on the keypoint group-

ing approach to memory consumption and execution time

(see Figure 12). Here, the grouping approach only impacts

the last part of a neural network and a post-processing step.

The higher the input resolution, the greater the performance

and memory gains. The keypoint grouping approach works

25% faster and requires 15% less memory with the mDLA-

34 256× 256 model on a Huawei P40 Pro, compared to the

same model without keypoint grouping.

mDLA-34 256 × 256 performance on the different val-

idation subsets and for each class is presented in Table 5

and Table 7. Figure 13 demonstrates examples of the model

performance on several use-cases.
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(a)(a) (b)(b) (c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 13. Examples of fashion landmark detection with mDLA-34 256×256 with all post-processing techniques. A simple pose without

any occlusion is not a major challenge for even the 256×256 model. Keypoints are detected quite accurately for images featuring a single

person (a) or multiple people (c). However, uncommon hand positions (b) can lead to errors in the elbow area. As the subject’s legs are not

fully visible in image (b), this leads to both erroneous determination of the trouser type and errors in the keypoint positions. In addition,

clothing detection on distant or blurred subjects (d) works poorly in some cases.

Scale Occlusion Zoom-in Viewpoint
Overall

Small Moderate Large Slight Medium Heavy No Medium Large No wear Frontal Side or back

mAPpt
0.408 0.560 0.467 0.509 0.502 0.209 0.536 0.440 0.315 0.431 0.550 0.409 0.507

0.346 0.497 0.434 0.490 0.421 0.132 0.473 0.393 0.295 0.418 0.482 0.345 0.445

mAPbox 0.574 0.683 0.667 0.691 0.636 0.285 0.663 0.641 0.592 0.669 0.669 0.614 0.652

Table 5. The results for landmark estimation with mDLA-34 256×256 with all post-processing techniques on different validation subsets,

including scale, occlusion, zoom-in, and viewpoint. Results of evaluation on visible landmarks only and evaluation on both visible and

occluded landmarks are separately shown in each row for mAPpt.

Resolution
Model Post-processing

Decode Total
inference techniques

128× 128 2.423 0.0008 0.0004 2.424

256× 256 9.691 0.0028 0.0015 9.696

512× 512 38.765 0.0113 0.0058 38.783

Table 6. The number of floating point operations in GFLOPs for

mDLA-34 inference, post-processing techniques, and decode.

5. Conclusion

This new approach is proposed as an adaptation of Cen-

terNet [26] for clothing landmark estimation tasks. The ac-

curacy is comparable to state-of-the-art was achieved on the

DeepFashion2 dataset by applying several post-processing

techniques as well as the semantic keypoint grouping ap-

proach: clothing detection hit 0.737 mAP and clothing

landmark estimation reached 0.591 mAP . Performance

runs at 56 ms per image (more than 17 FPS) on a Huawei

P40 Pro for mDLA-34 256×256, and yields considerably

high accuracy (0.445 mAPpt and 0.652 mAPbox) for cloth-

ing detection tasks.

Class APpt APbox

Short sleeve top 0.606 0.804

Long sleeve top 0.507 0.724

Short sleeve outwear 0.175 0.347

Long sleeve outwear 0.458 0.724

Vest 0.426 0.679

Sling 0.297 0.422

Shorts 0.545 0.721

Trousers 0.443 0.739

Skirt 0.481 0.740

Short sleeve dress 0.586 0.721

Long sleeve dress 0.375 0.542

Vest dress 0.481 0.710

Sling dress 0.400 0.605

Table 7. Accuracy by class for mDLA-34 256×256 with all post-

processing techniques. Accuracy for some classes is significantly

lower than for others due to the fact that these classes contain

smaller number of samples in train and validation datasets. For

short sleeve outwear class it’s 543 and 142 samples in train and

validation subsets respectively, for sling class – 1985 and 322. For

comparison, vest dress contains 17949 and 3352 samples.
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