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Abstract

Image harmonization is an important step in photo edit-

ing to achieve visual consistency in composite images by

adjusting the appearances of a foreground to make it com-

patible with a background. Previous approaches to harmo-

nize composites are based on training of encoder-decoder

networks from scratch, which makes it challenging for a

neural network to learn a high-level representation of ob-

jects. We propose a novel architecture to utilize the space

of high-level features learned by a pre-trained classifica-

tion network. We create our models as a combination of

existing encoder-decoder architectures and a pre-trained

foreground-aware deep high-resolution network. We exten-

sively evaluate the proposed method on the existing image

harmonization benchmark and set up a new state-of-the-art

in terms of MSE and PSNR metrics. The code and trained

models are available publicly.

1. Introduction

The main challenge of image compositing is to make the

output image look realistic, given that the foreground and

background appearances may differ greatly due to photo

equipment specifications, brightness, contrast, etc. To ad-

dress this challenge, image harmonization can be used to

make those images visually consistent. In general, image

harmonization aims to adapt the appearances of the fore-

ground region of an image to make it compatible with the

new background, as can be seen in Fig. 1.

In recent years, several deep learning-based algorithms

have been addressed to this problem [34, 6, 5, 12]. Unlike

traditional algorithms that use handcrafted low-level fea-

tures [14, 18, 33, 40], deep learning algorithms can focus

on the image contents.

For image harmonization, it is crucial to understand what

the image foreground and background is and how they

should be semantically connected. For example, if the to-

be-harmonized foreground object is a giraffe, it is natural

to adjust the appearance and color to be blended with sur-

rounding contents, instead of making the giraffe white or

red. Therefore, Convolutional Neural Networks (CNNs)

have succeeded in such tasks, showing an excellent ability

to learn meaningful feature spaces, encoding diverse infor-

mation ranging from low-level features to high-level seman-

tic content [17, 43].

In recent papers on image harmonization, models are

trained from scratch using only annotations that do not con-

tain any semantic information [6, 5]. The neural network is

supposed to learn all dependencies between semantic pat-

terns without supervision. However, it proves to be an ex-

tremely difficult task even for deep learning. The model is

more likely to fall into a local minimum with relatively low-

level patterns rather than learn high-level abstractions due to

several reasons. First, learning semantic information using

this approach is similar to self-supervised learning, where

the task of automatic colorization is solved [20, 19, 44].

However, several works focusing on self-supervised learn-

ing demonstrate that the resulting representations are still

inferior to those obtained by supervised learning on Ima-

geNet [17, 9]. Second, the amount of data used for image

harmonization training is by orders of magnitude smaller

than the ImageNet dataset [7] and other datasets used for

self-supervised training. Considering all the aforemen-

tioned aspects, it seems challenging for a neural network to

learn high-level semantic features from scratch only during

image harmonization training. Tsai et al. [34] also high-

lighted this challenge and proposed a special scene pars-

ing decoder to predict semantic segmentation, although it

provided only an insignificant increase in quality and re-

quired semantic segmentation annotation of all training im-

ages. Consequently, this technique was not used in the re-

cent papers on this topic [6, 5].

In this paper, we propose a simple approach to the ef-

fective usage of high-level semantic features from models

pre-trained on the ImageNet dataset for image harmoniza-

tion. We find that the key factor is to transfer the image

and the corresponding foreground mask to a pre-trained

model. To achieve such transfer, we present a method of

adapting the network to take the image and the correspond-

ing foreground mask as the input without negatively affect-
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Figure 1: Illustration of the practical application of image harmonization algorithm to a composite image. Best view in color.

ing the pre-trained weights. In contrast to previous works,

we make existing pre-trained models foreground-aware and

combine them with encoder-decoder architectures without

adding any auxiliary training tasks.

Another challenging task is to create valid training and

test datasets, since producing a large dataset of real harmo-

nized composite images requires a lot of human labor. For

this reason, Tsai et al. [34] proposed a procedure for cre-

ating synthesized datasets, although their dataset was not

published. Cong et al. [5] reproduced this procedure, added

new photos to the dataset and made it publicly available. To

evaluate the proposed method, we conduct extensive experi-

ments on this synthesized dataset and perform a quantitative

comparison with previous algorithms.

2. Related work

In this section, we review image harmonization methods

and some related problems as well.

Image harmonization. Early works on image harmo-

nization use low-level image representations to adjust fore-

ground to background appearance. Existing methods apply

alpha matting [32, 35], gradient-domain methods [27, 14],

matching color distribution [29, 4, 28] and multi-scale

statistics [33]. Combinations of these methods are used to

assess and improve realism of the images in [18, 40].

Further work on image realism was provided by Zhu et

al. [48]. They fit a CNN model to distinguish natural pho-

tographs from automatically generated composite images

and adjust the color of the masked region by optimizing the

predicted realism score. The first end-to-end CNN for im-

age harmonization task was proposed by Tsai et al. [34].

Their Deep Image Harmonization (DIH) model exploits a

well-known encoder-decoder structure with skip connec-

tions and an additional branch for semantic segmentation.

The same basic structure is broadly used in related com-

puter vision tasks such as super-resolution [45], image col-

orization [44, 10], and image denoising [24]. Cun et al. [6]

also go with an encoder-decoder U-Net-based [30] model

adding spatial-separated attention blocks to the decoder.

Standard encoder-decoder architectures with a content

loss can be supplemented by an adversarial loss too. Usu-

ally, these models are successfully trained with no use of

the GAN structure, but in some cases adversarial learning

makes an impact on image realism. The approach can be

found in the papers on super-resolution [21, 37] and image

colorization [15, 26]. Cong et al. [5] construct an encoder-

decoder model based on the Deep Image Harmonization ar-

chitecture [34] with spatial-separated attention blocks [6].

Besides the classic content loss between the harmonized

and target image, they also add the adversarial loss from

two discriminators. While the global discriminator predicts

whether the given image is fake or real as usual, the do-

main verification discriminator checks if the foreground and

background areas are consistent with each other.

Image-to-image translation. Image harmonization can

be regarded as an image-to-image translation problem.

Some GAN architectures are designed for such tasks. Isola

et al. [12] describe a pix2pix GAN, which is trained

to solve image colorization and reconstruction problems

among other tasks, and can be applied to image harmoniza-

tion. There are several GAN models for the related task of

image blending [38, 42], which seamlessly blend object and

target images coming from different sources.

Existing general image-to-image translation frameworks

are not initially designed for the image harmonization task

and do not perform as well as specialized approaches. Cun

et al. [6] present the results for both dedicated model, based

on U-Net, and pix2pix model [12], and the latter fails to get

competitive metric values.

Single image GANs. In order to generate realistic im-

ages, GANs require a lot of training samples. There are

recent works on adversarial training with just a single im-

age [31, 11]. The SinGAN and ConSinGAN models do not

require a large training set and learn to synthesize images

similar to a single sample. It could also be used for unsuper-

vised image harmonization. However, these models show
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Figure 2: (a) The architecture of the S2AM [6] approach to inference a resulting image. (b) The proposed architecture. We

find that a network can easily predict a mask for blending since a foreground mask is fed as an input to the encoder-decoder.

No need for heuristics, e.g. blurring the foreground mask.

good performance only in cases when the background im-

age contains many texture and stylistic details to be learned

(e.g. a painting) and the foreground is photorealistic, lead-

ing to artistic image harmonization. When it comes to the

composite images based on real-world photos, the model

may achieve rather poor results. Also, SinGAN models re-

quire training from scratch for every image, so harmoniza-

tion of one composite may take a lot of computational time.

3. Proposed method

In this section, we first revisit encoder-decoder architec-

tures for image harmonization in Sec. 3.1. Then, we intro-

duce a mask fusion module to make pre-trained image clas-

sification models foreground-aware in Sec. 3.2 and demon-

strate the detailed resulting network architecture in Sec. 3.3.

Finally, we present the Foreground-Normalized MSE objec-

tive function in Sec. 3.4.

Below we use the following unified notation. We denote

an input image by I ∈ R
H×W×3, a provided binary mask

of a composite foreground region by M ∈ R
H×W×1, and

concatenation of I and M by Î ∈ R
H×W×4, where H and

W are height and width of the image.

3.1. Encoderdecoder networks

We consider image harmonization as an image-to-image

problem, with a key feature of mapping a high resolution in-

put to a high resolution output. Many previous works have

used an encoder-decoder network [34, 6, 5], where the in-

put is passed through a series of layers that progressively

downsample until a bottleneck layer, where the process is

reversed. Skip connections between an encoder and a de-

coder are essential for image harmonization, as they help to

avoid image blurring and texture details missing.

In this section, we present our modification of the

encoder-decoder network with skip connections that was

introduced in DIH [34]. We change the original DIH ar-

chitecture by removing the fully connected bottleneck layer

to make the model fully convolutional.

DIH reconstructs both background and foreground re-

gions of an image, which is not optimal for solving the task

of image harmonization, as a background should remain un-

changed. Therefore, we propose a simple scheme inspired

by S2AM [6], where the network predicts a foreground re-

gion and blending mask MA. The final image is obtained

by blending an original image and a decoder output using a

predicted blending mask, as shown in Fig. 2. It allows the

model to control blending of a predicted foreground region

and a background. We provide a visual comparison of in-

put foreground masks and inverted blending masks obtained

from the trained iDIH model in Fig. 3.

Figure 3: Blending masks predicted by the iDIH model.
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Figure 4: Our final architecture based on HRNet+OCR [41] (iDIH-HRNet).

Let us denote the encoder-decoder network as DF (Î) :
R

H×W×4 → R
H×W×C , which returns features x =

DF (Î) with C channels, and denote two 1 × 1 convolu-

tion layers as DRGB : R
H×W×C → R

H×W×3, DM :
R

H×W×C → R
H×W×1. The output image can be formal-

ized as:

Ipred = I × [1−DM (x)] +DRGB(x)×DM (x). (1)

We refer our modification of the DIH architecture

with the above-mentioned enhancements as improved DIH

(iDIH).

3.2. Foregroundaware pretrained networks

In many computer vision domains such as semantic seg-

mentation, object detection, pose estimation, etc., there are

successful practices of using neural networks pre-trained on

the ImageNet dataset as backbones. However, for image

harmonization and other image-to-image translation prob-

lems, there is no general practice of using such networks.

Similarly to image-to-image translation, semantic seg-

mentation models should have the same input and out-

put resolution. Thus, semantic segmentation models seem

promising for image harmonization, because they typi-

cally can produce detailed high-resolution output with a

large receptive field [25]. We choose current state-of-

the-art semantic segmentation architectures such as HR-

Net+OCR [36, 41] and DeepLabV3+ [3] as the base for our

experiments.

Foreground masks for pre-trained models. Models

trained on ImageNet take an RGB image as an input. With-

out awareness of the foreground mask, the network will not

be able to accurately compute specific features for the fore-

ground and the background and compare them with each

other, which can negatively affect the quality of prediction.

Similar issues arise in interactive segmentation and RGB-D

segmentation tasks [39, 1, 8]. The most common solution

is to augment the weights of the first convolution layer of

a pre-trained model to accept N-channels input instead of

only an RGB image. We discover that this solution can be

modified by adding an extra convolutional layer that takes

the foreground mask as an input and produces 64 output

channels (to match conv1 in pre-trained models). Then, its

outputs are summarized with the conv1 layer outputs of the

pre-trained model. A core feature of this approach is that it

allows setting a different learning rate for the weights that

process the foreground mask.

3.3. Final architecture design

We extract only high-level features from the pre-trained

models: outputs after the ASPP block in DeepLabV3+ [3]

and outputs after the OCR module in HRNet [36, 41]. There

are several ways to pass the extracted features to the main

encoder-decoder block:

• pass them to one fixed position of the encoder (or de-

coder or both simultaneously);

• build a feature pyramid [22, 36] on them and pass the

resulting feature maps to the encoder layers with ap-

propriate resolutions (or the decoder or both simulta-

neously).

Our experiments have shown that the best results are ob-

tained by passing the features to both encoder and decoder

simultaneously, as can be found in Table 6. When pass-

ing the features only to the decoder the worst results are

obtained. It can be explained by the fact that high-level

reasoning in the encoder-decoder happens at the bottleneck

point, then the decoder relies on this information and pro-

gressively reconstructs the output image. Passing the fea-

tures to the encoder only leads to the decoder lacking the

semantic information from the pre-trained model.

We implement a variant of feature pyramid as in HR-

NetV2p [36] and find that there is no need to use it to pass

the features to the encoder. Without any loss of accuracy, it

is sufficient to pass the features to a single position in the en-

coder and decoder, and the encoder is trained from scratch
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Figure 5: Qualitative comparison of different models on samples from the iHarmony4 test set. Presented models are trained

with horizontal flip and RRC augmentations, and FN-MSE objective function. More results in the supplementary material.

and can model a feature pyramid by its own structure. We

aggregate the extracted features with the intermediate en-

coder feature map with concatenation.

Figure 4 shows a detailed diagram of our architecture

based on HRNet+OCR [41]. We further refer to it as iDIH-

HRNet, additionally specifying the backbone width. Illus-

trative results of previous works and our models are pre-

sented in Fig. 5.

3.4. Foregroundnormalized MSE

As we mentioned in section 3.1, the characteristic of im-

age harmonization task is that the background region of the

output image should remain unchanged relatively to the in-

put composite. When the network takes the foreground

mask as an input, it learns to copy the background region

easily. Hence, the pixel-wise errors in this region will be-

come close to zero during training. This means that training

samples with foreground objects of different sizes will be

trained with different loss magnitudes, which leads to poor

training on images with small objects. To address this issue,

we propose a modification of the MSE objective function,

which is normalized by the foreground object area:

Lrec(Î) =

∑

h,w

∥

∥

∥
I
pred
h,w − Ih,w

∥

∥

∥

2

2

max
{

Amin,
∑

h,w

Mh,w

} , (2)

where Amin is a hyperparameter that prevents instabil-

ity of the loss function on images with very small objects.

This objective function becomes equal to simple MSE when

Amin = HW . In all our experiments, we set Amin = 100,

you can find the ablation studies on it in Section 4.4.

4. Experiments

4.1. Datasets

We use iHarmony4 dataset contributed by [5]. Images in

the dataset contain a wide range of the foreground objects,

and each object occupies a sufficient area of the image. De-

tails on four iHarmony4 subdatasets are given below. Each

subdataset is split into training and test sets so that each im-

age is included in either a training or test set.

HCOCO. COCO dataset [23] contains 118k training and

41k test images with instance masks for 80 categories anno-

tated manually. HCOCO subdataset is synthesized from the

joined training and test sets of COCO. The composite im-
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Method
HCOCO HAdobe5k HFlickr Hday2night All

MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR

DIH [34, 5] 51.85 34.69 92.65 32.28 163.38 29.55 82.34 34.62 76.77 33.41

S2AM [6, 5] 41.07 35.47 63.40 33.77 143.45 30.03 76.61 34.50 59.67 34.35

DoveNet [5] 36.72 35.83 52.32 34.34 133.14 30.21 54.05 35.18 52.36 34.75

DIH+augs+FN-MSE 22.54 37.77 35.58 35.30 90.53 32.00 64.13 36.37 34.70 36.38

iDIH+augs+FN-MSE 19.29 38.44 30.87 36.09 84.10 32.61 55.24 37.26 30.56 37.08

iDIH-HRNet-W18s 14.01 39.64 21.36 37.35 60.41 34.03 50.61 37.68 22.00 38.31

Table 1: Performance comparison between methods on the iHarmony4 test sets. The best results are in bold.

Foreground ratios 0% ∼ 5% 5% ∼ 15% 15% ∼ 100% 0% ∼ 100%
MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓

DIH [34, 5] 18.92 799.17 64.23 725.86 228.86 768.89 76.77 773.18

S2AM [6, 5] 15.09 623.11 48.33 540.54 177.62 592.83 59.67 594.67

DoveNet [5] 14.03 591.88 44.90 504.42 152.07 505.82 52.36 549.96

DIH+augs+FN-MSE 9.85 420.90 29.39 329.04 100.05 324.41 34.70 375.59

iDIH+augs+FN-MSE 8.38 366.32 25.39 287.02 89.44 297.94 30.56 330.45

iDIH-HRNet-W18s 6.73 294.76 18.03 204.69 63.02 207.82 22.00 252.00

Table 2: MSE and foreground MSE (fMSE) of different methods in each foreground ratio range based on the whole iHar-

mony4 test set. The best results are in bold.

age in HCOCO consists of the background and foreground

areas both drawn from the real image, although the fore-

ground appearance is modified. The foreground color in-

formation is transferred from another image foreground be-

longing to the same category. HCOCO subdataset contains

38545 training and 4283 test pairs of composite and real

images.

HFlickr. Flickr is a website for online photo manage-

ment and sharing. HFlickr is based on 4833 images crawled

from Flickr with one or two manually segmented fore-

ground objects. The process of the composite image con-

struction is the same as for HCOCO. During compositing,

a pre-trained scene-parsing ADE20K model [46] is used to

specify the category of the foreground object. HFlickr sub-

dataset contains 7449 training and 828 test pairs of compos-

ite and real images.

HAdobe5k. MIT-Adobe FiveK dataset [2] is collected

from 5k raw photos, each having 5 renditions made by

5 different experts. 4329 images with one manually seg-

mented foreground object are used to build the HAdobe5k

subdataset. The background of the composite image is re-

trieved from the raw photo and the foreground is retrieved

from one of the 5 edited images. HAdobe5k subdataset con-

tains 19437 training and 2160 test pairs of composite and

real images.

Hday2night. Day2night dataset [47] contains 8571 im-

ages of 101 outdoor scenes. It is collected from the AMOS

dataset [13], which contains a large number of images taken

every half an hour by outdoor webcams with fixed charac-

teristics. 106 target images from 80 scenes with one manu-

ally segmented foreground object are selected to synthesize

the Hday2night subdataset. The process of the compos-

ite image construction is the same as for HAdobe5k. The

background and foreground images are taken from different

pictures of one scene. Hday2night subdataset contains 311

training and 133 test pairs of composite and real images.

4.2. Training details

We use the PyTorch framework to implement our mod-

els. The models are trained for 180 epochs with Adam op-

timizer [16] with β1 = 0.9, β2 = 0.999 and ε = 10−8.

Learning rate is initialized with 0.001 and reduced by a fac-

tor of 10 at epochs 160 and 175. The semantic segmen-

tation backbone weights are initialized with weights from

the models pre-trained on ImageNet and updated at every

step with the learning rate multiplied by 0.1. All models are

trained on the iHarmony4 training set, which encapsulates

training sets from all four subdatasets.

We resize input images as 256×256 during both training

and testing. The input images are scaled to [0, 1] and nor-

malized with RGB mean (0.485, 0.456, 0.406) and standard

deviation (0.229, 0.224, 0.225). Training samples are aug-

mented with the horizontal flip and random size crop with

the size of the cropped region not smaller than the halved
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Model HFlip RRC FN-MSE MSE↓ fMSE↓ PSNR↑

DIH – – – 65.65 632.86 34.13

DIH + – – 55.44 555.92 34.73

DIH + + – 36.97 398.26 35.92

DIH + + + 34.70 375.59 36.38

iDIH + + – 33.96 378.25 36.53

iDIH + + + 30.56 330.45 37.08

iS2AM + + – 30.46 335.98 36.91

iS2AM + + + 26.92 286.67 37.67

Table 3: Ablation studies of different augmentation strategies and the proposed FN-MSE objective function.“HFlip” stands

for the horizontal flip and “RRC” stands for the RandomResizedCrop augmentation. The iDIH and iS2AM models include

the layer blending original image with decoder output.

Amin 1 10 100 1000 10000

MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR

DIH 124.79 31.87 42.36 35.52 34.70 36.38 33.84 36.43 34.24 36.33

iDIH 32.41 36.87 30.50 37.08 30.56 37.08 31.19 37.03 31.93 36.81

Table 4: Ablation studies of the hyperparameter Amin value in the FN-MSE loss. The best results for each model are in bold,

second to the best results are underlined.

input size. The cropped image is resized to 256× 256 then.

4.3. Comparison with existing methods

The detailed comparison between traditional and deep

learning methods is demonstrated in previous works [34, 5],

showing that deep learning approaches generally perform

better, so we compare our method with them only. We im-

plement two baseline methods, S2AM [6] and DIH [34]

without the segmentation branch. In the iDIH model a fi-

nal image is obtained by blending an original image and a

decoder output using a predicted blending mask (see 3.1).

We provide MSE and PSNR metrics on the test sets for

each subdataset separately and for combination of datasets

in Table 1. Following [5], we study the impact of the fore-

ground ratio on the model performance. To do that, we

introduce the foreground MSE (fMSE) metric which com-

putes MSE for the foreground area only. The metrics on the

whole test set across three ranges of foreground ratios are

provided in Table 2. The results show that our final model

outperforms the baselines not only on the whole test set but

also on each foreground ratio.

4.4. Ablation studies

We propose the modifications of the baseline method that

generally improve harmonization. First, we upgrade train-

ing process for the DIH model by adding the horizontal flip

and random size crop augmentations to increase the diver-

sity of the training data. The results show that data aug-

mentation is crucial for the harmonization model training

and leads to significant metrics improvements. Second, the

additional blending layer preserving the background details

is then added to DIH resulting in iDIH. With these adjust-

ments, the DIH architecture performs significantly better

than the original one, so they are preserved in all further ex-

periments. Then we compare MSE and FN-MSE objective

functions on the DIH and iDIH models. The use of FN-

MSE shows a consistent improvement in metrics. The de-

tailed results of these ablation studies are shown in Table 3.

The iDIH structure is much lighter than S2AM, which

training takes 104 hours on a single GTX 2080 Ti, while

the iDIH training requires just 13 hours. Considering that

S2AM requires much longer training time and tends to get

metric values inferior to iDIH, we proceed with the latter.

FN-MSE function depends on the Amin hyperparame-

ter, so we conduct experiments on its choice, which are pre-

sented in Table 4. The DIH model achieves the best results

when the hyperparameter is set to Amin = 10, while the

iDIH model performs better with Amin = 1000. Models

tend to be unstable when Amin is too small due to possi-

ble high loss values on tiny objects. As you can notice,

the DIH and iDIH models show nearly the best results with

Amin = 100. We decided to use that value in all our exper-

iments as the most stable one.

We examine the impact of different backbones on the

proposed architecture. We train the model with three dif-

ferent HRNet models: HRNetV2-W18 and HRNetV2-W32

with 4 high-resolution blocks, HRNetV2-W18s with 2 high-

resolution blocks. We observe that increasing HRNet ca-
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Model MSE↓ fMSE↓ PSNR↑

iDIH-HRNet-W18s 22.00 252.00 38.31

iDIH-HRNet-W18s
non foreground-aware HRNet

26.95 301.39 37.56

iDIH-HRNet-W18s
pass features using feature pyramid

22.39 256.35 38.23

iDIH-HRNet-W18 22.55 255.93 38.31

iDIH-HRNet-W32 23.10 264.58 38.22

iDIH-DeepLabV3+ (R-34) 27.79 310.14 37.49

iS2AM-HRNet-W18s 25.14 273.14 37.93

iS2AM-HRNet-W18 23.22 254.18 38.26

iS2AM-HRNet-W32 24.09 266.27 38.00

Table 5: Ablation studies of the backbone model choice. In all models the backbone features are passed to both encoder and

decoder simultaneously.

Encoder Decoder Pre-trained HRNet MSE↓ fMSE↓ PSNR↑

– + – 23.08 263.41 38.07

– + + 23.39 261.30 38.18

+ – – 23.74 265.55 38.01

+ – + 22.85 259.77 38.18

+ + – 22.42 256.04 38.17

+ + + 22.00 252.00 38.31

Table 6: Ablation studies of different backbone aggregation strategies in iDIH-HRNet-W18s. “Encoder” and “Decoder”

columns denote the stages at which the backbone features are passed to the model.

pacity does not improve quantitative results significantly.

In addition, we conduct an experiment with ResNet-34 &

DeepLabV3+ [3] and do not notice any improvements re-

garding HRNet. The results of models with different back-

bones are shown in Table 5.

One can notice that only one extending the iDIH archi-

tecture with HRNet makes the final model more advanced

and increases its capacity. The question arises whether pre-

training on ImageNet improves results or not. To answer

this question we conduct several experiments without ini-

tializing HRNet with pre-trained weights. We observe that

models initialized with pre-trained weights show constantly

better results, as can be seen in Table 6. Nevertheless, even

the models trained from scratch show much better metrics

than pure iDIH. This means that the proposed architecture

itself works very well on the image harmonization task and

pre-training helps to improve metrics further.

5. Conclusion

We propose a novel approach to incorporating high-level

semantic features from models pre-trained on the ImageNet

dataset into the encoder-decoder architectures for image

harmonization. We also present a new FN-MSE objec-

tive function proven to be effective for this task. Further-

more, we observe that the use of simple training augmen-

tations significantly improves the performance of the base-

lines. Experimental results show that our method is consid-

erably superior to existing approaches in terms of MSE and

PSNR metrics.
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