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Abstract

In this paper, we present a novel differential morph de-

tection framework, utilizing landmark and appearance dis-

entanglement. In our framework, the face image is rep-

resented in the embedding domain using two disentangled

but complementary representations. The network is trained

by triplets of face images, in which the intermediate im-

age inherits the landmarks from one image and the appear-

ance from the other image. This initially trained network

is further trained for each dataset using contrastive rep-

resentations. We demonstrate that, by employing appear-

ance and landmark disentanglement, the proposed frame-

work can provide state-of-the-art differential morph detec-

tion performance. This functionality is achieved by the us-

ing distances in landmark, appearance, and ID domains.

The performance of the proposed framework is evaluated

using three morph datasets generated with different method-

ologies.

1. Introduction

The main goal of biometric systems is automated recog-

nition of individuals based on their unique biological and

behavioral characteristics [36]. The human face is widely

accepted as a means of biometric authentication. Although,

the uniqueness of face images and user convenience of face

recognition systems have resulted in their popularity, mor-

phed face images have shown to pose a severe threat to

them. This is because the main objective of morph attacks

is to purposefully alter or obfuscate the unique correspon-

dence between probe and gallery images [40]. The result

of a morph attack is a face image which matches the probe

images corresponding to two different face images. There-

fore, the detection of morph images plays a major role in

providing reliable face recognition.

The majority of morph generation frameworks focus on

altering the position of the facial landmarks. These frame-

works mainly utilize three steps: correspondence, warp-

Figure 1. Trusted probe image, xi, and image in question, xj ,

are disentangled into landmark and appearance representations,

using the disentanglement network trained on triplet of face im-

ages. In these triplets, the constructed intermediate face image

inherits landmarks and the appearance from two different face im-

ages. Landmark, appearance, and ID representations are utilized

to make the decision about the image in question.

ing, and blending. The first step aims to detect the cor-

responding landmarks of both the images. These sets of

landmarks are then utilized to warp the images toward each

other, e.g., considering the landmarks of the morph image

as the pairwise average of two face images. Finally, tex-

tures from the two images are combined either over the en-

tire face image [41] or face patches [29]. Another trend

of morph generation considers Generative Adversarial Net-

works (GANs) to construct images that can be matched with

the two source using images, such as AliGAN [12, 10] and

StyleGAN [23, 50].

The face morphing algorithms can affect the face image

in two broad aspects. First, they alter the position of the

1731



landmarks. On the other hand, they modify the appear-

ance of the face image by either blending two source im-

ages or generating samples using generative models. Al-

though appearance corresponds to the soft biometrics of a

subject which are not necessarily unique, such as ethnic-

ity, hair color, and gender, it can still be interpreted to dis-

tinguish between face images with similar soft biometrics

such as differences in the texture of the face images. How-

ever, deep differential morph detection frameworks focus

on distinguishing the samples based on the ID information.

Our proposed differential morph detection framework in-

vestigates both the locations of the landmarks and the ap-

pearance of the face image. Therefore, this approach re-

stricts the attacker’s morphing capability by studying both

the changes resulted from altering the landmarks as well as

modification in soft biometrics and texture information.

As presented in Figure 1, our proposed framework learns

the disentangled representations for the landmarks and the

appearance of a face image. While these representations are

practically shown to be sufficient for face recognition [8],

the proposed training setup ensures that the mutual infor-

mation between representations of the real images from

a subject is maximized. In this paper, we make the fol-

lowing contributions: i) we construct triplets of images in

which an intermediate image inherits the landmarks from

one image and the appearance from the other image, ii)

these triplets are considered to train a disentangling network

which provides disentangled representations for landmarks

and face appearance, and iii) we train specific networks for

each morph dataset by learning contrastive representations

through maximizing the mutual information between real

images from each subject.

2. Related Works

2.1. Facial Morphing

Facial morphing studies the possibility of creating arti-

ficial biometric samples which resemble the biometric in-

formation of two or more individuals [40]. Morph im-

ages can be generated with little technical experience using

tools available on the internet and mobile platforms [40].

The overall purpose of face morphing is to generate a

face image that will be verified against samples of two

or more subjects in automated face recognition systems.

One of the first efforts to study the generation of a morph

image from two source images [13] has concluded that

geometric alterations and digital beautification can cause

an increase in the possibility of fooling recognition sys-

tems. Morph generation techniques can roughly be cat-

egorized into landmark-based [29, 43, 44] and generative

models [10, 45]. Landmark-based frameworks focus on de-

tecting the landmarks in both the images, translating these

points toward each other, and blending the two face im-

ages. On the other hand, inspired by a learned inference

model [12], Morgan [10] presents a face morphing attack

based on automatic image generation using a GAN frame-

work.

2.2. Morph Detection

Morph detection can be categorized into two main ap-

proaches [41]: single image morph detection and differen-

tial morph detection. Single image morph detection studies

the possibility of detecting the morph image in the absence

of a reference image. On the other hand, differential morph

detection leverages the information extracted from a real

image corresponding to the subject. Texture descriptors are

the main feature extraction models for single image morph

detection [51, 47, 38, 37, 34]. Recently, deep learning mod-

els have also been considered for this purpose [44, 43, 33].

The models mentioned can also be employed for differential

morph detection when the extracted feature from the two

images are compared [35, 39, 9]. Another trend of work for

differential morph detection considers that subtracting the

trusted image from the image in question should increase

the classification score of the resulting image for one of the

probe subjects [14, 15, 32].

2.3. Representation Disentanglement

The geometry of landmarks and visual appearance are

the two main characteristics of the face that can be utilized

for face recognition. Initially, the geometry of hand-crafted

face landmarks were basis for face recognition [17]. Neu-

ral network approaches have provided state-of-the-art face

recognition performance, with several deep models using

the location of landmarks for varying face recognition pur-

poses [21, 7]. On the other hand, the effect of appearance

in face recognition is widely studied, including soft biomet-

rics such as gender, age, ethnicity, and hair color [18, 16].

Recently, an unsupervised approach using a coupled au-

toencoder model for disentangling the appearance and ge-

ometry of face images was developed [46]. In this frame-

work, each autoencoder learns the geometry or appearance

representation of the face, while the reconstruction loss is

considered as the supervision for disentangling. Another

similar work [55] has incorporated variational autoencoders

to improve the disentangling. Another recent generative

model [24] presents an unsupervised algorithm for training

GANs that learns the disentangled style and content repre-

sentations of the data.

2.4. Mutual Information and Deep Learning

Among the first works that studied the application of mu-

tual information in deep learning, [31] showed that GAN

training loss can be recovered by minimizing the estimated

divergence between the generated and true data distribu-

tions. The authors in [3] expanded the mutual information
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maximization techniques to estimate the mutual informa-

tion between two random variables via a neural network.

The authors in [5] and [6] used mutual information to quan-

tify the separation of distributions of positive and negative

pairings in learning binary hash codes. The authors in [25]

introduced RankMI algorithm,an information-theoretic loss

function and a training algorithm for deep representation

learning for image retrieval. The authors in contrastive

representation distillation [48] proposed a contrastive-based

objective function for transferring knowledge between deep

networks. The authors in [2] propose an approach to self-

supervised representation learning based on maximizing

mutual information between features extracted from mul-

tiple views of a shared context.

3. Proposed Framework

Our proposed differential morph detection framework

resonates with the morph generation frameworks in which

the the landmarks of the real image are translated to land-

marks of the target face image [29] or image generation by

generative adversarial networks [10]. Disentangling appear-

ance and landmark information has shown to be a power-

ful tool for face recognition [8]. These two domains pro-

vide the majority of the information content for differen-

tial morph detection as well. We aim to study the possibil-

ity of detecting the morph image based on its differences

with the trusted image in both landmark and appearance

domains. Therefore, to train our framework, we construct

samples that inherit the appearance and landmarks from dif-

ferent samples. Then, we train a network that can disentan-

gle these two types of information [8]. This framework is

then trained for differential morph detection by maximizing

the mutual information between representations of genuine

pairs.

3.1. Landmark and Appearance Triplets

The first step in our proposed training consists of gen-

erating face images that inherit appearance from one image

and landmarks from the other image. Then, these triplets

of face images are used to train two deep networks. The

first network aims to represent the appearance of the face

image and the second network extracts the landmark infor-

mation. The supervision for disentangling appearance and

landmarks of faces is provided by constructing triplets of

face images. Each triplet consists of two real face images

from two different IDs. For convenience we denote these

images as appearance image, xi, landmark image, x′
i, and

an intermediate face image generated using the appearance

of the first face image and the landmarks of the second face

image, x̂i. To construct this intermediate face image, we

translate the landmarks of the appearance image to the land-

mark image.

For this purpose, let xi be a face image noted as an ap-

pearance image belonging to the class yi and the set li de-

scribe the locations of its K landmarks. We find another

face image x′
i from a different class corresponding to the

closest set of landmarks l′i as the landmark set. The distance

between the sets of landmarks is calculated in terms of L∞,

to assure that xi and x′
i have similar structures in order to

minimize the distortion caused by the spatial transformation

in the next step.

We use the thin plate spline (TPS) algorithm [4] to trans-

fer the landmarks of the appearance face image to the land-

marks of x′
i as:

x̂i = TPS(x, l, l′ + δl), (1)

where TPS and x̂i represent the spatial transformation and

the deformed image noted as the intermediate face image.

This face image has the appearance of xi and the landmarks

of x′
i. The set δl accounts for small perturbations in the lo-

calizing the landmarks in the morph generation framework.

3.2. Revisiting Landmarks and Appearance Disen
tanglement

As presented in Figure 2, in our proposed framework,

two networks are defined as appearance network, a, and

landmark network, g. These networks map the input face

image to the appearance and landmark representations as:

a(.) : R
w×h×3 → R

da and g(.) : R
w×h×3 → R

dg . It

is worth mentioning that landmarks can be defined as the

salient points in the face image. Although the landmark rep-

resentation aims to represent the landmarks in the face im-

age, it is trained through a classification setup to preserve

the information required to distinguish between the input

images regarding their geometrical differences. We define a

third network, f(.), that maps these two representations to a

face ID representation as: f(.) : Rda × R
dg → R

df , where

da, dg , and df are the dimension of appearance, landmark,

and face ID representations, respectively. This representa-

tions enables us to train the framework as a classification

setup.

To provide enough information to distinguish between

real and morph images, these three representations should

satisfy three conditions: i) The appearance representation

of the appearance and intermediate images should be sim-

ilar: a(xi) ≈ a(x̂i), ii) the landmark representation of

the landmark and intermediate images should be similar:

g(x′
i) ≈ g(x̂i), and iii) for both the non-manipulated im-

ages, xi and x′
i, the face representations resulted from net-

work f should preserve sufficient classification informa-

tion. We address these three conditions in our initial train-

ing setup. The appearance-preserving loss function aims to

enforce the first condition:

L1
a(xi, x̂i) = −

1

N

∑

i

Φ(a(xi), a(x̂i)), (2)
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Figure 2. Face image x̂i is constructed by considering the appear-

ance of xi and the landmarks of x′
i. La enforces the appearance

representations of xi and x̂i to be similar. Similarly, Lg ensures

that g(x̂i) and g(x′
i) are close to each other. A fully-connected

layer of size 512 fed with the concatenation of g and a provides

the ID representation for the input image.

where Φ(v1, v2) represents the cosine similarity between v1

and v2 as in [52, 28]: Φ(v1, v2) =
vT
1
v2

||v1||2||v2||2
and N is the

number of samples. Similarly, the landmark-preserving loss

is defined as:

L1
g(x

′
i, x̂i) =−

1

N

∑

i

Φ(g(x′
i), g(x̂i))

+ max(0,Φ(g(x′
i), g(xi))− αgφg),

(3)

where φg =
||li−l′i||2

||li−li||2
is the normalized measure of the dis-

tance of landmark locations, and li is the mean of landmark

locations along two axes. αg is a scaling coefficient, scaling

to form an angular loss which aims to maximize the cosine

similarity of g(xi) and g(x̂i) and dissimilarity of g(xi) and

g(x′
i).

In addition to the discussed training loss functions, we

should assure that the appearance and landmark representa-

tions provide sufficient information for the identification of

the real images, xi and x′
i:

L
1
id(xi) =

−1

N

∑

i

log
es(cos(m1θyi,i

+m2)−m3)

es(cos(m1θyi,i
+m2)−m3) +

∑
j 6=yi

es cos(θj,i)
,

(4)

where f(xi) = T (a(xi), g(xi)) is the ID representa-

tion [11] for face image, cos(θj,i) =
WT

j f(xi)

||Wj ||2||f(xi)||2
, and

Wj is the weight vector assigned to the ith class. In this

angular loss function, m1, m2, and m3 are the hyperparam-

eters controlling the angular margin, and s is the magnitude

of angular representations. The training loss function is de-

fined as:

L1
t =

∑

i

L1
id(xi)+L1

id(x
′
i)+λ1

aL
1
a(xi, x̂i)+λ1

gL
1
g(x

′
i, x̂i),

(5)

where λ1
a and λ1

g are hyper-parameters scaling the appear-

ance and landmark preserving loss functions.

3.3. Contrastive Morph Detection

Our proposed differential morph detection framework

builds upon recent information-theoretic approaches to

deep representation learning [25, 48]. We aim to maximize

the mutual information between the real images from the

same subject and minimize the mutual information between

samples in an imposter pair during the training and make the

decision during the test considering the distance between

the representations of the pair of images in the embed-

ding. To this aim, as presented in Figures 3, the joint train-

ing of the disentanglement and auxiliary networks provides

embedding representations distinguishable enough to de-

tect morphed face images in a differential morph detection

setup. Our framework benefits from transferring knowledge

from that recognition task on a large face dataset to the dis-

entanglement network, which provides a faster training of

both disentanglement and auxiliary networks.

To maximize the mutual information between real sam-

ples from the same subject in the embedding space, we fol-

low the notation proposed in [25, 3]. Let xi be an input face

image and zai and z
g
i be its corresponding appearance and

landmark representations as:

zai = a(xi), z
g
i = g(xi). (6)

We aim to train a(x) and g(x) such that real images from

the same subject are mapped closely in the embedding

space. To this aim, we maximize the mutual information

between the real images from the same subject in each em-

bedding space using the functions T a(.) and T g(.). To con-

struct our training samples we define a genuine set as:

P = {(xi, xj)|ci = cj , ri = rj = 1}, (7)

where ci and cj represents the classes for the subjects and

ri = 1 represents the real images. On the other hand we

define the imposter set as:

N = {(xi, xj)|ci 6= cj or ri = 0 or rj = 0}, (8)

where ri = 0 represents morphed images. It is worth men-

tioning that we define the above imposter set during the

training. During the test phase, the imposer set consists of

pairs in which both the samples belong to the same subject,

while one of them is a real face image and the other is a

morphed face image. In addition, for the genuine set, we
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Figure 3. A pair of one trusted probe image, xi, and an image in question, xj , are fed into the disentanglement network. This network which

is trained in combination with the auxiliary networks, T a(., .) and T g(., .), provides embedding representations that present high mutual

information for genuine pairs and results in close representations for the samples in genuine pair and distant representations for samples

in imposter pairs. Here, the morph image (red) is constructed displacing the landmarks of a real image (green) toward the landmarks of a

visually similar image (black). The genuine pair consists of two real images from the same subject (orange and green), while the imposter

pair in constructed using a real image and its corresponding morph image (green and red).

can define the joint distribution of xi and xj as:

p(xi, xj) =
∑

k∈C

p(xi, xj , c = k, ri = rj = 1). (9)

Assuming the high entropy of p(c)p(r) for the imposter set,

we can approximate the joint distribution of the samples as

the product of their marginals:

p(xi)p(xj) ≈
∑

k∈c

∑

k′ 6=k

{p(xi|ci=k)p(xj |cj =k
′)p(ci=k)p(cj =k

′)}

+
∑

k∈c

∑

ri∈r

{p(xi|ci=k)p(xj |cj =k)p(ci=k)p(cj =k)

p(rj =0)}+
∑

k∈c

{p(xi|ci=k)p(xj |cj =k
′)p(ci=k)

p(cj =k
′)p(ri=0)p(rj =1)},

(10)

where r = {0, 1} represents morphed and real images.

Considering the genuine and imposter pairs defined in equa-

tions 7 and 8, the appearance differential loss is defined to

maximize the mutual appearance information between sam-

ples in a genuine pair as [3, 25]:

L2
a =

1

||P ||

∑

(xi,xj)∈P

T a(zai , z
a
j )

− log
1

||N ||

∑

(xi,xj)∈N

eT
a(za

i ,z
a
j ).

(11)

A similar loss is defied over the genuine and imposter pairs

to calculate L
g
t as the differential landmark information

loss. Then, the differential loss is defined as:

L
2
t = λ

2
aL

2
a + λ

2
gL

2
g + L

1
id, (12)

where L1
id provides the training for network T and subse-

quently f(xi).

4. Experiments

We study the performance of the proposed framework

on three morph datasets. In our experiments we follow

frameworks described in [41, 49]. Evaluation metrics for

the differential morph detection are defined as: Attack Pre-

sentation Classification Error Rate (APCER) as the propor-

tion of morph attack samples incorrectly classified as bona

fide (non-morph), presentation and Bona Fide Presentation

Classification Error Rate (BPCER) is the proportion of bona

fide (nonmorph) samples incorrectly classified as morphed

samples.

4.1. Training Setup

For all the datasets, DLib [26] is considered to detect and

align faces, as well as extracting 68 landmarks. We train the

model on the CASIA-WebFace [56] dataset. In the train-

ing set, for each image, the image from a different ID that

provides closest landmarks to its landmarks in terms of L2

norm is selected. Neighbor face is transformed spatially us-

ing Equation 1. This image is aligned again to compensate

for the displacements caused by the spatial transformation.
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All images are resized to 112 × 112 and pixel values are

scaled to [−1, 1].

We adopt ResNet-64 [19] as the base network architec-

ture. To reduce the size of the model, the convolutional

networks for extracting the landmark representation, g(x),
and the landmark representation, a(x), are combined. This

network produces feature maps of spatial size 7× 7 and the

depth of 512 channels. These feature maps are divided in

depth into two sets, dedicated to the appearance and land-

mark representations, respectively. Each set of feature maps

is reshaped to form a vector of size 12, 544 and passed to

dedicated fully-connected layers. These layers of size 256
generate the final representations, a(x) and g(x). The ID

representation is constructed by concatenation of these two

representations fed to a fully-connected layer of size 512.

The model is trained using Stochastic Gradient Descent

(SGD) with the mini-batch size of 128 on two NVIDIA

TITAN X GPUs. In Equation 4, following ArcFace [11]

framework, m1, m2, and m3 are set to 0.9, 0.4, and 0.15,

respectively. In Equation 1, δl is sampled from N(0, 3).

The initial value for the learning rate is set to 0.1 and

multiplied by 0.9 in intervals of five epochs until its value

is less than or equal to 10−6. The model is trained for

600K iterations. We select αg = 9.4, λ1
a = 1.3, and

λ1
g = 0.75. For training the network using Equation 11,

each fully-connected layer of size 256 is fed to a fully-

connected of size 64, and then to a single unit. Here, con-

sidering λ2
a = λ2

g = 1, the network is trained using the

learning rate of 10−2 and is dropped similar to the rate men-

tioned above.

4.2. Results

MorGAN is constructed using the generative framework

described in [10]. In this dataset, 500 bonafide images

are considered. For each bona fide image two morph im-

ages are generated using two most similar identities to the

bona fide image, resulting in 1, 000 morph images. In to-

tal this dataset consists of 1, 500 references, 1, 500 probes,

and 1, 000 MorGAN morphing attacks. The database is ran-

domly split into disjoint and equal train and test sets. All the

images are of size 64× 64.

VISAPP17-Splicing-Selected1 is a subset of VISAPP17-

Splicing dataset [30] containing genuine neutral and smil-

ing face images as well as morphed face images. This

dataset is generated by warping and alpha-blending [53].

To construct this dataset, facial landmarks are localized, the

face image is tranquilized based on these landmarks, trian-

gles are warped to some average position, and the resulting

images are alpha-blended, where alpha is set to 0.5 mak-

ing alpha-blending equal to average. Splicing morphs are

designed to avoid ghosting artefacts usually present in the

1For simplicity, we refer to this dataset as VISAPP17.

Figure 4. Samples from (a) MorGAN, (b) VISAPP17-Splicing-

Selected, and (c) AMSL Face Morph Image Datasets. For each

dataset, the first and second faces are the gallery and probe bona

fide images and the third face is the morph image construed from

the first and forth face images. The original sizes for face images

in these datasets are 64 × 64, 1500 × 1200, and 531 × 413, re-

spectively.

hair region, done by warping and blending of only face re-

gions and inserting the blended face into one of the orig-

inal face images. The background, hair and torso regions

remain untouched. VISAPP17-Splicing-Selected dataset,

which consists of 132 bona fide and 184 morph images of

size 1500×1200, is constructed by selecting morph images

without any recognizable artifacts.

The AMSL Face Morph Image Dataset is created using

the Face Research Lab London Set [1] and includes genuine

neutral and smiling face images and morphed face images.

The morphed face images are generated from pairs of gen-

uine face images [30]. For all the morph images the propor-

tions of both faces in the morphed face are the same. While

generating morphed faces male, female, white, and Asian

people are only morphed with their corresponding category.

All images are down-scaled to 531 × 413 pixels and JPEG

compression is applied to them to compress the images to

15kb [54]. This dataset includes 102 neutral or 102 smiling

genuine face images and 2,175 morph images.

Differential Morph Detection: For the MorGAN dataset,

we follow the train and test split presented in [10]. For the

other two datasets, we consider a disjoint train and test split

in which 50% of the subjects are used for training. The
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Dataset
MorGAN VISAPP17 AMSL

D-EER 5% 10% D-EER 5% 10% D-EER 5% 10%

LM-Dlib [9, 26] 12.53 20.71 10.17 17.88 26.64 22.71 14.45 20.67 18.55

BSIF+SVM [22] 10.17 14.22 8.64 16.42 28.77 25.37 12.75 20.71 16.26

LBP+SVM [27] 15.51 28.40 18.71 18.75 23.88 20.65 14.97 21.47 16.21

FaceNet [42] 16.14 38.38 26.67 9.51 29.82 6.91 8.43 25.74 5.68

ArcFace [11] 14.65 22.76 16.23 7.14 17.51 5.69 6.14 14.51 5.23

FaceNet+SVM 12.53 18.84 12.21 8.85 26.46 6.28 8.42 18.46 5.28

ArcFace+SVM [41] 10.82 15.47 12.43 5.38 7.45 4.78 3.87 6.12 3.28

Ours 8.75 12.58 8.51 4.69 5.74 2.59 3.11 5.35 2.24

Table 1. D-EER%, BPCER@APCER=5%, and BPCER@APCER=10% for the differential morph detection.

distance between face images xi and xj is defined as:

D =Φ(f(xi), f(xj)) + βaΦ(a(xi), a(xj))

+βgΦ(g(xi), g(xj)),
(13)

where βa and βg are the scaling parameters used for de-

cision making. We employ classical texture descriptors,

BSIF [22] and LBP [27], with an SVM classifier. The LBP

feature descriptors are extracted according to the original

LBP image patches of 3 × 3. The resulting feature vector

is then a normalized histogram of size 256, which encom-

passes all potential values of the LBP binary code. BSIF

feature vectors are conducted on a filter size of 3 × 3 and

8 bits. The filters utilized for BSIF are pre-learned Inde-

pendent Component Analysis (ICA) filters [20] that are uti-

lized by the original BSIF paper to construct normalized

histogram for each image. The feature vectors are then in-

putted to an SVM with an RBF kernel for classification. For

all classical baseline models the difference between the fea-

ture representation of the image in question and the feature

representation of the trusted image is fed to an SVM classi-

fier.

In addition, we employ LM-Dlib [9, 26] as a model for

the landmark displacement measure. In this framework, the

distance between landmarks extracted by Dlib [26] are fed

to an SVM. For deep models, the distance between the rep-

resentations in the embedding domain is considered as the

decision criteria. For all the model, the default parame-

ters presented in the original papers are considered. It is

worth mentioning that in this experiments we do not con-

sider the prior knowledge on which of the images in the pair

fed to the recognition framework is the trusted image. On

the other hand, in Table 3, we assume that the differential

morph detection framework is provided with the informa-

tion regarding the trusted image.

For each the datasets, 10% of the training set is consid-

ered as the validation set. Then, the parameters to train

the framework are selected based on the experiments de-

scribed in Table 4 and Figure 5. Table 1 presents the perfor-

mance of the proposed framework in comparison with four

Train Test Algorithm D-EER 5% 10%

M
o

rG
A

N

V
IS

A
P

P
1

7 LM-Dlib [9, 26] 23.74 51.42 38.67

BSIF+SVM [22] 19.21 51.25 39.41

ArcFace+SVM [41] 11.67 22.36 14.86

Ours 8.55 12.68 8.57

A
M

S
L

LM-Dlib [9, 26] 20.67 44.28 32.15

BSIF+SVM [22] 17.27 38.54 24.71

ArcFace+SVM [41] 10.48 22.49 14.90

Ours 7.95 11.26 8.81

V
IS

A
P

P
1

7

M
o

rG
A

N LM-Dlib [9, 26] 16.82 38.54 24.8

BSIF+SVM [22] 13.52 15.3 14.79

ArcFace+SVM [41] 15.75 32.58 22.36

Ours 13.85 12.32 8.74

A
M

S
L

LM-Dlib [9, 26] 18.83 38.86 24.78

BSIF+SVM [22] 16.92 38.84 24.64

ArcFace+SVM [41] 8.27 9.63 5.28

Ours 5.38 3.47 2.38

A
M

S
L M

o
rG

A
N LM-Dlib [9, 26] 16.24 30.94 19.28

BSIF+SVM [22] 13.84 25.35 14.82

ArcFace+SVM [41] 16.34 38.62 24.51

Ours 14.21 28.58 18.51

V
IS

A
P

P
1

7 LM-Dlib [9, 26] 20.55 62.21 38.42

BSIF+SVM [22] 20.36 51.28 32.95

ArcFace+SVM [41] 10.65 14.36 9.81

Ours 5.21 8.26 4.17

Table 2. Cross-dataset performance for differential

morph detection: D-EER%, BPCER@APCER=5%, and

BPCER@APCER=10%.

deep learning and three classical differential morph detec-

tion frameworks. In addition to outperforming the baseline

models on all the datasets, the proposed framework outper-

forms the baseline models by a wide margin on the Mor-

GAN dataset, which can be contributed to the disentangle-

ment of landmark and appearance representations.

In Table 2, we study the performance of the networks

trained on the training portion of one morph dataset and

tested on the other datasets. As presented in this ta-

ble, while outperforming the other models, the proposed

framework provides high cross-dataset performance be-
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Dataset
MorGAN VISAPP17 AMSL

D-EER 5% 10% D-EER 5% 10% D-EER 5% 10%

LM-Dlib [9, 26] 8.14 10.67 7.83 15.67 22.87 20.32 11.67 16.98 14.63

BSIF+SVM [22] 6.07 9.15 4.63 13.87 23.53 20.12 10.53 16.53 13.86

LBP+SVM [27] 7.47 9.23 4.71 15.21 20.64 18.74 12.21 17.11 12.81

FaceNet [42] 8.11 14.52 7.59 7.32 24.54 5.21 7.46 22.12 5.17

ArcFace [11] 7.58 9.64 4.08 6.45 14.78 5.02 5.36 10.46 4.87

FaceNet+SVM 7.23 12.46 5.22 6.37 26.46 6.28 8.42 18.46 5.28

ArcFace+SVM [41] 5.35 6.71 3.50 4.52 5.98 4.05 3.27 5.56 2.69

Ours 4.71 5.32 3.85 3.74 4.91 2.17 2.82 4.97 2.82

Ours∗ 4.06 5.04 3.42 3.45 4.25 1.85 2.36 4.16 1.47

Table 3. The differential morph detection performance on three datasets, when the trusted image is known to the detection framework:

D-EER%, BPCER@APCER=5%, and BPCER@APCER=10%.

tween VISAPP17 and AMSL. In addition, the proposed

framework provides D-EER of 8.55% and 7.95% for cross-

dataset performance on the network trained on MorGAN

and tested on VISAPP17 and AMSL datasets, respectively.

On the other hand, BSIF+SVM outperforms the other al-

gorithms when testing the network trained on other two

datasets and tested on MorGAN, which illustrates the same

trend as the results provided in [10].

Table 3 studies the effect of the trusted images being

known to the detection framework. For the baseline mod-

els, rather than comparing the representations of the trusted

images and the image in question, the representation of the

image in question is subtracted from the representation of

the trusted image before feeding the difference to the SVM.

For the proposed framework, we consider an additional al-

gorithm, denoted as ”Ours∗”, in which two dedicated in-

stances of the framework are constructed for trusted images

and images in question. In this algorithm, which outper-

forms the algorithm for which only one instance of the net-

work is considered, we only train the network dedicated to

the images in question. Table 4 provides the performance

for the proposed framework on the validation sets when the

scaling parameters in making the decision vary in Equa-

tion 13. As presented in this table, morph images con-

structed using landmark displacement are better detected

for higher weights given to g(x), while the MorGAN sam-

ples are best detected when g(x) and a(x) are given similar

weights. In addition, Figure 5 provides the performance for

three datasets when variance of the normal distribution to

generate δl samples in Equation 1 varies from 0 to 6.

5. Conclusions

In this paper, we presented a novel differential morph de-

tection framework which benefits from disentangling land-

mark representation and appearance representation in an

embedding space. These two representations which are dis-

entangled but complementary, are constructed using a dis-

Figure 5. D-EER% for different variances of δl values in Equa-

tion 1.

MorGAN VISAPP17 AMSL

(4,1) 10.91 6.97 4.72

(3,1) 9.64 6.57 4.12

(2,2) 8.75 5.84 3.83

(1,3) 10.32 4.69 3.11

(1,4) 10.89 5.12 3.54

Table 4. The D-EER% for differential morph detection perfor-

mance considering different scaling values (βa and βg) in Equa-

tion 13.

entanglement network trained using triplets of face images.

Each triplet consists of two real images and an intermedi-

ate image which inherits the landmarks from one image and

the appearance from the other image. We demonstrated that

appearance and landmark disentanglement can be boosted

using contrastive representations for each disentangled rep-

resentation. This property provides the possibility of accu-

rate differential morph detection, using distances in land-

mark, appearance, and ID domains. The performance of the

proposed framework is studied using three morph datasets

constructed with different methodologies.
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