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Abstract

Siamese trackers turn tracking into similarity estima-

tion between a template and the candidate regions in the

frame. Mathematically, one of the key ingredients of suc-

cess of the similarity function is translation equivariance.

Non-translation-equivariant architectures induce a posi-

tional bias during training, so the location of the target

will be hard to recover from the feature space. In real life

scenarios, objects undergo various transformations other

than translation, such as rotation or scaling. Unless the

model has an internal mechanism to handle them, the sim-

ilarity may degrade. In this paper, we focus on scaling

and we aim to equip the Siamese network with additional

built-in scale equivariance to capture the natural variations

of the target a priori. We develop the theory for scale-

equivariant Siamese trackers, and provide a simple recipe

for how to make a wide range of existing trackers scale-

equivariant. We present SE-SiamFC, a scale-equivariant

variant of SiamFC built according to the recipe. We conduct

experiments on OTB and VOT benchmarks and on the syn-

thetically generated T-MNIST and S-MNIST datasets. We

demonstrate that a built-in additional scale equivariance is

useful for visual object tracking.

1. Introduction

Siamese trackers turn tracking into similarity estimation

between a template and the candidate regions in the frame.

The Siamese networks are successful because the similarity

function is powerful: it can learn the variances of appear-

ance very effectively, to such a degree that even the associ-

ation of the frontside of an unknown object to its backside

is usually successful. And, once the similarity is effective,

the location of the candidate region is reduced to simply se-

lecting the most similar candidate.

Mathematically, one of the key ingredients of the success

of the similarity function is translation equivariance, i.e. a

∗equal contribution

Source code: https://github.com/isosnovik/SiamSE

Figure 1: The standard version (top) and the scale-

equivariant version (bottom) of a basic tracker. The scale-

equivariant tracker has an internal notion of scale which al-

lows for the distinction between similar objects which only

differ in scale.

translation in the input image is to result in the proportional

translation in feature space. Non-translation-equivariant ar-

chitectures will induce a positional bias during training, so

the location of the target will be hard to recover from the

feature space [20, 37]. In real-life scenarios, the target will

undergo more transformations than just translation, and, un-

less the network has an internal mechanism to handle them,

the similarity may degrade. We start from the position

that equivariance to common transformations should be the

guiding principle in designing conceptually simple yet ro-

bust trackers. To that end, we focus on scale equivariance

for trackers in this paper.

Measuring scale precisely is crucial when the camera

zooms its lens or when the target moves into depth. How-

ever, scale is also important in distinguishing among ob-

jects in general. In following a marching band or in ana-

lyzing a soccer game, or when many objects in the video

have a similar appearance (a crowd, team sports), the sim-
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ilarity power of Siamese trackers has a hard time locating

the right target. In such circumstances, spatial-scale equiv-

ariance will provide a richer and hence more discriminative

descriptor, which is essential to differentiate among sev-

eral similar candidates in an image. And, even, as we will

demonstrate, when the sequence does not show variation

over scale, proper scale measurement is important to keep

the target bounding box stable in size.

The common way to implement scale into a tracker is to

train the network on a large dataset where scale variations

occur naturally. However, as was noted in [19], such train-

ing procedures may lead to learning groups of re-scaled du-

plicates of almost the same filters. As a consequence, inter-

scale similarity estimation becomes unreliable, see Figure

1 top. Scale-equivariant models have an internal notion

of scale and built-in weight sharing among different filter

scales. Thus, scale equivariance aims to produce the same

distinction for all sizes, see Figure 1 bottom.

In this paper, we aim to equip the Siamese network with

spatial and scale equivariance built-in from the start to cap-

ture the natural variations of the target a priori. We aim to

improve a broad class of tracking algorithms by enhancing

their capacity of candidate distinction. We adopt recent ad-

vances [27] in convolutional neural networks (CNNs) which

handle scale variations explicitly and efficiently.

While scale-equivariant convolutional models have lead

to success in image classification [27, 32], we focus on their

usefulness in object localization. Where scale estimation

has been used in the localization for tracking, it typically

relies on brute-force multi-scale detection with an obvious

computational burden [8, 2], or on a separate network to es-

timate the scale [6, 21]. Both approaches will require atten-

tion to avoid bias and the propagation thereof through the

network. Our new method treats scale and scale equivari-

ance as a desirable fundamental property, which makes the

algorithm conceptually easier. Hence, scale equivariance

should be easy to merge into an existing network for track-

ing. Then, scale equivariance will enhance the performance

of the tracker without further modification of the network

or extensive data augmentation during the learning phase.

We make the following contributions:

• We propose the theory for scale-equivariant Siamese

trackers and provide a simple recipe of how to make a

wide range of existing trackers scale-equivariant.

• We propose building blocks necessary for efficient

implementation of scale equivariance into modern

Siamese trackers and implement a scale-equivariant

extension of the recent SiamFC+ [37] tracker.

• We demonstrate the advantage of scale-equivariant

Siamese trackers over their conventional counterparts

on popular benchmarks for sequences with and with-

out apparent scale changes.

2. Related Work

Siamese tracking The challenge of learning to track ar-

bitrary objects can be addressed by deep similarity learning

[2]. The common approach is to employ Siamese networks

to compute the embeddings of the original patches. The

embeddings are then fused to obtain a location estimate.

Such formulation is general, allowing for a favourable flex-

ibility in the design of the tracker. In [2] Bertinetto et

al. employ off-line trained CNNs as feature extractors.

The authors compare dot-product similarities between the

feature map of the template with the maps coming from

the current frame and measure similarities on multiple

scales. Held et al. [14] suggest a detection-based Siamese

tracker, where the similarity function is modeled as a fully-

connected network. Extensive data augmentation is applied

to learn a similarity function, which generalizes for vari-

ous object transformations. Li et al. [21] consider track-

ing as a one-shot detection problem to design Siamese

region-proposal-networks [24] by fusing the features from

a fully-convolutional backbone. The recent ATOM [6] and

DIMP [3] trackers employ a multi-stage tracking frame-

work, where an object is coarsely localized by the online

classification branch, and subsequently refined in its posi-

tion by the estimation branch. From a Siamese perspective,

in both [6, 3] the object embeddings are first fused to pro-

duce an initial location and subsequently processed by the

IoU-Net [17] to enhance the precision of the bounding box.

The aforementioned references have laid the foundation

for most of the state-of-the-art trackers. These methods

share an implicit or explicit attention to translation equiv-

ariance for feature extraction. The decisive role of trans-

lation equivariance is noted in [2, 20, 37]. Bertinetto et

al. [2] utilize fully-convolutional networks where the out-

put directly commutes with a shift in the input image as a

function of the total stride. Li et al. [20] suggest a train-

ing strategy to eliminate the spatial bias introduced in non-

fully-convolutional backbones. Along the same line, Zhang

and Peng [37] demonstrated that deep state-of-the-art mod-

els developed for classification are not directly applicable

for localization. And hence these models are not directly

applicable to tracking as they induce positional bias, which

breaks strict translation equivariance. We argue that trans-

formations, other then translation, such as rotation may be

equally important for certain classes of videos like sports

and following objects in the sea or in the sky. And we ar-

gue that scale transformation is common in the majority of

sequences due to the changing distances between objects

and the camera. In this paper, we take on the latter class of

transformations for tracking.

Equivariant CNNs Various works on transformation-

equivariant convolutional networks have been published re-

cently. They extend the built-in property of translation-
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Figure 2: Left: convolutional kernels use a fixed kernel basis on multiple scales, each with a set of trainable weights. Middle:

a representation of scale-convolution using Equation 6 for the first and all subsequent layers. Right: a scheme of scale-

pooling, which transforms a 3D-signal into a 2D one without losing scale equivariance. As an example, we use a basis of 4

functions and 3 scales with a step of
√
2. Only one channel of each convolutional layer is demonstrated for simplicity.

equivariance of conventional CNNs to a broader set of

transformations. Mostly considered was roto-translation, as

demonstrated on image classification [4, 5, 15, 29, 26, 25],

image segmentation [30] and edge detection [32].

One of the first works on scale-translation-equivariant

convolutional networks was by Marcos et al. [23]. In or-

der to process images on multiple scales, the authors re-

size and convolve the input of each layer multiple times,

forming a stack of features which corresponds to variety of

scales. The output of such a convolutional layer is a vector

whose length encodes the maximum response in each po-

sition among different scales. The direction of the vector

is derived from the scale, which gave the maximum. The

method has almost no restrictions in the choice of admissi-

ble scales. As this approach relies on rescaling the image,

the obtained models are significantly slower compared to

conventional CNNs. Thus, this approach is not suitable for

being applied effectively in visual object tracking.

Worrall & Welling [31] propose Deep Scale-Spaces, an

equivariant model which generalizes the concept of scale-

space to deep networks. The approach uses filter dilation to

analyze the images on different scales. It is almost as fast as

a conventional CNN with the same width and depth. As the

method is restricted to integer scale factors it is unsuited to

applications in tracking where the scene dictates arbitrary

scale factors.

Almost simultaneously, three papers [27, 1, 38] were

proposed to implement scale-translation-equivariant net-

works with arbitrary scales. What they have in common

is that they use a pre-calculated and fixed basis defined on

multiple scales. All filters are then calculated as a linear

combination of the basis and trainable weights. As a re-

sult, no rescaling is used. We prefer to use [27], as Sos-

novik et al. propose an approach for building general scale-

translation-equivariant networks with an algorithm for the

fast implementation of the scale-convolution.

To date, the application of scale-equivariant networks

was mostly demonstrated in image classification. Almost

no attention was paid to tasks that involve object local-

ization, such as visual object tracking. As we have noted

above, it is a fundamentally different case. To the best

of our knowledge, we demonstrate the first application of

transformation-equivariant CNNs to visual object tracking.

3. Scale-Equivariant Tracking

In this work, we consider a wide range of modern track-

ers which can be described by the following formula:

h(z, x) = φX(x) ⋆ φZ(z) (1)

where z, x are the template and the input frame, and φX , φZ
are the functions which process them, and ⋆ is the convolu-

tion operator which implements a connection between two

signals. The resulting value h(z, x) is a heatmap that can be

converted into a prediction by relatively simple calculations.

Functions φX , φZ here can be parametrized as feed-forward

neural networks. For our analysis, it is both suitable if the

weights of these networks are fixed or updated during train-

ing or inference. This pipeline describes the majority of

Siamese trackers such as [2, 21, 20] and the trackers based

on correlation filters [7, 8].

3.1. Convolution is all you need

Let us consider some mapping g. It is equivariant under

a transformation L if and only if there exists L′ such that

g ◦ L = L′ ◦ g. If L′ is the identity mapping, then the func-

tion g is invariant under this transformation. A function of

multiple variables is equivariant when it is equivariant with

respect to each of the variables. In our analysis, we consider

only transformations that form a transformation group, in

other words, L ∈ G.

Theorem 1 A function given by Equation 1 is equivariant

under a transformation L from group G if and only if φX
and φZ are constructed from G-equivariant convolutional

layers and ⋆ is the G-convolution.
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The proof of Theorem 1 is given in the supplementary

material. A simple interpretation of this theorem is that

a tracker is equivariant to transformations from G if and

only if it is fully G-convolutional. The necessity of fully-

convolutional trackers is well-known in tracking commu-

nity and is related to the ability of the tracker to capture

the main variations in the video — the translation. In this

paper, we seek to extend this ability to scale variations as

well. Which, due to Theorem 1 boils down to using scale-

convolution and building fully scale-translation convolu-

tional trackers.

3.2. Scale Modules

Given a function f : R → R, a scale transformation is

defined as follows:

Ls[f ](t) = f(s−1t), ∀s ≥ 0 (2)

where cases with s > 1 are referred to as upscale and with

s < 1 as downscale. Standard convolutional layers and

convolutional networks are translation equivariant but not

scale-equivariant [27].

Parametric Scale-Convolution In order to build scale-

equivariant convolutional networks, we follow the method

proposed by Sosnovik et al. [27]. We begin by choosing

a complete basis of functions defined on multiple scales.

Choosing the center of the function to be the point (0, 0) in

coordinates (u, v), we use functions of the following form:

ψσnm(u, v) = A
1

σ2
Hn

(u

σ

)

Hm

( v

σ

)

e−
u
2+v

2

2σ2 (3)

HereHn is a Hermite polynomial of the n-th order, andA is

a constant used for normalization. In order to build a basis

of N functions, we iterate over increasing pairs of n and

m. As the basis is complete, the number of functions N is

equal to the number of pixels in the original filter. We build

such a basis for a chosen set of equidistant scales σ and fix

it:

Ψσ =
{

ψσ00, ψσ01, ψσ10, ψσ11 . . .
}

(4)

Kernels of convolutional layers are parametrized by

trainable weights w in the following way:

κσ =
∑

i

Ψσiwi (5)

As a result, each kernel is defined on multiple scales and no

image interpolation is used. Given a function of scale and

translation f(s, t) and a kernel κσ(s, t), a scale convolution

is defined as:

[f ⋆H κσ](s, t) =
∑

s′

[f(s′, ·) ⋆ κs·σ(s−1s′, ·)](t) (6)

The result of this operation is a stack of features each of

which corresponds to a different scale. We end up with a 3-

dimensional representation of the signal — 2-dimensional

translation + scale. We follow [27] and denote scale-

convolution as ⋆H in order to distinguish it with the standard

one. Figure 2 demonstrates how a kernel basis is formed and

how scale-convolutional layers work.

Fast 1 × 1 Scale-Convolution An essential building

block of many backbone deep networks such as ResNets

[13] and Wide ResNets [35] is a 1 × 1 convolutional layer.

We follow the interpretation of these layers proposed in

[22] — it is a linear combination of channels. Thus, it has

no spatial resolution. In order to build a scale-equivariant

counterpart of 1× 1 convolution, we do not utilize a kernel

basis. As we pointed out before, the signal is stored as a 3

dimensional tensor for each channel. Therefore, for a ker-

nel defined on NS scales, the convolution of the signal with

this kernel is just a 3-dimensional convolution with a kernel

of size 1 × 1 in spatial dimension, and with NS values in

depth. This approach for 1 × 1 scale-convolution is faster

than the special case of the algorithm proposed in [27].

Padding Although zero padding is a standard approach

in image classification for saving the spatial resolution of

the image, it worsens the localization properties of convolu-

tional trackers [20, 37]. Nevertheless, a simple replacement

of standard convolutional layers with scale-equivariant ones

in very deep models is not possible without padding. Scale-

equivariant convolutional layers have kernels of a bigger

spatial extent because they are defined on multiple scales.

For these reasons, we use circular padding during training

and zero padding during testing in our models.

The introduced padding does not affect the feature maps

which are obtained with kernels defined on small scales. It

does not violate the translation equivariance of a network.

We provide an experimental proof in supplementary mate-

rial.

Scale-Pooling In order to capture correlations between

different scales and to transform a 3-dimensional signal

into a 2-dimensional one, we utilize global max pooling

along the scale axis. This operation does not eliminate the

scale-equivariant properties of the network. We found that

it is useful to additionally incorporate this module in the

places where conventional CNNs have spatial max pooling

or strides. The mechanism of scale-pooling is illustrated in

Figure 2.

Non-parametric Scale-Convolution The convolutional

operation which results in the heatmap of a tracker is non-

parametric. Both the input and the kernel come from neu-

ral networks. Thus, the approach described in Equation 6
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is not suitable for this case. Given two functions f1, f2 of

scale and translation the non-parametric scale convolution

is defined as follows:

[f1 ⋆H f2](s, t) = Ls−1 [Ls[f1] ⋆ f2](t) (7)

Here Ls is rescaling implemented as bicubic interpolation.

Although it is a relatively slow operation, it is used only

once in the tracker and does not heavily affect the inference

time. The proof of the equivariance of this convolution is

provided in supplementary material.

3.3. Extending a Tracker to Scale Equivariance

We present a recipe to extend a tracker to scale equivari-

ance.

1. The first step is to estimate to what degree objects

change in size in this domain, and then to select a set

of scales σ1, σ2, . . . σN . This is a domain-specific hy-

perparameter. For example, a domain with significant

scale variations requires a broader span of scales, while

for more smooth sequences, the set may consist of just

3 scales around 1.

2. For a tracker which can be described by Equation 1,

derive φX and φZ .

3. For the networks represented by φX and φZ , all

convolutional layers need to be replaced with scale-

convolutional layers. The basis for these layers is

based on the chosen scales σ1, σ2, . . . σN .

4. (Optional) Scale-pooling can be included to addition-

ally capture inter-scale correlations between all scales.

5. The connection operation ⋆ needs to be replaced with

a non-parametric scale-convolution.

6. (Optional) If the tracker only searches over spatial lo-

cations, scale-pooling needs to be included at the very

end.

The obtained tracker produces a heatmap h(z, x) defined

on scale and translation. Therefore, each position is as-

signed a vector of features that has both the measure of sim-

ilarity and the scale relation between the candidate and the

template. If additional scale-pooling is included, then all

scale information is just aggregated in the similarity score.

Note that the overall structure of the tracker, as well

as the training and inference procedures are not changed.

Thus, the recipe allows for a simple extension of a tracker

with little cost of modification.

4. Scale-Equivariant SiamFC

While the proposed algorithm is applicable to a wide

range of trackers, in this work, we focus on Siamese track-

ers. As a baseline we choose SiamFC [2]. This model

serves as a starting point for modifications for the many

modern high-performance Siamese trackers.

4.1. Architecture

Given the recipe, here we discuss the actual implementa-

tion of the scale-equivariant SiamFC tracker (SE-SiamFC).

In the first step of the recipe, we assess the range of

scales in the domain (dataset). In sequences presented in

most of the tracking benchmarks, like OTB or VOT, ob-

jects change their size relatively slowly from one frame to

the other. The maximum scale change usually does not ex-

ceed a factor of 1.5 − 2. Therefore, we use 3 scales with a

step of
√
2 as the basis for the scale-convolutions. The next

step in the recipe is to represent the tracker as it is done

in Equation 1. SiamFC localizes the object as the coor-

dinate argmax of the heatmap h(z, x) = φZ(z) ⋆ φX(x),
where φZ = φX are convolutional Siamese backbones.

Next, in step number 3, we modify the backbones by re-

placing standard convolutions by scale-equivariant convo-

lutions. We follow step 4 and utilize scale-pooling in the

backbones in order to capture additional scale correlations

between features of various scales. According to step 5,

the connecting correlation is replaced with non-parametric

scale-convolution. SiamFC computes its similarity function

as a 2-dimensional map, therefore, we follow step 6 and add

extra scale-pooling in order to transform a 3-dimensional

heatmap into a 2-dimensional one. Now, we can use ex-

actly the same inference algorithm as in the original paper

[2]. We use the standard approach of scale estimation, based

on the greedy selection of the best similarity for 3 different

scales.

4.2. Weight Initialization

An important ingredient of a successful model training

is the initialization of its weights. A common approach

is to use weights from an Imagenet [9] pre-trained model

[21, 37, 20]. In our case, however, this requires additional

steps, as there are no available scale-equivariant models pre-

trained on the Imagenet. We present a method for initial-

izing a scale-equivariant model with weights from a pre-

trained conventional CNN. The key idea is that a scale-

equivariant network built according to Section 3.3 contains

a sub-network that is identical to the one of the non-scale-

equivariant counterpart. As the kernels of scale-equivariant

models are parameterized with a fixed basis and trainable

weights, our task is to initialize these weights.

We begin by initializing the inter-scale correlations by

setting to 0 all weights responsible for these connections.
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Figure 3: Top: examples of simulated T-MNIST and S-MNIST sequences. Bottom: scale estimation for equivariant and

non-equivariant models. In the S-MNIST example, SE-SiamFC can estimate the scale more accurately. In the T-MNIST

example, our model better preserves the scale of the target unchanged, while the non-scale-equivariant model is prone to

oscillations in its scale estimate.

At this moment, up to scale-pooling, the scale-equivariant

model consists of several networks parallel to, yet discon-

nected from one another, where the only difference is the

size of their filters. For the convolutional layers with a non-

unitary spatial extent, we initialize the weights such that

the kernels of the smallest scale match those of the source

model. Given a source kernel κ′(u, v) and a basis Ψσi(u, v)
with σ = 1, weights wi are chosen to satisfy the linear sys-

tem derived from Equation 5:

κ1(u, v) =
∑

i

Ψ1i(u, v)wi = κ′(u, v), ∀u, v (8)

As the basis is complete by construction, its matrix form is

invertible. The system has a unique solution with respect to

wi:

wi =
∑

u,v

Ψ−1

1i (u, v)κ
′(u, v) (9)

All 1×1 scale-convolutional layers are identical to standard

1×1 convolutions after zeroing out inter-scale correlations.

We copy these weights from the source model. We pro-

vide an additional illustration of the proposed initialization

method in the supplementary material.

5. Experiments and Results

5.1. TranslationScaling MNIST

To test the ability of a tracker to cope with transla-

tion and scaling, we conduct an experiment on a simu-

lated dataset with controlled factors of variation. We con-

struct the datasets of translating (T-MNIST) and translating-

scaling (S-MNIST) digits.

In particular, to form a sequence, we randomly sample

up to 8 MNIST digits with backgrounds from the GOT10k

Tracker T/T T/S S/T S/S # Params

SiamFC 0.64 0.62 0.64 0.63 999 K

SE-SiamFC 0.76 0.69 0.77 0.70 999 K

Table 1: AUC for models trained on T-MNIST and S-

MNIST. T/S indicates that the model was trained on T-

MNIST and tested on S-MNIST datasets. Bold numbers

represent the best result for each of the training/testing sce-

narios.

dataset [16]. Then, on each of the digits in the sequence in-

dependently, a smoothed Brownian motion model induces

a random translation. Simultaneously, for S-MNIST, a

smooth scale change in the range [0.67, 1.5] is induced by

the sine rule:

si(t) =
h− l

2

[

sin(
t

4
+ βi) + 1)

]

+ l (10)

where si(t) is the scale factor of the i-th digit in the t-th

frame, h, l are upper and lower bounds for scaling, and βi ∈
[0, 100] is a phase, sampled randomly for each of the digits.

In total, we simulate 1000 sequences for training and 100

for validation. Each sequence has a length of 100 frames.

We compare two configurations of the tracker: (i) SiamFC

with a shallow backbone and (ii) its scale-equivariant ver-

sion SE-SiamFC. We conduct the experiments according to

2× 2 scenarios: the models are trained on either S-MNIST

or T-MNIST and are subsequently tested on either of them.

The results are listed in Table 1. See supplementary mate-

rial for a detailed description of the architecture, training,

and testing procedures.

As can be seen from Table 1, the equivariant version

outperforms its non-equivariant counterpart in all scenarios.
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Tracker Year
OTB-2013 OTB-2015 VOT2016 VOT2017

AUC Prec. AUC Prec. EAO A R EAO A R

SINT [28] 2016 0.64 0.85 - - - - - - - -

SiamFC [2] 2016 0.61 0.81 0.58 0.77 0.24 0.53 0.46 0.19 0.50 0.59

DSiam [12] 2017 0.64 0.81 - - - - - - - -

StructSiam [36] 2018 0.64 0.88 0.62 0.85 0.26 - - - - -

TriSiam [10] 2018 0.62 0.82 0.59 0.78 - - - 0.20 - -

SiamRPN [21] 2018 - - 0.64 0.85 0.34 0.56 0.26 0.24 0.49 0.46

SiamFC+ [37] 2019 0.67 0.88 0.64 0.85 0.30 0.54 0.38 0.23 0.50 0.49

SE-SiamFC Ours 0.68 0.90 0.66 0.88 0.36 0.59 0.24 0.27 0.54 0.38

Table 2: Performance comparisons on OTB-2013, OTB-2015, VOT2016, and VOT2017 benchmarks. Bold numbers repre-

sent the best result for each of the benchmarks.

The experiment on S-MNIST, varying the scale of an arti-

ficial object, shows that the scale-equivariant model has a

superior ability to precisely follow the change in scale com-

pared to the conventional one. The experiment on T-MNIST

shows that (proper) measurement of scale is important even

in the case when the sequence does not show a change in

scale, where the observed scale in SE-SiamFC fluctuates

much less than it does in the baseline (see Figure 3).

5.2. Benchmarking

We compare the scale-equivariant tracker against a

non-equivariant baseline on popular tracking benchmarks.

We test SE-SiamFC with a backbone from [37] against

other popular Siamese trackers on OTB-2013, OTB-2015,

VOT2016, and VOT2017. The benchmarks are chosen to

allow direct comparison with the baseline [37].

Implementation details The parameters of our model

are initialized with weights pre-trained on Imagenet by a

method described in Section 4.2. We use the same training

procedure as in the baseline. See supplementary material

for a detailed description of the architecture.

The pairs for training are collected from the GOT10k

[16] dataset. We adopt the same prepossessing and aug-

mentation techniques as in [37]. The inference procedure

remains unchanged compared to the baseline.

OTB We test on the OTB-2013 [33] and OTB-2015 [34]

benchmarks. Each of the sequences in the OTB datasets car-

ries labels from 11 categories of difficulty in tracking the se-

quence. Examples of these labels include: occlusion, scale

variation, in-pane rotation, etc. We employ a standard one-

pass evaluation (OPE) protocol to compare our method with

other trackers by the area under the success curve (AUC)

and precision.

The results are reported in Table 2. Our scale-equivariant

tracker outperforms its non-equivariant counterpart by more

Figure 4: Comparison of AUC on OTB-2013 with different

factors of variations. The red polygon corresponds to the

baseline SiamFC+ and the green polygon — to SE-SiamFC.

than 3% on OTB-2015 in both AUC and precision, and by

1.4% on OTB-2013. When summarized at each label of dif-

ficulty (see Figure 4), the proposed scale-equivariant tracker

is seen to improve all sequence types, not only those labeled

with “scale variation”.

We attribute this to the fact that the “scale variation” tag

in the OTB benchmark only indicates the sequences with

a relatively big change in scale factors, while up to a cer-

tain degree, scaling is present in almost any video sequence.

Moreover, scaling may be present implicitly, in the form of

the same patterns being observed on multiple scales. An

ability of our model to exploit this leads to better utilization

of trainable parameters and a more discriminative Siamese

similarity as a result.

2771



Model Pretrained weigths AUC

SiamFC+ (aug. 5%) ✓ 0.668

SiamFC+ (aug. 20%) ✓ 0.668

SiamFC+ (aug. 50%) ✓ 0.664

SE-SiamFC σ = 1.2 ✓ 0.677

SE-SiamFC σ = 1.3 ✓ 0.680

SE-SiamFC σ = 1.4 ✓ 0.681

SE-SiamFC σ = 1.5 ✓ 0.678

SE-SiamFC σ = 1.4 ✗ 0.553

Table 3: Ablation study on the OTB-2013 benchmark. The

parameter σ stands for the step between scales in scale-

equivariant models. Bold numbers represent the best result.

VOT We next evaluate our tracker on VOT2016 and

VOT2017 datasets [18]. The performance is evaluated in

terms of average bounding box overlap ratio (A), and the

robustness (R). These two metrics are combined into the

Expected Average Overlap (EAO), which is used to rank

the overall performance.

The results are reported in Table 2. On VOT2016 our

scale-equivariant model shows an improvement from 0.30
to 0.36 in terms of EAO, which is a 20% gain compared to

the non-equivariant baseline. On VOT2017, the increase in

EAO is 17%.

We qualitatively investigated the sequences with the

largest performance gain and observed that the most chal-

lenging factor for our baseline is the rapid scaling of the

object. Even when the target is not completely lost, the im-

precise bounding box heavily influences the overlap with

the ground truth and the final EAO. Our scale-equivariant

model better adapts to the fast scaling and delivers tighter

bounding boxes. We provide qualitative results in the sup-

plementary material.

5.3. Ablation Study

We conduct an ablation study on the OTB-2013 bench-

mark to investigate the impact of scale step, weight initial-

ization, and fast 1 × 1 scale-convolution. We also test the

baseline SiamFC+ model with various levels of scale data

augmentation during the training. We follow the same train-

ing and testing procedure as in Section 5.2 for all experi-

ments. In the weight initialization experiment, however, we

do not use gradual weights unfreezing, but train the whole

model end-to-end from the first epoch.

Scale step We investigate the impact of scale step σ,

which defines a set of scales our model operates on. We

train and test SE-SiamFC with various scale steps. Re-

sults are shown in Table 3. It can be seen that the resulting

method outperforms the baseline on a range of scale steps.

We empirically found that σ = 1.4 achieves the best perfor-

mance.

Scale data augmentation Data augmentation is a com-

mon way to improve model generalization over different

variations. Since our method is focused on scale, we com-

pare SE-SiamFC against a baseline trained with different

levels of scale data augmentation. Our results indicate (Ta-

ble 3) that scale augmentation does not improve the perfor-

mance of the conventional non-equivariant tracker.

Weight Initialization We train and test SE-SiamFC

model, where weights initialized randomly [11, 30]. As can

be seen from Table 3, random initialization results in a 19%

performance drop compared to the proposed initialization

technique.

Fast 1 × 1 scale-convolution We compare the speed

of 1 × 1 scale-convolution from [27] and the pro-

posed fast implementation. Implementation from [27] re-

quires 450 / 1650 µs, while our implementation requires

67 / 750 µs for forward / backward pass respectively, which

is more than 6 times faster. In our experiments, the usage of

fast 1× 1 scale-convolution results in 30− 40% speedup of

a tracker.

6. Discussion

In this work, we argue about the usefulness of additional

scale equivariance in visual object tracking for the purpose

of enhancing Siamese similarity estimation. We present

a general theory that applies to a wide range of modern

Siamese trackers, as well as all the components to turn an

existing tracker into a scale-equivariant version. Moreover,

we prove that the presented components are both necessary

and sufficient to achieve built-in scale-translation equivari-

ance. We sum up the theory by developing a simple recipe

for extending existing trackers to scale equivariance. We

apply it to develop SE-SiamFC — a scale-equivariant mod-

ification of the popular SiamFC tracker.

We experimentally demonstrate that our scale-

equivariant tracker outperforms its conventional counterpart

on OTB and VOT benchmarks and on the synthetically

generated T-MNIST and S-MNIST datasets, where T-

MNIST is designed to keep the object at a constant scale,

and S-MNIST varies the scale in a known manner.

The experiments on T-MNIST and S-MNIST show the

importance of proper scale measurement for all sequences,

regardless of whether they have scale change or not. For the

standard OTB and VOT benchmarks, our tracker proves the

power of scale equivariance. It is seen to not only improves

the tracking in the case of scaling, but also when other fac-

tors of variations are present (see Figure 4). It affects the

performance in two ways: it prevents erroneous jumps to

similar objects at a different size and it provides a better

consistent estimate of the scale.

2772



References

[1] Erik J Bekkers. B-spline cnns on lie groups. In International

Conference on Learning Representations, 2020.

[2] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In European conference on

computer vision, pages 850–865. Springer, 2016.

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In The IEEE International Conference on Computer Vi-

sion (ICCV), October 2019.

[4] Taco Cohen and Max Welling. Group equivariant convo-

lutional networks. In International conference on machine

learning, pages 2990–2999, 2016.

[5] Taco S Cohen and Max Welling. Steerable cnns. arXiv

preprint arXiv:1612.08498, 2016.

[6] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Atom: Accurate tracking by overlap max-

imization. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019.

[7] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Eco: Efficient convolution operators

for tracking. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 6638–6646,

2017.

[8] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,

and Michael Felsberg. Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In

European conference on computer vision, pages 472–488.

Springer, 2016.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[10] Xingping Dong and Jianbing Shen. Triplet loss in siamese

network for object tracking. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 459–

474, 2018.

[11] Xavier Glorot and Yoshua Bengio. Understanding the dif-

ficulty of training deep feedforward neural networks. vol-

ume 9 of Proceedings of Machine Learning Research, pages

249–256. JMLR Workshop and Conference Proceedings,

2010.

[12] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and

Song Wang. Learning dynamic siamese network for visual

object tracking. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1763–1771, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[14] David Held, Sebastian Thrun, and Silvio Savarese. Learning

to track at 100 fps with deep regression networks. In Euro-

pean Conference Computer Vision (ECCV), 2016.

[15] Emiel Hoogeboom, Jorn WT Peters, Taco S Cohen, and Max

Welling. Hexaconv. arXiv preprint arXiv:1803.02108, 2018.

[16] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A

large high-diversity benchmark for generic object tracking

in the wild. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, page 1–1, 2019.

[17] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-

ing Jiang. Acquisition of localization confidence for accurate

object detection. In The European Conference on Computer

Vision (ECCV), September 2018.

[18] M. Kristan, A. Leonardis, J. Matas, and M. Felsberg et. The

visual object tracking vot2017 challenge results. In 2017

IEEE International Conference on Computer Vision Work-

shops (ICCVW), pages 1949–1972, 2017.

[19] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and

Marc Pollefeys. Ti-pooling: transformation-invariant pool-

ing for feature learning in convolutional neural networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 289–297, 2016.

[20] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang

Xing, and Junjie Yan. Siamrpn++: Evolution of siamese

visual tracking with very deep networks. arXiv preprint

arXiv:1812.11703, 2018.

[21] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8971–

8980, 2018.

[22] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-

work. arXiv preprint arXiv:1312.4400, 2013.

[23] Diego Marcos, Benjamin Kellenberger, Sylvain Lobry, and

Devis Tuia. Scale equivariance in cnns with vector fields.

arXiv preprint arXiv:1807.11783, 2018.

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In Advances in Neural Information

Processing Systems (NIPS), 2015.

[25] David W Romero, Erik J Bekkers, Jakub M Tomczak, and

Mark Hoogendoorn. Attentive group equivariant convolu-

tional networks. arXiv preprint arXiv:2002.03830, 2020.

[26] David W Romero and Mark Hoogendoorn. Co-attentive

equivariant neural networks: Focusing equivariance on

transformations co-occurring in data. arXiv preprint

arXiv:1911.07849, 2019.

[27] Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders.

Scale-equivariant steerable networks. arXiv preprint

arXiv:1910.11093, 2019.

[28] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.

Siamese instance search for tracking. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1420–1429, 2016.

[29] Maurice Weiler and Gabriele Cesa. General e (2)-equivariant

steerable cnns. In Advances in Neural Information Process-

ing Systems, pages 14334–14345, 2019.

[30] Maurice Weiler, Fred A Hamprecht, and Martin Storath.

Learning steerable filters for rotation equivariant cnns. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 849–858, 2018.

2773



[31] Daniel Worrall and Max Welling. Deep scale-spaces: Equiv-

ariance over scale. In Advances in Neural Information Pro-

cessing Systems, pages 7364–7376, 2019.

[32] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukham-

betov, and Gabriel J Brostow. Harmonic networks: Deep

translation and rotation equivariance. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5028–5037, 2017.

[33] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object

tracking: A benchmark. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2013.

[34] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object

tracking: A benchmark. In IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2015.

[35] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016.

[36] Yunhua Zhang, Lijun Wang, Jinqing Qi, Dong Wang,

Mengyang Feng, and Huchuan Lu. Structured siamese net-

work for real-time visual tracking. In Proceedings of the Eu-

ropean conference on computer vision (ECCV), pages 351–

366, 2018.

[37] Zhipeng Zhang and Houwen Peng. Deeper and wider

siamese networks for real-time visual tracking. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4591–4600, 2019.

[38] Wei Zhu, Qiang Qiu, Robert Calderbank, Guillermo Sapiro,

and Xiuyuan Cheng. Scale-equivariant neural networks

with decomposed convolutional filters. arXiv preprint

arXiv:1909.11193, 2019.

2774


