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Abstract

Joint learning of feature descriptor and detector has of-

fered promising 3D reconstruction results; however, they

often lack the low-level feature awareness, which causes

low accuracy in matched keypoint locations. The others

employed fixed operations to select the keypoints, but the

selected keypoints may not correspond to the descriptor

matching. To address these problems, we propose the su-

pervised learning of keypoint detection with low-level fea-

tures. Our detector is a single CNN layer extended from

the descriptor backbone, which can be jointly learned with

the descriptor for maximizing the descriptor matching. This

results in a state-of-the-art 3D reconstruction, especially

on improving reprojection error, and the highest accuracy

in keypoint detection and matching on benchmark datasets.

We also present a dedicated study on evaluation metrics to

measure the accuracy of keypoint detection and matching.

1. Introduction

Accurately detecting and describing the interest points

in images is crucial to many applications such as localiza-

tion [29], Structure from Motion (SfM) [32], and 3D recon-

struction [11]. Over the past few years, the joint learning of

the keypoint description and detection has shown promising

results on real applications. Nevertheless, these learning-

based approaches often lack low-level feature keypoints.

The low-level feature keypoints mark the essential informa-

tion, i.e., shape, lines, and corners in the scene, which are

robust to the geometric changes [10, 21, 19, 7]. The lack of

robustness can cause the shift between matched keypoints,

leading to the low accuracy in matched keypoint locations.

Traditionally, the process of keypoint detection is hand-

crafted. The keypoint detectors are designed to detect key-

points along the corners [10] and edges [15, 2, 20, 21].

These low-level features are robust against viewpoint and

illumination changes. However, the performance of hand-

crafted approaches is limited to the prior knowledge that

developers have in hand. Many researchers turn to use

deep learning for the abundant descriptiveness and distinc-
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Figure 1: Comparison between (a) R2D2 (before) versus (b)

our LLF keypoints + R2D2 (after) . Three point maximum

error thresholds, 3px (top), 1px, and 0.6px (bottom), are

used to filter out erroneous points. At the lowest threshold,

our approach provides more accurate shape and 3D points.

tiveness power of the semantic features from neural net-

works. The learned features for keypoint description [34,

38, 22, 17] have outperformed many handcrafted features,

including SIFT [15]. However, a few learning-based ap-

proaches [26, 7, 12] focused only on learning of keypoint

detector. To capture low-level features, [7] and [12] em-

ployed handcrafted keypoints [10, 15] in training. However,

these works can fail when the handcrafted keypoints fail.

During the past few years, more studies focus on joint

learning keypoint detection and description. Many al-

gorithms encourage a certain level of low-level feature

awareness in keypoint detector using unsupervised learn-

ing [6, 14, 31, 23, 40, 25]. The robustness against geometric

changes was improved either by bootstrapping with multi-

round adaptations on a base, pre-trained network [6, 14]

or enforcing grid-wise peakiness to capture low-level fea-

tures [25, 31, 40]. However, they do not employ any low-
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level features to supervise the learning, which often leads

to low accuracy in matched keypoint locations. To ad-

dress the lack of low-level features, recent works [8, 19, 36]

abandoned the learned detector. These methods derived the

low-level feature keypoints from its neural network back-

bone and selected the keypoints with fixed softmax opera-

tions [8] or local peaks extraction [19, 36]. Although the

keypoints are selected from the descriptor backbone, the

fixed operations cannot guarantee to select the keypoints

where descriptor matching is maximized. Thus, the accu-

racy of matched keypoint locations is low. Moreover, their

keypoints densely cluster along edges and corners in im-

ages [19, 36].

To solve these problems, we propose to learn the low-

level feature keypoint detector (LLF keypoints) with the

multi-level features extracted from the neural network back-

bone. Our learning loss ensures the low-level feature aware-

ness and sparse keypoint detection, which improves the ac-

curacy of matched keypoint locations. We also propose a

learning approach to jointly learn both our keypoint detector

and descriptor to enforce LLF keypoints where the descrip-

tor matching is maximized. Our learning can be applied on

a single CNN layer, namely LLF detector. The LLF de-

tector is extended from a descriptor backbone and can be

trained with the descriptor backbone from scratch. In this

paper, we present our application to improve the robust-

ness and accuracy of repeatable keypoints of R2D2 [25],

which results in reduced reprojection error while achiev-

ing a higher or similar number of registered images, sparse

points, and dense points. Figure 1 demonstrates the effect of

the LLF keypoints which provide sparse points with higher

sub-pixel accuracy in 3D reconstruction (see section. 4.1.1

for full report). We also present a dedicated study to evalu-

ate the improved accuracy of keypoints matching and detec-

tion. The architecture and our learning approach are shown

in Figure 2 and 3. Our contributions are as follows:

• New learning approach and learning loss to capture

low-level features;

• Light-weight keypoint detection extension;

• A dedicated study on evaluation metric to measure the

accuracy of keypoints detection and matching.

The rest of the paper is organized as follows. We review

the related work in section 2. Our proposed method in Sec-

tion 3. Experiments and results are discussed in Section 4.

2. Related works

Handcrafted keypoints. Most of the existing keypoint

detectors are handcrafted to select particular low-level fea-

tures such as blob, corners or edges [10, 15, 2, 20, 21]. Har-

ris [10] and Hessian [5] detectors used first and second order

derivatives to find corners or blobs in images, which have

been extended for handling multi-scales and affine transfor-

mation [21] and acceleration [4]. While the corner detectors
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Figure 2: The proposed LLF detector.

are robust and efficient, SIFT looks for blobs that capture

regional information of the keypoints [15].

Learned detectors. The success of learning feature

descriptions for general image classification has inspired

the recent applications in keypoint detection. FAST [26]

is the first approach that used machine learning for fus-

ing point and line features for keypoint detection. Recent

works [31, 40] focused on learning keypoint detection for

repeatability by increasing the keypoints in repeatable areas

between image pairs. QuadNet [31] employed ranking loss.

Then, [40] added the grid-wise peakiness for the sparse de-

tection. The keypoint repeatability of [31, 40] is high, but

their matched keypoints have low accuracy since the ground

truth of keypoint location is not well defined [12]. Mean-

while, [7, 12] resorted to using handcrafted keypoints such

as [10, 15], in training, due to the consistent representation

of handcrafted keypoints to the low-level features. How-

ever, these works can fail if handcrafted keypoints fail.

Jointly learned descriptor and detector. The joint

learning description and detection ensures the keypoint de-

tection where the descriptor matching is maximized, by op-

timizing the learning losses related to both terms [39, 37, 6,

14, 17, 23, 25]. Many works employed unsupervised learn-

ing [39, 6, 14, 25] and/or relied solely on high-level features

for keypoint detection [25, 23], which enable the keypoints

to be matched as much as possible, but at the cost of the low

matched keypoint accuracy. DELF [23] proposed to super-

vise learning of an attention network with image-level class

labels, which captures the relevance scores of high-level in-

formation in descriptors. SuperPoint [6] steps further by

training a base network with annotated corners. Then, the

base network is further trained by bootstrapping with multi-

round homography adaptations. Without the pre-trained

network, R2D2 [25] proposed to learn the repeatable and

reliable keypoints by enforcing grid-wise peakiness asso-

ciated with the descriptor matching area. However, these

approaches do not use the low-level features in supervision,

leading to the lack of robustness against viewpoint changes.

Unlike previous methods, recent methods [8, 19, 36]

abandoned the learned detector and derived the low-level

feature keypoints directly from descriptor backbones. The
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keypoints are selected with fixed operations. D2-Net [8]

applied detection scores similar to [10] and a softmax op-

eration to the select keypoints. UR2KiD [36] derived key-

points with a set of operations, i.e., activation norms, chan-

nel grouping, and self-distillation. ASLFeat [19] derived

keypoints identified by local peakiness measure [40]. Be-

cause the keypoint selection is rather handcrafted, there is

no guarantee that the selected keypoints are associated with

matching the learned descriptors. Therefore, the matched

keypoints do not always have high accuracy.

Keypoint refinement. Recently, [9] proposed a multi-

ple views keypoint refinement method that solves the prob-

lem of low keypoint accuracy, similar to ours. [9] takes the

matched keypoints and refines the geometry of keypoint

detection and description from multiple views. However,

our method improves the keypoint detection before match-

ing, enabling other performance improvements aside from

the keypoint accuracy. Also, [9] takes more computation

to optimize the keypoint location under geometrical con-

straints. Meanwhile, our work shows the possibility of a

lightweight extension that improves the matched keypoint

accuracy. The comparison is provided in Section 4.2.2.

We take the inspiration from these works, especially [25,

19]. Our proposed method solves the low matched keypoint

accuracy by learning with low-level features extracted from

the descriptor backbone. In this paper, we apply our pro-

posed method on R2D2 [25] as an example. In principle,

our proposed scheme can be applied to other architectures,

such as LIFT [39] or SuperPoint [6], that separate networks

for feature detection and description. While it is possible to

apply our concept to improve 3D keypoint, e.g. [35, 27], this

work focuses on extracting keypoints in 2D coordinates.

3. Methods

Let us consider a setting where I and I′ are the two

images of the same scene, and U ∈ RH×W×2 denotes the

ground truth correspondence between them. That is, if (x,y)
is a pixel coordinate in image I that corresponds to (x′,y′)
in image I′, then Ux,y = (x′,y′). Let the Y and Y ′ denote

the keypoint map associated with image I and I′. Let Y ′
U

denote Y ′ warped according to U . While it is natural to en-

force the similarity between Y and Y ′
U such as [24] with a

least square loss, our proposal is to also learn for the key-

points that capture low-level features, which are stronger for

geometric invariance. Thus, we aim to minimize

LLLF =||Y −Y ′
U ||

2
2 + ||Y − F̄ ||22 + ||Y ′

U − F̄
′
U ||

2
2

+Lpeak(Y )+Lpeak(Y
′) (1)

where Lpeak(·) is the peakiness loss [25] for enforcing spar-

sity in keypoint detection, and F̄ and F̄ ′ ∈ RH×W denote

the multi-level features extracted from the descriptor back-

bone. The multi-level features capture the low-level infor-

mation that is robust against geometric changes as proven

by [8, 19, 36], but unlike these methods [8, 19, 36], we learn

the detector with the multi-level features F̄ . The resulting

detector is the low-level feature (LLF) detector that predicts

a set of sparse keypoint map Y ∈ [0,1]H×W with an empha-

sis on the low-level feature in an image. We present the

architecture of our LLF detector in next. Then, we present

the multi-level feature extraction for F̄ and our modification

of Eq. (1) for joint learning with the descriptor of R2D2.

3.1. Lowlevel feature detector

To enable our LLF detection with minimum extra run-

time, we propose to attach the LLF detector after the net-

work backbone and is in parallel with the existing detectors.

The example of our application with R2D2 [25] is shown in

Figure 2. Given an image I of size H ×W, R2D2 back-

bone provides the dense descriptors X ∈ RH×W×128, and

it is branched into two identical layers: (1) repeatable and

(2) reliable detectors. The repeatable detector outputs the

repeatability keypoint map S ∈ [0,1]H×W which indicates

repeatable keypoint locations. The reliable detector outputs

the reliability map R ∈ [0,1]H×W which estimates the relia-

bility of the descriptor Xx,y for good matching.

To realize the lightweight computation, the LLF detector

is a single CNN layer. Here, we choose the same architec-

ture as the repeatable detector, i.e., an element-wise square

operation followed by a 1×1 convolutional layer and a soft-

max [25]. Unlike the repeatable detector, the LLF detector

will be trained in supervised learning with the multi-level

features F̄ for more robustness and accuracy. The LLF de-

tector outputs the LLF keypoint map, which can be used in

combination with R2D2 keypoints. Nevertheless, our study

in Section 4.1.1 shows that the best performance is achieved

by using 100% LLF keypoints without any repeatable key-

points. Thus, R2D2’s repeatable detector can be removed

when running inference on the neural network. Our LLF

detector can be used without costing extra runtime.

3.2. Multilevel feature extraction

To extract the multi-level features F̄ ∈ RH×W for super-

vising the LLF detector, we propose to use the weighted av-

erage of the dominating features from multi-channel, multi-

level features for our learning. Given I ∈ RH×W as the

input image to the descriptor backbone, the multi-channel

features F ∈RH×W×D is extracted from ℓth level of the de-

scriptor backbone with D feature channels. We extract the

dominating features F̂
(ℓ)

from multi-channel features by

F̂
ℓ
= ∑

c∈[D]

softmax(Fx,y,c) (2)

where c ∈ [D] sorts each feature channel. softmax(Fx,y,c) =
exp(Fx,y,c)

∑x,y,c exp(Fx,y,c)
. We, then, normalize the dominating features

to maintain reasonable scales with spatial mean µx,y and
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Figure 3: The proposed learning framework.

variant σ
2
x,y, i.e., F̃

ℓ
=

F̂
ℓ
−µx,y

σ2
x,y

. To summarize the features

extracted from multiple layers, we calculate the weighted

sum [19] of the dominating features from multiple layers:

F̄ =
1

∑ℓ∈L wℓ
∑
ℓ∈L

wℓF̃
(ℓ)

(3)

where wℓ weights the important of each layer from L, the set

of chosen layers from a descriptor backbone. For R2D2, we

choose L = {2,5,8,11,14,17} which are the output from

the relu of R2D2 backbone. The extracted features are used

in supervised learning of LLF detector.

3.3. Lowlevel feature loss

Although using the loss function Eq. (1) is possible, here

we propose to modify Eq. (1) such that this loss function

can be employed in the joint learning of R2D2 which is

our example application. The learning losses in R2D2 are

patch-based and are normalized with patch size. Thus, we

modify the following terms for the joint learning. Given the

image I, one can extract both keypoint map Y and the low-

level features F̄ from the backbone, where F̄ is calculated

with Eq. (3). The low-level feature loss L f eat is defined as

mean square distance between Y and F̄ :

L f eat(Y ) =
1

HW
∑
x,y

||Y x,y − F̄x,y||
2 (4)

where F̄ is gradient detached. Using this loss alone results

in dense keypoints. Thus, we employed the peakiness losses

Lpeak [40, 25] to increase the gap between a local peak and

the average value for sparsity. Let a patch of size N ×N

define the neighborhood of the local peak, and P be the set

of all overlapping patches. The peakiness loss is as follows:

Lpeak(Y ) = 1−
1

|P| ∑
p∈P

(

max
(x,y)∈p

Y x,y −mean
(x,y)∈p

Y x,y

)

(5)

Instead of using the least square loss as in Eq. (1), we re-

sort to the cosine loss Lcosim similar to [25] for its bounded

value ∈ (0,1). To ensure the consistent result to the peak-

iness loss, we calculate the cosine similarity of each patch

p ∈ P . The cosine loss between keypoint maps defined as

Lcosine(Y ,Y
′,U) = 1−

1

|P| ∑
p∈P

(

cosim (Y [p],Y ′
U [p])

)

(6)

where Y [·] is the flattened N ×N patch extracted from Y .

Finally, the learning loss of LLF detector is defined as:

LLLF =Lcosine(Y ,Y
′,U)+

1

2
(L f eat(Y )+L f eat(Y

′))

+
1

2
(Lpeak(Y )+Lpeak(Y

′)) (7)

Next, we discuss the learning framework where the LLF

detector is jointly learned with the R2D2 descriptor.

3.4. Learning framework

We propose to enforce the LLF keypoints where R2D2

descriptor matching is maximized, by optimizing the learn-

ing losses. We jointly learn our LLF detector and R2D2

descriptor with separate losses, i.e., learning our LLF de-

tector with Eq. (7) and learning R2D2 descriptor with its

own loss. R2D2 descriptor is learned by minimizing the

loss at the reliable detector [25]. In addition, we found

that joint learning of our LLF detector and R2D2’s repeat-

able detector improves the quality of detection. The re-

peatable detector is learned in an unsupervised learning,

which keeps the balance between discovering potential key-

points [39, 6], against our supervised learning that enforces

similarity to the low-level features. Figure 3 demonstrates

the joint learning of our LLF detector, repeatable detector,

and reliable detector in our learning framework.

The learning loss for each detector is as follows:

(1) Our LLF detector is learned with LLLF Eq. (7);

(2) R2D2’s repeatable detector is learned with (Eq.(3)

in [25]):

LRep =
1

2
(Lpeak(S)+Lpeak(S

′))+Lcosine(S,S
′,U) (8)

where S and S′ denotes the repeatability map of I and I′.

(3) R2D2 descriptor is learned with (Eq.(4) in [25]):

LAP,R =
1

B
∑
(x,y)

1−AP(px,y) (9)
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Feature Matching Keypoint Detection

Methods MMA MME #Inlie. #Matches ǫIoU #CorrIoU #Corr.

R2D2 [25] 0.710 1.265 311 398 0.096 590 559

Our 0%LLF+100%Rep.+ R2D2 0.662 1.194 226 306 0.094 591 572

Our 25%LLF+75%Rep.+ R2D2 0.722 1.083 259 323 0.089 552 566

Our 50%LLF+50%Rep.+ R2D2 0.723 1.083 262 326 0.088 556 570

Our 100%LLF+ R2D2 0.740 1.070 269 328 0.092 569 562

Our max(LLF,Rep.)+R2D2 0.723 1.083 262 326 0.088 556 570 1 2 3 4 5 6 7 8 9100.0
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      R2D2 [25]
Our 0%LLF+ 100%Rep. + R2D2
Our 25%LLF+ 75%Rep. + R2D2

Our 50%LLF+ 50%Rep. + R2D2
Our 100%LLF+ R2D2
Our max(LLF,Rep. ) + R2D2

Table 1: The impact of the proposed modification, where our LLF detector is integrated with R2D2. The learning of LLF

detector impacts the overall performance. As LLF keypoints increase (%LLF > 0), MMA increases while the error, ǫIoU
2 and

MME, decreases. On the right, MME decreases as LLF keypoints increase. Our 100%LLF+R2D2 gives the lowest error.

Datasets Methods #Reg.

Imges

#Sparse

Points

Track.

Len.

Reproj.

Error

#Obs.

Points

Herzjesu

8 images

R2D2 [25] 8 13.6K 5.91 1.02 80K

Our 0%LLF+100%Rep.+ R2D2 8 13.0K 5.05 0.95 66K

Our 25%LLF+75%Rep.+ R2D2 8 11.4K 5.33 0.96 61K

Our 50%LLF+50%Rep.+ R2D2 8 13.0K 5.56 0.93 72K

Our 100%LLF+ R2D2 8 13.0K 5.69 0.88 74K

Our max(LLF,Rep.)+R2D2 8 13.1K 5.61 0.92 73K

Fountain

11 images

R2D2 [25] 11 16.6K 7.53 1.04 125K

Our 0%LLF+100%Rep.+ R2D2 11 18.0K 5.87 0.93 106K

Our 25%LLF+75%Rep.+ R2D2 11 15.3K 6.37 0.95 98K

Our 50%LLF+50%Rep.+ R2D2 11 17.3K 6.85 0.92 118K

Our 100%LLF+ R2D2 11 16.3K 7.31 0.88 119K

Our max(LLF,Rep.)+R2D2 11 17.2K 6.96 0.91 120K

Table 2: Impact on 3D reconstruction.

where AP(·) is computed for each of the B patches {px,y}
in the batch. AP(·) is defined in [25]. These learning losses

are used together when training the entire network.

4. Experimental results

In the following section, our method is evaluated across

several practical scenarios, including keypoint detection

and matching, 3D reconstruction, and visual localization.

Visual results on keypoint detection and matching and 3D

reconstruction are provided in Supplementary.

4.1. Keypoint detection and matching

Evaluation metrics. We evaluate the accuracy of the key-

point detection and matching using the following metrics

from [8, 12, 13, 21]:

Intersection-over-Union error (ǫIoU ). To evaluate the er-

ror of keypoint detection, we measure ǫIoU [12, 13] which

is the compliment of the intersection over union areas be-

tween two candidates. We report the results of ǫIoU using

the keypoint scales and locations (SL), and using only the

locations (L) where scales are detected by ground truth. Ra-

dius of size 30 is used to normalize the different keypoint

scales, and we choose top 1000 keypoints in evaluation.

Repeatability. We measure the proportion of correct cor-

respondences identified by ǫIoU . The correspondences be-

tween an image pair are corrected, if ǫIoU< 0.4 [12]. We

also report the number of correspondences where ǫIoU< 0.4

denoted as #CorrIoU . Following [12, 21], the repeatability

is the ratio between the correspondences (#CorrIoU ) divided

by the lower number of detected keypoints.

Mean Matching Accuracy (MMA). To demonstrate the

performance of feature matching, we employed MMA [8],

which is the average percentage of correct matches in an

image pair across multiple error thresholds.

Mean Matched Error (MME). We extend MMA [8] to eval-

uate the matched keypoint sub-pixel error, similar to [16].

That is, we measure the average distance of the matched

keypoints to the projected locations using the ground truth

homography, thus, termed mean matched error (MME). We

also report MME across the error thresholds.

These evaluation metrics are presented in Table 1 and 3.

We highlight the top two or top three and underline the best

result. In addition, we report the average number of cor-

rect matches (#Inlie.), total matches (#Matches), and cor-

rect correspondences (#Corr.) whose pixel error is < 3px.

Datasets. The full HPatches dataset [3] with ground-truth

homography are used. The dataset contains 116 image se-

quence where 57 sequences have large illumination change,

and 59 sequences with large viewpoint changes.

Baseline and training data. Our work is compared with

the reproduced results of R2D2 [25]. We use the trained

R2D2-WAF-N16 and R2D2-WASF-N16 released from the

official site of [25]. We use the same training data and set-

tings of WAF and WASF [25] for training our LLF detector

and R2D2’s backbone from scratch, with batch size (B) = 4,

number of epoch = 25, and patch size (N) = 16 (details pro-

vided in Supplementary). We use R2D2-WAF-N16-based

development for every experiment. Except for visual local-

ization, we use R2D2-WASF-N16-based development for

the consistency with reported results in [25, 9].
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Overall

Feat. Matching ǫIoU Repeatability

Methods MMA MME #Inlie. SL L SL L #Corr.

SIFT [15] 0.51 1.014 232 0.178 0.120 37.8 59.0 402

SURF [4] 0.47 1.211 213 0.173 0.120 44.2 62.1 451

Key.Net [12] 0.72 1.186 408 0.138 0.093 60.3 68.2 591

D2-Net [8] 0.30 1.725 141 0.219 0.183 37.2 54.7 210

ASLFeat [19] 0.69 1.178 358 0.142 0.089 49.8 61.3 573

DELF [23] 0.47 1.016 280 0.151 0.128 47.7 60.3 369

SuperPoint [6] 0.59 1.381 273 0.153 0.110 57.7 79.1 320

R2D2 [25] 0.71 1.265 311 0.118 0.096 51.9 59.2 559

Our max(LLF,Rep.)+R2D2 0.72 1.083 262 0.124 0.088 46.6 55.8 570

Our 100%LLF+R2D2 0.74 1.070 269 0.126 0.092 47.3 57.1 562

Illumination

Feat. Matching ǫIoU

MMA MME SL L

0.48 0.897 0.118 0.120

0.47 1.040 0.109 0.113

0.72 1.010 0.090 0.092

0.39 1.607 0.179 0.168

0.72 1.024 0.088 0.088

0.89 0.043 0.005 0.011

0.65 1.135 0.101 0.101

0.73 1.100 0.099 0.097

0.75 0.835 0.099 0.087

0.77 0.819 0.102 0.092

Viewpoints

Feat. Matching ǫIoU

MMA MME SL L

0.55 1.127 0.237 0.119

0.48 1.378 0.235 0.127

0.71 1.360 0.185 0.094

0.22 1.843 0.257 0.197

0.66 1.330 0.195 0.091

0.07 1.986 0.293 0.242

0.53 1.623 0.202 0.119

0.69 1.428 0.136 0.096

0.70 1.327 0.148 0.089

0.71 1.318 0.148 0.092

Table 3: Comparison to the state-of-the-art methods on the full HPatches dataset with mean matching accuracy (MMA), mean

matched keypoint error (MME), average intersection over union error (ǫIoU ), and repeatability (%). The error threshold is set

to 3px. In overall, our 100%LLF+R2D2 is the best in MMA and achieves the top three in MME and ǫIoU (L) and (SL).
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Figure 4: Comparison with the state-of-the-art in (a) MMA [8] and (b) MME at different error threshold (1-10px).

Comparative methods. Our work is compared with 1)

the standard handcrafted: SIFT [15] and SURF [15]; 2)

learning-based detector: Key.Net [12]; 3) joint local feature

learning methods: R2D2 [25], SuperPoint [6], DELF [23],

D2-Net [8], and ASLFeat [19]. We compare with the multi-

scaled features, except SuperPoint that has single scale. The

maximum scale detection size1(max. scale size) of our work

and R2D2 is set to 1600px. We report either results from the

original papers, or derived from authors public implementa-

tions with default settings, unless otherwise specified. The

number of keypoints (#kpts1) is limited to 1K for the full

HPatches in Table 1 and 3, and 5K for MMA[8] in Figure 4.

4.1.1 Impact of low-level feature keypoints.

Table 1 shows the impact of our low-level feature (LLF)

keypoints. We report the proportion of LLF keypoints as

the percent to the total keypoints from LLF and R2D2’s

repeatable detector. Generally, the higher percent of LLF

keypoints leads to the higher accuracy in keypoint detec-

tion and matching. At first, without any LLF keypoints

(0%LLF), the rest of keypoints provide higher #Corr. As

1 Impact of max. scale size and #kpts are studied in Supplementary.

the LLF keypoints increases (%LLF > 0), the error MME

and ǫIoU
2 notably decrease, and MMA increases, which in-

dicate the improved matched keypoint accuracy. We also

report our max(LLF,Rep.) that chooses higher scored key-

points. On the right shows the MME across multiple error

thresholds. The more LLF keypoints lead the lower MME,

but this also cause the decrease in #Matches and #CorrIoU .

The lower #Matches, but higher MMA, indicate that only

the low error keypoints are matched. Meanwhile, the de-

crease in #CorrIoU , but higher #Corr., suggest the less clus-

tered keypoints in repeatable area, leading to lower repeata-

bility. Nevertheless, the impact is insignificant to the 3D

reconstruction as in Table 2. As LLF keypoints increase,

the reprojection error decreases, while the others are on par

with R2D2. Examples of 3D reconstruction is in Figure 1.3

4.1.2 Comparisons with the state-of-the-art methods.

Table 3 presents the comparison to state-of-the-art local fea-

ture extractors on the full HPatches dataset. The results

are based on setting the error threshold to 3px. Overall,

2 We report ǫIoU using only keypoint location (L).
3Full visual results are in Supplementary
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our method shows the improved matched keypoints accu-

racy over the others. Our 100%LLF+R2D2 has the highest

MMA, and max(LLF,Rep.)+R2D2 achieves the top three

in MMA, ǫIoU , both L and SL, MME, and #Corr. The low

ǫIoU in L and SL validates the robustness of keypoints loca-

tion and scales estimation. Meanwhile, R2D2 is the best in

ǫIoU (SL). Our method has a slightly higher ǫIoU (SL) since

LLF keypoints may not well aligned with scale detection

of R2D2 layout. However, our method surpassed R2D2 on

MME and ǫIoU (L), which considers only the keypoint lo-

cation. The repeatability is lower due to the less keypoint

clustering, as discussed previously. SIFT and DELF have

the best MME, but SIFT has low performance in the other

areas, and DELF has poor results in viewpoint. KeyNet and

SuperPoint are the best in repeatability L and SL. ASLFeat

yields good results4 in many areas. However, KeyNet, Su-

perPoint, and ASLFeat have a much higher error, MME,

and ǫIoU (SL). The high MME indicates misalignment be-

tween matched keypoints, while ǫIoU (SL) indicates the lack

of robustness against the changed scales in viewpoint.

Figure 4 offers the broader view of the comparison on

MMA [8] and MME across multiple error thresholds (1-10

px). Following [8], we exclude eight high-resolution se-

quences and use the remaining 52 and 56 sequences with il-

lumination or viewpoint changes, which causes a shift in the

ranking. In this setting, our max(LLF,Rep.)+R2D2 is the

second best after ASLFeat v.24, i.e, 0.74 vs. 0.75, at 3px.

ASLFeat v.2 used more advanced training data than other

methods. Many methods offer higher MMA when the error

threshold > 4px. However, by increasing the error thresh-

old, the mean matched error (MME) in keypoint locations

also increases (Figure 4b). Our 100%LLF+R2D2 achieves

low MME across error thresholds and is the second-best af-

ter SIFT. This confirms the impact of our work on improv-

ing the accuracy of matched keypoints.

4.2. 3D Reconstruction

Dataset. We employ the ETH benchmark [33] to evaluate

the performance on 3D reconstruction. We follow most of

the protocols in [33]. Except for our method and the base-

line R2D2 [25], we use NetVLAD [1] to retrieve the top

20 nearby images of each image, and only match against

them, for the images from Madrid Metropolis, Gendarmen-

markt, and Tower of London (instead of exhaustive match-

ing). Then, we extract and match the local features with the

matching ratio of 0.9. Sparse and dense reconstruction are

performed by the SfM and MVS from COLMAP [32].

Evaluation protocols. We report the number of registered

images (#Reg. Imges), sparse points (#Sparse Points), mean

tracking length (Track. Len.), and reprojection error (Re-

proj. Error) for sparse reconstruction. The number of dense

4Comparison with ASLFeat v.2 is discussed in Supplementary

Datasets Methods #Reg.

Imges

#Sparse

Points

Track.

Len.

Reproj.

Error

#Dense

Points

Madrid

Metropolis

1344

images

RootSIFT [2, 15] 500 116K 6.32 0.60 1.82M

GeoDesc [18] 495 114K 5.97 0.65 1.56M

D2-Net [8] 495 114K 6.39 1.35 1.46M

ASLFeat [19] 649 129K 9.56 0.95 1.92M

SuperPoint [6] 438 29K 9.03 1.02 1.55M

R2D2 [25] 443 55K 10.30 0.90 1.63M

Our max(LLF,Rep.)+R2D2 504 92K 9.58 0.86 1.78M

Our 100%LLF+R2D2 499 78K 9.79 0.85 1.74M

Gendar-

menmarkt

1463

images

RootSIFT [2, 15] 1035 338K 5.52 0.69 4.23M

GeoDesc [18] 1004 441K 5.14 0.73 3.88M

D2-Net [8] 965 310K 5.55 1.28 3.15M

ASLFeat [19] 1061 320K 8.98 1.05 4.00M

SuperPoint [6] 967 93K 7.22 1.03 3.81M

R2D2 [25] 1000 183K 9.82 0.96 4.35M

Our max(LLF,Rep.)+R2D2 1053 283K 8.58 0.95 4.30M

Our 100%LLF+R2D2 1044 235K 8.93 0.91 4.34M

Tower of

London

1576

images

RootSIFT [2, 15] 804 239K 7.76 0.61 3.05M

GeoDesc [18] 776 341K 6.71 0.63 2.73M

D2-Net [8] 708 287K 5.20 1.34 2.86M

ASLFeat [19] 846 252K 13.16 0.95 3.08M

SuperPoint [6] 681 52K 8.67 0.96 2.77M

R2D2 [25] 763 102K 13.35 0.89 3.11M

Our max(LLF,Rep.)+R2D2 806 160K 11.58 0.86 3.19M

Our 100%LLF+R2D2 775 139K 12.82 0.83 3.12M

Table 4: Comparison to the state-of-the-art methods on

ETH benchmark [33] for 3D reconstruction.

points (#Dense Points) is for dense reconstruction. Our

method is compared against the state-of-the-art local fea-

tures and keypoint refinement in Section 4.2.1 and 4.2.2.

We limit #kpts of R2D2 and ours to 10K in Section 4.2.1

and 5K in 4.2.2; max. scale size is set to 1600px.

4.2.1 Comparison with state-of-the-art local features.

From Table 4, our method, i.e., 100%LLF+R2D2 and

max(LLF,Rep.)+R2D2, provides the complete sparse

and dense reconstructions according to #Reg. Imges and

#Dense Points. Both of our works offer lower Reproj. Er-

ror than R2D2 [25]. Our 100%LLF+R2D2 has the sec-

ond best lowest Reproj. Error among the learning methods

after GeoDesc [18]. This validates the impact of the pro-

posed LLF detector for improving the accuracy of 3D re-

construction. Though GeoDesc has a very low Reproj. Er-

ror, its Track. Len. is much shorter than the others. Our

method also performs better than R2D2 in #Reg. Imges and

#Sparse Points, while giving a shorter Track. Len. by 1.24

frame on average. This could be due to the mismatch be-

tween LLF keypoints and the scales detection from R2D2.

However, our Track. Len. is still among the top three. Nev-

ertheless, RootSIFT still has notably smaller reprojection

error, which suggests the possible future improvement.
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Datasets Methods #Reg.

Imges

Track.

Len.

Reproj.

Error

#Obs.

Points

Madrid

Metropolis

1344 images

R2D2 our rep. 439 10.56 0.92 366K

R2D2 by [9] 422 10.17 0.90 357K

Ref [9]+R2D2 427 10.15 0.76 360K

Our max(LLF,Rep.)+R2D2 455 9.79 0.84 483K

Our 100%LLF+R2D2 463 10.36 0.83 474K

Gendar-

menmarkt

1463 images

R2D2 our rep. 993 9.83 0.97 1.13M

R2D2 by [9] 988 9.94 0.98 1.10M

Ref [9]+R2D2 935 10.04 0.89 1.04M

Our max(LLF,Rep.)+R2D2 1030 8.29 0.93 1.33M

Our 100%LLF+R2D2 1028 8.78 0.91 1.29M

Tower of

London 1576

images

R2D2 our rep. 700 13.38 0.91 757K

R2D2 by [9] 693 13.44 0.92 758K

Ref [9]+R2D2 700 13.73 0.76 760K

Our max(LLF,Rep.)+R2D2 746 11.10 0.85 964K

Our 100%LLF+R2D2 744 11.96 0.82 971K

Table 5: Comparison with the keypoint refinement [9].

4.2.2 Comparison with keypoint refinement.

Table 5 shows the comparison to the recent keypoint re-

finement method [9], which addresses the problem of re-

fining the geometry of local features from multiple views.

We denote this method as Ref [9]. For a fair comparison,

we report the reproduced results of R2D2 by [9] as well as

our reproduced results (our rep.). The similarity between

R2D2 by [9] and our rep. indicates the two settings are

similar. Firstly, from the Table 5, our method and Ref [9]

provide less Reproj. Error than R2D2. The Reproj. Error

of our 100%LLF+R2D2 is on par with Ref [9] on Gen-

darmenmarkt, but it does not achieve lower Reproj. Er-

ror than Ref [9] in Madrid Metropolis and Tower of Lon-

don. Our Track. Len. is longer for Madrid Metropolis,

but it is shorter in Gendarmenmarkt and Tower of London.

Nevertheless, our method gives higher #Reg. Imges and

#Obs. Points in all cases. Though the goal of our method

and Ref [9] are similar, Ref [9] refines the matched key-

points, which improves the accuracy in 3D reconstruction,

but not #Reg. Imges and #Obs. Points. Meanwhile, the LLF

detector operates at the upstream of the 3D reconstruction

pipeline; thus, it can improve the overall performance.

4.3. Visual Localization

Dataset. We employ the Aachen Day-Night dataset [30,

28] to demonstrate the effect on visual localization tasks,

where the key challenge is to match images with extreme

day-night changes for 98 queries.

Evaluation protocols. We use the evaluation protocols

and tools provided by The Visual Localization Benchmark5,

5https://www.visuallocalization.net/

Methods #kpts #dim #weights 0.25m, 2◦ 0.5m, 5◦ 5m, 10◦

RootSIFT [2, 15] 11K 128 - 54.1 66.3 75.5

D2-Net [8] 19K 512 15M 74.5 86.7 100.0

ASLFeat [19] v.2 10K 128 0.4M 81.6 87.8 100.0

SuperPoint [6] 7K 256 1.3M 73.5 79.6 88.8

R2D2 [25] N = 8 40K 128 1.0M 76.5 90.8 100.0

R2D2 [25] N = 8 10K 128 1.0M 74.5 83.7 100.0

R2D2 (our rep.) N = 16 10K 128 0.5M 76.5 88.8 98.0

Our max(LLF,Rep.)+R2D2 10K 128 0.5M+129 75.5 87.8 98.0

Our 100%LLF+R2D2 10K 128 0.5M+129 72.4 90.8 99.0

Table 6: Evaluation on the Aachen Day-Night dataset [30,

28] for visual localization task.

which takes costumed features, performs image registra-

tion with COLMAP [32], and finally reports the percent

of successfully localized images within 3 error tolerances:

(0.25m, 2◦) / (0.5m, 5◦) / (5m, 10◦). We compare with the

benchmark from official site5. For our method and repro-

duced result of R2D2, we set max. scale size to 1600px and

limit #kpts to 10K. We report results based on default image

retrieval and feature matching supplied in the official site5.

Results. From Table 6, our 100%LLF+R2D2 provides

better performance than R2D2 (our rep.) at the error tol-

erances (0.5m, 5◦) and (5m, 10◦). Our 100%LLF+R2D2

achieves the highest percentage of successfully localized

images at (0.5m, 5◦) which is close to R2D2 (N = 8, 40K)

that requires much more computational resources which are

#kpts (40K vs. 10K) and #weights (1M vs. 0.5M+129).

Because R2D2 (N = 8, 40K) employed smaller patch size

(N = 8), the learned model is twice larger. ASLFeat v.2 also

has competitive performance. It offers the highest percent-

ages of successfully localized images at (0.25m, 2◦) with

lower #weights. Nevertheless, ASLFeat v.2 relies on using

larger max. scale size (2048px) and an advanced database

with depth information for training, i.e., blended images

and rendered depths. However, our method improves the

performance by new supervised learning technique, only.

5. Summary

Motivated by the role of low-level features in providing

robustness against geometric changes in image scenes, we

proposed a new method that supervises keypoint detection

learning with the low-level features. Our learning ensures

that the resulting keypoints will be sparse and agree with de-

scriptor matching. We applied the supervised learning to a

single CNN layer, namely LLF detector. We examined the

role of the LLF detector applied on R2D2 and provided a

dedicated study to measure the accuracy of keypoint detec-

tion. Extensive experiments showed that our LLF detector

provides a significant improvement to achieve the highest

accuracy in keypoint detection, state-of-the-art 3D recon-

struction, and competitive visual localization.
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