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Abstract

Video-to-video translation is more difficult than image-

to-image translation due to the temporal consistency prob-

lem that, if unaddressed, leads to distracting flickering ef-

fects. Although video models designed from scratch pro-

duce temporally consistent results, training them to match

the vast visual knowledge captured by image models re-

quires an intractable number of videos. To combine the

benefits of image and video models, we propose an image-

to-video model transfer method called Hyperconsistency

(HyperCon) that transforms any well-trained image model

into a temporally consistent video model without fine-

tuning. HyperCon works by translating a temporally inter-

polated video frame-wise and then aggregating over tem-

porally localized windows on the interpolated video. It

handles both masked and unmasked inputs, enabling sup-

port for even more video-to-video translation tasks than

prior image-to-video model transfer techniques. We demon-

strate HyperCon on video style transfer and inpainting,

where it performs favorably compared to prior state-of-

the-art methods without training on a single stylized or

incomplete video. Our project website is available at

ryanszeto.com/projects/hypercon.

1. Introduction

Developments in both large-scale datasets and deep neu-

ral networks (DNNs) have led to incredible advancements

in image-to-image [15, 35] and video-to-video [31, 1, 24, 6]

translation tasks such as color restoration [39, 41], super-

resolution [7, 8], inpainting [20, 37, 14], and style trans-

fer [9, 17]. But compared to images, videos pose an addi-

tional challenge: not only do the video frames need to sat-

isfy the intended translation, they must also be temporally

consistent. Otherwise, they will exhibit flickering artifacts.

Existing video-to-video translation techniques address

temporal consistency through one of two types of strate-

gies. The first incorporates temporal consistency directly

into the method through optical flow-based losses [18, 27,

28, 12, 38] or network layers that operate on the time di-

mension, e.g., 3D convolutional layers [5] or recurrent lay-

ers [18]. These techniques leverage self-supervised video

data and tailor models to specific tasks using relevant losses,

e.g., reconstruction error [20, 37, 18] or style loss [17, 12].

However, they require models and losses that are defined

exclusively on videos and tuned for a specific application.

The other type of strategy uses a blind video consistency

model to reduce flicker in a frame-wise translated video as

a post-processing step [2, 8, 19, 36]. For example, Lai et

al. [19] train a recurrent encoder-decoder network to im-

prove the temporal consistency of independently processed

frames via warping and structural preservation losses. Blind

video consistency methods relax the need for task-specific

video models and losses, and also enables image-to-image

models to be applied immediately to videos without sacri-

ficing consistency. However, they require dense correspon-

dences between unprocessed frames during optimization,

making them unsuitable for tasks in which certain input re-

gions have no meaningful structure, e.g., video inpainting.

Similarly to blind video consistency methods, we opt to

impart image-to-image models with temporal consistency,

motivated primarily by generalization issues inherent to

video-tailored approaches. To elaborate, consider in Fig-

ure 1 a failure case from the otherwise impressive state-of-

the-art video inpainting network VINet [18]; here, it fails to

hallucinate a sensible texture for the missing region. Now

consider a state-of-the-art image inpainting model, Contex-

tual Attention [37]: this method produces realistic textures

on the same example (but exhibits temporal inconsistency).

The reason for this difference lies in the diversity of data

used to train each model. Whereas the video model was

trained on about 5,000 examples from one of the largest

video segmentation datasets to date [33], the image model

was trained on over 1,000,000 images [42]. Regardless of

application, the vast scale of image datasets enables image

models to encapsulate broader visual knowledge than video

models trained from scratch and, as a result, better gen-

eralize to new data. Because storage and cost limitations

make it intractable to collect high-quality video datasets as
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Figure 1: Video-to-video translation models designed and trained from scratch, e.g., VINet [18] are temporally consistent,

but exhibit poor generalization performance due to the limited size of high-fidelity video datasets (note the lack of defined

texture). Image-to-image models, e.g., Contextual Attention [37], generalize well thanks to large image datasets, but lack

temporal consistency (note the changing texture). HyperCon leverages the generalization performance conferred by image

datasets while enforcing the temporal consistency properties of video-to-video models.

diverse as modern image datasets, video-tailored models are

doomed to generalize poorly compared to image models.

To overcome this challenging generalization issue, we

propose a method of image-to-video model transfer for

video-to-video translation tasks. Rather than optimize an

image or video model from scratch, we aim to trans-

form a black-box image-to-image translation model into

a strong video-to-video translation model without fine-

tuning—specifically, to automatically induce temporal con-

sistency while achieving the same visual effect as the

image-to-image model. Compared to prior techniques in

blind video consistency [2, 19], which target these goals and

therefore fall under the same problem space, ours broadens

the scope of applicable tasks to include those in which the

input and output videos have differing visual structure, such

as video inpainting and edge-deforming style transfer (e.g.,

the mosaic style from PyTorch’s examples repository).

Key to our approach is the view of image-to-image mod-

els as noisy models in which small changes in the input lead

to substantial changes in the output (e.g., Figure 1, middle).

To strengthen the desired signal and filter out noise, we syn-

thesize several perturbed, but related predictions and aggre-

gate over them. We obtain perturbations in a way that con-

ditions on multiple neighboring frames to enhance temporal

consistency. Our hyperconsistency approach (HyperCon for

short) implements these principles by inserting frames into

the video with a frame interpolation network, translating the

interpolated video’s frames independently, and aggregating

within overlapping windows of appropriate stride to obtain

a final video whose length matches the original (Figure 2).

As the first method among image-to-video model trans-

fer techniques to reason in interpolated video space, Hy-

perCon forgoes the traditional post-processing paradigm by

integrating frame-wise translation within itself as an inter-

mediate step, not as a step that precedes it. Since it does

not require dense correspondences in the unprocessed in-

put video, it performs well on video-to-video translation

tasks with or without masked inputs—e.g., inpainting and

style transfer respectively—as verified by our extensive ex-

periments across these two widely differing applications.

HyperCon outperforms a prior state-of-the-art video con-

sistency model [19] in terms of reducing flicker and ad-

hering to the intended translation; when combined with a

strong image inpainting method, it also produces better pre-

dictions than a state-of-the-art video inpainting model [18].

It achieves competitive performance in both tasks despite

not being trained with any masked or stylized videos.

Our contributions are as follows. First, we moti-

vate image-to-video model transfer as a way to leverage

the superior generalization performance of image models

for video-to-video translation without sacrificing tempo-

ral consistency. Second, we propose HyperCon, which

supports a wider span of tasks than prior video consis-

tency work thanks to its support for both masked and

unmasked inputs. Finally, we show that HyperCon per-

forms favorably compared to state-of-the-art video consis-

tency and inpainting methods without the need to be fine-

tuned on these tasks. Our project website is available at

ryanszeto.com/projects/hypercon.

2. HyperCon

Given an input video V = {v1, . . . , vN}, our goal is

to generate an output video O = {o1, . . . , oN} represent-

ing the N frames of V translated by some image-to-image

model g. The frames of O should closely resemble the

frames of V translated frame-wise by g; at the same time, O

should be temporally consistent, i.e., exhibit as few flicker-

ing effects as possible. We quantify these notions of resem-

blance and consistency concretely in Sections 3.2 and 4.2.

With HyperCon (Figure 2), we generate O as follows.

First, we artificially insert i frames between each pair

of frames in V with a frame interpolation network (Sec-

tion 2.1). Denoting this interpolated version of V as V s =
{vs1, . . . , v

s
N ′}, where N ′ is the number of frames in the in-
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Figure 2: Visual overview of our Hyperconsistency (HyperCon) method. We begin by artificially inserting frames into the

input video V with a frame interpolation network to produce an interpolated video V s. Then, we independently translate

each frame in the interpolated video with an image-to-image translation model. Finally, we aggregate frames (i.e., align with

optical flow and pool pixel-wise) within a local sliding window to produce the final temporally consistent output video O.

This can be applied to tasks with or without masked inputs (e.g., inpainting and style transfer, respectively).

terpolated video, we then independently translate frames in

V s with g, yielding Os = {os1, . . . , o
s
N ′} (Section 2.2). Fi-

nally, we aggregate frames in Os over a temporal sliding

window with appropriate stride to produce the frames of

the final output video O (Section 2.3). Additional consider-

ations for masked inputs are discussed in Section 2.4.

2.1. Generating the Interpolated Video

To generate the interpolated video V s, we insert i inter-

polated frames between each pair of frames in V , which

essentially allows us to obtain several perturbed versions

of each input frame for translation. We opt for a vector-

based sampling method for frame interpolation instead of

a kernel-based one1 which, as we justify in Section 2.4,

allows us to handle the case of masked inputs appropri-

ately. Specifically, for each pair of consecutive frames

va and va+1 (a ∈ 1, . . . , N − 1) and intermediate frame

index b ∈ {1, . . . , i}, we predict two warping grids

(F s
a+b′→a, F

s
a+b′→a+1) and a weight map wa+b′ (where

b′ ≡ b+1
i+1 ) with some function wrpgrd (e.g., a pre-trained

DNN), and use them to generate the corresponding interpo-

lated frame vsj (j ∈ {1, . . . , N ′}):

(F s
a+b′→a, F

s
a+b′→a+1, wa+b′) = wrpgrd(va, va+1, b

′) ,
(1)

vsj = (1− wa+b′)⊙ warp(va, F
s
a+b′→a)

+wa+b′ ⊙ warp(va+1, F
s
a+b′→a+1) . (2)

⊙ is an element-wise product; warp(v, F ) bilinearly sam-

ples from v via displacements specified by vector field F .

2.2. Translating the Interpolated Video

At this point, we have computed the interpolated video

V s. We generate the translated interpolated video Os by

1This distinction is discussed in more detail in Reda et al. [26].

simply translating each frame in V s independently:

osj = g(vsj ), j ∈ {1, . . . , N ′} . (3)

Clearly, Os is not temporally consistent. However, we ex-

pect that most spatial regions in this video will exhibit con-

sensus within small temporal windows. For example, a

patch might have a distinct color profile in one frame, but a

common color profile in the other frames in the local tempo-

ral window. Since we have more frames in Os than frames

needed in the output, we can remove the spurious artifacts

of frame-wise translation by mapping several neighboring

frames in Os to one frame in our desired output video O.

We call this mapping temporal aggregation (Section 2.3).

2.3. Temporal Aggregation

We perform temporal aggregation over a sliding win-

dow on the translated interpolated video Os (Figure 3).

The stride is such that the frame in each window’s center,

i.e., the reference frame, corresponds to a frame from the

(non-interpolated) input video V , resulting in N windows.

Within each window, we align the off-center frames, i.e., the

context frames, to the reference frame via optical flow warp-

ing, and then pool the reference and aligned context frames

pixel-wise (e.g., with a mean or median filter) to produce a

final frame in the output video O. Note that we compute the

flow between interpolated, translated frames Os, not the

unprocessed input frames V like prior work [2].

More precisely, for an interpolated frame index j ∈ {1,
1+(i+1), . . . , N ′−(i+1), N ′}, we first estimate the optical

flow between reference frame oj and each context frame in

{osj−dγ , o
s
j−d(γ−1), . . . , o

s
j−d, o

s
j+d, . . . , o

s
j+d(γ−1), o

s
j+dγ}

(denoted F a
j→(∗)), where γ and d respectively parameterize

the number of frames in the sliding window and a temporal

dilation factor. We then warp the context frames to align

them to osj , and afterwards perform pixel-wise pooling over

3082



29.5 30 30.5 31 31.5Time step

Interpolated

+ translated

(    )

Aligned

to reference

(    )

Pixel-wise

pooled

(   )

Figure 3: Temporal aggregation. Context frames from

the translated interpolated video Os are aligned via optical

flow to reference frames associated with integer time steps

(white columns) and then pooled at each pixel location to

generate the final video O. Despite inconsistencies between

aligned frames (e.g., near the arrows), temporal aggregation

selects stable components by majority vote.

osj and the warped context frames:

o′j,k =

{

osj k = 0

warp(osj+dk, F
a
j→j+dk) k 6= 0

, k ∈ {−γ, . . . , γ} ,

(4)

oj = pool
(

o′j,k | k ∈ {−γ, . . . , γ}
)

. (5)

Pooling is applied over values per spatial location, color

channel, and time step; i.e., if P = pool(I1, I2, . . . ), then

P (lh, lw, lc) = f
(

I1(lh, lw, lc), I2(lh, lw, lc), . . .
)

, (6)

where P (lh, lw, lc) and I(lh, lw, lc) denote the value of 3D

image tensors P and I at location (lh, lw, lc), and f is a

mean or median operation. In the cases where the slid-

ing window samples outside the valid frame range, we only

align and pool over valid frames.

To illustrate why HyperCon induces temporal consis-

tency, we visualize intermediate outputs for style transfer in

Figure 3. Even among interpolated frames with similar ap-

pearances, flickering artifacts can occur. By selecting pixel

values by a majority vote over several interpolated frames,

our method automatically incorporates stable components

into the final prediction, thereby reducing flicker.

2.4. HyperCon for Masked Videos

Having described HyperCon in the unmasked input case

in Sections 2.1-2.3, we now extend it to handle tasks in

which the input frames have masked pixels (e.g., inpaint-

ing). This case differs from the unmasked input case in three

ways. First, in addition to the normal RGB video V , we now

have as input a mask video M = {m1, . . . ,mN} in which 1

marks an unmasked pixel and 0 marks a masked pixel. Sec-

ond, when generating the interpolated data, we must cre-

ate an interpolated mask video Ms = {ms
1, . . . ,m

s
N ′} to

accompany the interpolated RGB video V s. Finally, the

image-to-image translation model g now takes a mask as

input in addition to an RGB video frame.

We modify the interpolated video generation step (Sec-

tion 2.1) to produce both V s and Ms; this is done by gen-

erating i interpolated frames between each pair of frames in

V and M . For this to be valid, the motion of the interpo-

lated mask video must match that of the interpolated RGB

video—for example, if we interpolate the motion of a re-

moved person, the mask must cover that person throughout

the interpolated sequence. If this is not handled properly,

we risk polluting the final result with mask placeholder val-

ues. Thus, we opt for a vector-based sampling method for

frame interpolation instead of a kernel-based one, since the

same warping grid can be applied to both RGB and mask

frames to achieve the desired result.

To generate V s, recall that we predict warping grids and

a weight map (F s
a+b′→a, F

s
a+b′→a+1, wa+b′) from frames

in V using Equation 1. To obtain the interpolated masks

Ms, we apply these parameters to the masks in M and fol-

low up with a thresholding operation:

ṁs
j = (1− wa+b′)⊙ warp(ma, F

s
a+b′→a)

+ wa+b′ ⊙ warp(ma+1, F
s
a+b′→a+1) , (7)

ms
j = thresh(ṁs

j , 1) . (8)

Warping the masks in this way allows us to detect the

“partially-masked” pixels in vsj , i.e., the ones that received

a contribution from a masked pixel in either va or va+1.

Specifically, if a pixel in ṁs
j is not 1, then the warping oper-

ation used a source value of 0 from ma or ma+1, which cor-

responds to borrowing from a masked pixel. Thus, thresh-

olding turns partially-masked pixels into fully-masked pix-

els in the interpolated masks so that the subsequent transla-

tion step is not incorrectly influenced by these pixels.

At this point, we have generated the interpolated RGB

and mask videos V s and Ms. We apply the image-to-image

model g to them:

osj = g(vsj ,m
s
j), j ∈ 1, . . . , N ′ , (9)

and then apply temporal aggregation (Section 2.3) as usual.

2.5. HyperCon Implementation Details

For the frame interpolation step, we use Super

SloMo [16] as our wrpgrd function to predict warping grids

and weight masks. This method is well-suited for our ap-

proach since it predicts warping parameters for multiple in-

termediate time steps, contrasting with kernel-based sam-

pling methods that interpolate one frame [22]. To estimate

optical flow in the temporal aggregation step, we use a third-

party implementation of PWC-Net [29]. Since HyperCon

is agnostic to the specific instantiations of frame interpo-

lation and flow estimation, we have chosen state-of-the-art
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models to demonstrate the full potential of our overall ap-

proach. Although we do not fine-tune network weights, we

observe good performance regardless and postulate that per-

formance can be further improved by fine-tuning.

3. Experiments: Video Style Transfer

To demonstrate HyperCon on unmasked inputs, we ap-

ply it to video style transfer. For the frame-wise style trans-

fer subroutine, we use the Fast Style Transfer (FST) models

from Johnson et al. [17] with the pre-trained mosaic and

rain-princess weights from PyTorch’s examples repository.

3.1. Datasets

For evaluation, we use the ActivityNet [3] and

DAVIS [25] video datasets, which primarily consist of dy-

namic indoor and outdoor scenes of animals and people.

We split them into validation and test sets to validate Hy-

perCon hyperparameters and evaluate performance, respec-

tively. For ActivityNet, we manually curate clips from

the official training/validation and test splits (∼100 videos

per split with ∼100 frames per video), filtering by proper-

ties of high-quality videos such as non-negligible motion,

no splash screens, one continuous camera shot, etc. For

DAVIS, we use the official training/validation set for val-

idation, and combine the development and challenge sets

from the DAVIS 2017 and 2019 challenges to produce two

test sets, one for each year. We pre-process all videos by

resizing and center-cropping them to 832×480 resolution,

and scaling RGB values to (-1, 1).

3.2. Evaluation Metrics

For video style transfer, our goal is to transfer the desired

style to all video frames while minimizing flickering effects

(i.e., maximizing temporal consistency) in the output video

as much as possible. To evaluate temporal consistency, we

measure warping error Ewarp [19] and patch-based consis-

tency measures CPSNR and CSSIM [12]. Ewarp is defined as

the mean of ewarp over all consecutive pairs of output frames

(oa, oa+1), where

ewarp(oa, oa+1) =
1

∑

p M
f
a (p)

∑

p

Mf
a (p)‖Da(p)‖

2
2 .

(10)

Here, Da = oa − warp(oa+1, Fa→a+1) (where Fa→a+1

is the estimated flow between input frames va and va+1);

p indexes the pixels in the frame; and Mf
a is a mask that

indicates pixels with reliable flow (1 for reliable, 0 for un-

reliable). Mf
a is computed based on flow consistency and

motion boundaries as defined by Ruder et al. [27]. CPSNR

is defined as the mean of cPSNR over all consecutive pairs

of output frames, where cPSNR is computed by taking a ran-

dom 50×50 patch in frame oa and computing the maximum

d

i c'

Interpolation (Section 2.1) Temporal Aggregation (Section 2.3)

Figure 4: Visualization of the hyperparameters included in

our grid search (Section 3.3).

d1 d3 d5 d7

c'9
c'7
c'5
c'3

i = 1

d1 d3 d5 d7

i = 3

d1 d3 d5 d7

i = 5

d1 d3 d5 d7

i = 7

20

40

d1 d3 d5 d7

i7
i5
i3
i1

c' = 3

d1 d3 d5 d7

c' = 5

d1 d3 d5 d7

c' = 7

d1 d3 d5 d7

c' = 9

0.0025

0.0050

0.0075

Figure 5: Hyperparameter grid search for rain-princess on

the DAVIS train/val set. Row 1: FID (style adherence).

Row 2: Ewarp (temporal consistency). Lower is better.

PSNR between it and all patches in its spatial neighborhood

in the next frame oa+1 (within a Chebyshev distance of 20

pixels). CSSIM is defined similarly to CPSNR, except it com-

putes Structural Similarity [32] in place of PSNR. To quan-

tify how well a method adheres to the intended style, we

measure Frechét Inception Distance (FID) [13] between the

set of all frames generated by frame-wise translation and the

set of all frames generated by the method under evaluation.

3.3. Hyperparameter Analysis

We perform a grid search over our method’s hyperparam-

eters to link them concretely to style adherence and tempo-

ral consistency. These hyperparameters consist of the num-

ber of frames to insert between each pair i, the total number

of interpolated frames to aggregate for each output frame

c′ = 2γ + 1, and the spacing between aggregated interpo-

lated frames d (Figure 4). We quantify each setting’s per-

formance and present their trends in Figure 5.

Lai et al. [19] observe that style adherence and tempo-

ral consistency are competing objectives; our hyperparam-

eter grid search supports this claim. Specifically, FID de-

creases with more interpolated frames, fewer aggregated

frames, and a smaller dilation rate, indicating that style ad-

herence is maximized when HyperCon aggregates over few

frames that are very similar to the reference frame. On the

other hand, Ewarp decreases gradually with more aggregated

frames, and follows the trend of a parabolic cylinder given

fixed c′, i.e., there is a sweet spot for i given fixed d and

vice-versa. The trends of Ewarp suggest that temporal con-

sistency is maximized when many frames are aggregated
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mosaic rain-princess

Dataset Method FID↓ Ewarp
↓ CPSNR

↑ CSSIM
↑ FID↓ Ewarp

↓ CPSNR
↑ CSSIM

↑

DAVIS 2017

FST [17] - 0.024829 ± 0.001174 16.72 ± 1.43 0.5166 ± 0.0152 - 0.013934 ± 0.000903 19.75 ± 1.39 0.6030 ± 0.0156

FST-vcons [19] 24.50 0.010194 ± 0.000500 20.51 ± 1.37 0.5830 ± 0.0140 10.87 0.007071 ± 0.000477 22.73 ± 1.35 0.6717 ± 0.0136

HyperCon (ours) 18.04 0.008810 ± 0.000493 21.04 ± 1.37 0.6662 ± 0.0157 10.53 0.006110 ± 0.000487 23.38 ± 1.35 0.7480 ± 0.0143

DAVIS 2019

FST [17] - 0.029379 ± 0.001684 14.88 ± 0.29 0.4737 ± 0.0184 - 0.017614 ± 0.001309 17.61 ± 0.38 0.5550 ± 0.0189

FST-vcons [19] 24.89 0.011999 ± 0.000672 18.79 ± 0.29 0.5451 ± 0.0169 14.77 0.008938 ± 0.000644 20.86 ± 0.38 0.6365 ± 0.0159

HyperCon (ours) 23.11 0.010677 ± 0.000710 19.20 ± 0.32 0.6105 ± 0.0192 13.59 0.008117 ± 0.000730 21.13 ± 0.43 0.6960 ± 0.0175

ActivityNet

FST [17] - 0.017895 ± 0.000847 19.29 ± 0.81 0.6478 ± 0.0134 - 0.008428 ± 0.000516 23.45 ± 0.81 0.7469 ± 0.0116

FST-vcons [19] 26.37 0.006727 ± 0.000311 22.58 ± 0.38 0.7075 ± 0.0115 9.07 0.003923 ± 0.000240 25.97 ± 0.42 0.8008 ± 0.0093

HyperCon (ours) 10.09 0.005946 ± 0.000298 23.61 ± 0.77 0.7848 ± 0.0102 5.50 0.003379 ± 0.000233 26.95 ± 0.76 0.8544 ± 0.0083

Table 1: Quantitative comparison between frame-wise style transfer (FST) [17], baseline blind video consistency (FST-

vcons) [19], and HyperCon (ours) for style transfer. ↑ and ↓ indicate where higher and lower is better; bold indicates the best

score; and the values after ± are standard error over all videos. FID for FST is blank since this equates to comparing FST to

itself. HyperCon obtains lower FID scores than FST-vcons, indicating greater coherence to the intended style of FST, as well

as better warping errors and patch-based consistency scores, indicating better temporal consistency.

(a) FST [17] (b) FST-vcons [19] (c) HyperCon (ours) (d) FST [17] (e) FST-vcons [19] (f) HyperCon (ours)

Figure 6: Style transfer comparison for mosaic (left) and rain-princess (right) styles. We show one full frame and crops from

three consecutive frames centered at the presented frame. Unlike the baselines, HyperCon draws three consistent lines across

the top of the violin (left), and removes the flickering spot on the truck (right), thus producing temporally consistent results.

over some effective frame rate. Due to the inherent trade-off

between style adherence and temporal consistency, our hy-

perparameter selection process considers the strongest mod-

els in the former criterion and chooses the one that best sat-

isfies the latter; specifically, among the models ranked in the

top 15% by FID, we select the one that minimizes Ewarp.

3.4. Comparison To Prior StateoftheArt

Now we compare HyperCon to frame-wise style transfer

(FST) [17] and a state-of-the-art video consistency method

from Lai et al. (FST-vcons) [19]. For FST-vcons, we first

apply FST to the video, and then apply the consistency

model of Lai et al. as a post-translation step. Note that

FST-vcons must process inputs sequentially, whereas Hy-

perCon can operate on several time steps in parallel due to

its short-range dependencies. Given efficient implementa-

tions of both methods, HyperCon’s parallelizability gives it

an advantage in terms of inference time on long videos.

We provide a quantitative comparison of these methods

in Table 1. Since FST stylizes each frame independently,

it naturally yields the worst temporal consistency as indi-

cated by its relatively poor warping errors and patch-based

consistency scores. Between FST-vcons and our HyperCon

approach, the latter obtains better FID scores, warping er-

rors, and patch-based consistency scores, indicating that it is

more temporally consistent and better captures the intended

style and content compared to FST-vcons.

To ensure that these conclusions match those derived

from human judgements, we devise a survey on Amazon

Mechanical Turk to compare HyperCon and the FST-vcons

baseline on our test videos (Section 3.1). To judge overall

quality, we present subjects with corresponding videos from

each method and ask which is more appealing—the percent-

age of responses that favor our method is 57.3% for the

rain-princess style and 55.5% for the mosaic style. As for

style adherence, we present the two aforementioned videos

alongside the frame-wise translated one from FST, and ask

method is more similar to FST—here, the percentage of re-

sponses that favor our method is 79.1% for rain-princess

and 76.8% for mosaic. Survey design details are included

in the supplementary materials.

In Figure 6, we visually compare FST, FST-vcons, and

HyperCon on two DAVIS 2017 test videos. Naturally, FST

generates temporally inconsistent predictions by operating

on each frame independently: observe the changing ar-

rangement of lines across the top of the violin in Figure 6a,

as well as the flashing red spot in Figure 6d. Meanwhile,

FST-vcons has two systematic failures. First, it greatly de-

saturates predictions, observable across the full frame in

Figure 6b and in the dulled orange and blue hues of the sky

in Figure 6e. Second, it leaves inconsistencies intact as a re-

sult of darkening regions instead of shifting their hue; for in-
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DAVIS 2017 DAVIS 2019 ActivityNet

Method DLPIPS
↓ DVLPIPS

↓ FID↓ VFID↓ Ewarp
↓ DLPIPS

↓ DVLPIPS
↓ FID↓ VFID↓ Ewarp

↓ DLPIPS
↓ DVLPIPS

↓ FID↓ VFID↓ Ewarp
↓

Cxtattn [37] 0.0457 0.5838 20.94 1.435 0.002186 0.0442 0.5575 15.55 1.361 0.002539 0.0432 0.5981 21.5173 1.4417 0.000894

Cxtattn-vcons [19] 0.0480 0.6076 23.23 1.502 0.001780 0.0478 0.5964 18.52 1.490 0.002166 0.0448 0.6067 23.1642 1.4383 0.000689

VINet [18] 0.0616 0.6062 29.24 1.465 0.001882 0.0539 0.5455 18.22 1.195 0.002292 0.0608 0.6139 29.3806 1.3783 0.000678

HyperCon-mean (ours) 0.0450 0.5272 18.49 1.073 0.001540 0.0437 0.5179 16.07 1.274 0.001847 0.0454 0.5728 22.5111 1.2251 0.000640

HyperCon-median (ours) 0.0424 0.5217 17.75 1.074 0.001614 0.0419 0.5089 15.24 1.254 0.001950 0.0441 0.5812 22.2705 1.2601 0.000683

Table 2: Comparison between baseline methods and HyperCon (ours) on the simulated video inpainting task. ↓ indicates

that lower is better. Bold+underline and bold respectively indicate the 1st- and 2nd-place methods. Among the evaluated

methods, the HyperCon models consistently place in the top two across all performance measures.

stance, in Figure 6b, the pattern of lines on the violin match

the inconsistent appearance of FST. HyperCon, on the other

hand, properly addresses both of these challenges—in Fig-

ure 6c, HyperCon maintains a consistent pattern of violin

lines by passing relevant information between frames, and

in Figure 6f, it removes the flashing red spot without desat-

urating the rest of the frame like FST-vcons.

4. Experiments: Video Inpainting

To evaluate HyperCon on masked inputs, we apply it to

video inpainting. For the frame inpainting subroutine, we

re-train the Contextual Attention model from Yu et al. [37]

using a modified training scheme that yields higher-quality

predictions. Specifically, whereas Yu et al. use the WGAN-

GP formulation [11] to update the discriminators of their

adversarial loss, we use the original cross-entropy GAN for-

mulation [10] with spectral normalization layers [21] in the

discriminator, which stabilize GAN training. Our model

achieves a PSNR of 20.41 dB on the Places dataset [42], sur-

passing the original reported performance of 18.91 dB [37]

under the same evaluation setting.

4.1. Datasets

To evaluate video inpainting methods quantitatively,

we automatically synthesize occlusion masks and use the

method under evaluation to inpaint the masked area. As in

prior work [30, 34], our masks take the form of a rectangle

at a fixed location throughout time. For each video, we ran-

domly select the corner locations of the rectangle, restrict-

ing its height and width to lie between 15-50% of the full

frame’s dimensions (the masks are the same for all evalu-

ated methods). We use the same videos for hyperparameter

tuning and evaluation as those described in Section 3.1.

4.2. Evaluation Metrics

The performance measures that we use for inpainting

broadly assess temporal consistency, reconstruction qual-

ity, and realism of the composited frames, i.e., the pre-

dicted frames with unoccluded pixels replaced by those

from the input. We measure temporal consistency using

Ewarp as described in Section 3.2. For reconstruction qual-

ity, we report the mean LPIPS distance (DLPIPS) [40] be-

tween corresponding composited and ground-truth (i.e., un-

occluded) frames. Although traditional quality measures

such as PSNR and SSIM [32] have been used in prior image

inpainting work [37, 20], Zhang et al. [40] have shown that

LPIPS better correlates with human judgment for paired im-

age comparisons. Additionally, to capture spatio-temporal

similarity, we define a new video-based version of LPIPS,

VLPIPS, which is a distance between several layers of

activations from the I3D action recognition network [4].

We exhaustively compute VLPIPS between corresponding

10-frame segments from the composited and ground-truth

videos and report the overall mean. Finally, to evaluate real-

ism, we report FID [13] between the sets of composited and

ground-truth frames, as well as a video variant VFID [31]

between the sets of 10-frame segments from the compos-

ited and ground-truth videos. We compute VFID using the

output of I3D’s final average pooling layer.

4.3. Comparison to Prior StateoftheArt

For inpainting, we consider two variants of our model:

one using a mean filter during temporal aggregation (Sec-

tion 2.3), and the other using a median filter. We com-

pare our models to three state-of-the-art baselines. The first

method, Contextual Attention (Cxtattn), inpaints frames

independently using the model from Yu et al. [37] with

our improved weights (Section 4). The second method,

Cxtattn-vcons, inpaints frame-wise using Cxtattn, then re-

duces flickering with the blind video consistency method of

Lai et al. [19]. The second phase of Cxtattn-vcons takes the

original video and the frame-wise translated video as inputs,

which in this case correspond to the masked video (with a

placeholder value in the masked region) and the frame-wise

inpainted video, respectively. The final method, VINet [18],

is a state-of-the-art DNN specifically designed and trained

for video inpainting; we use their publicly-available in-

ference code in our experiments. Among these methods,

VINet is the only one tasked with inpainting videos at train-

ing time, and thus has an advantage over the other methods

from having observed natural motion in masked videos.

In Table 2, we report quantitative results on our test

videos for the inpainting task. Across the three test sets,

HyperCon-mean obtains the lowest warping error, indicat-

ing that its predictions are most consistent with the mo-

tion of the ground-truth video (since warping error effec-

tively checks against the estimated flow of the ground-truth
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HyperCon

(ours)

Cxtattn

Time

Cxtattn
-vcons

Figure 7: HyperCon substantially reduces flickering com-

pared to the other image-to-video model transfer baselines

Cxtattn and Cxtattn-vcons. Here, the pole appears for just

one frame with the baselines but not with HyperCon.

VINet

HyperCon (ours)

(a) Boundary distortion

VINet

HyperCon (ours)

(b) Texture comparison

Figure 8: Qualitative comparisons between VINet [18] and

HyperCon (ours) for video inpainting. (a) VINet distorts

the boundary of the masked wall, whereas HyperCon suc-

cessfully recovers it. (b) VINet predicts textureless regions

instead of realistic textures; in contrast, HyperCon produces

sensible results due to its better generalization performance.

video). Between HyperCon-mean and HyperCon-median,

the latter generally scores slightly worse in Ewarp but bet-

ter in the reconstruction and realism metrics; we suspect

that the median filter produces sharper predictions that are

more in line with real images, but are harder to match via

optical flow (when computing Ewarp) due to a wider vari-

ety of color intensities. Both HyperCon models generally

outperform Cxtattn and Cxtattn-vcons across the evaluated

datasets and metrics, suggesting that HyperCon is the most

reliable method among image-to-video model transfer tech-

niques. Impressively, HyperCon outperforms VINet by a

substantial margin in all cases except on DAVIS 2019 un-

der VFID despite not having seen a single masked video

at training time; this highlights the potential of transferring

frame-wise models to video.

Next, we provide a qualitative analysis in the con-

text of real-world object removal for DAVIS 2017 train-

ing/validation videos. Comparing our HyperCon method

to Cxtattn and Cxtattn-vcons, we found several cases where

the baseline methods produce flickering artifacts while ours

does not (e.g., the pole in Figure 7). Additionally, due to

the darkening behavior mentioned in Section 3.4, Cxtattn-

vcons generates darkened predictions that do not blend in

with the surrounding region as convincingly as those from

HyperCon. Furthermore, HyperCon produces the fewest

“checkerboard artifacts” [23] since they are temporally un-

stable and thus get filtered out by HyperCon during aggre-

gation. We compare checkerboard artifacts and the darken-

ing behavior in the supplementary materials.

We conclude our analysis by contrasting HyperCon with

VINet [18], the only evaluated method to have seen masked

videos during training. We highlight two systematic failures

of VINet that HyperCon overcomes: (i) boundary distortion

and (ii) textureless prediction. Regarding the first failure,

VINet often corrupts its inpainting result over time by in-

correctly warping the inpainted structure. For example, in

Figure 8a, VINet distorts the outline of the wall due to the

continuous occlusion in that region; meanwhile, HyperCon

successfully hallucinates the rigid wall boundary. As for

the second issue, VINet sometimes initializes the inpainted

region with a textureless prediction and fails to populate it

with realistic texture throughout the video. In Figure 8b,

we compare this behavior with HyperCon, which generates

sensible background textures. We posit that HyperCon is

better able to hallucinate missing details because it has seen

substantially more scenes than VINet during training (i.e.,

millions of images versus thousands of videos).

5. Discussion and Conclusion

In terms of weaknesses, HyperCon does not enforce

long-range temporal dependencies beyond the aggregation

dilation rate, so it cannot commit to stylization or inpainting

choices for the entirety of extremely long videos. In addi-

tion, as with other image-to-video model transfer methods,

HyperCon is subject to egregious errors of the frame-wise

model, which can propagate downstream in certain cases.

Integrating the three steps of HyperCon into one trainable,

parameter-efficient model could help alleviate these issues

by sharing more information between steps and enabling

more input frames per unit of memory. Despite these pit-

falls, HyperCon is still a promising image-to-video model

transfer method for video-to-video translation tasks as seen

by its strength in two widely different tasks. We hope that

it helps pave the way for further progress in this direction.
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