
TrustMAE: A Noise-Resilient Defect Classification Framework using

Memory-Augmented Auto-Encoders with Trust Regions

Daniel Stanley Tan1,2, Yi-Chun Chen2, Trista Pei-Chun Chen2, Wei-Chao Chen2,3

1National Taiwan University of Science and Technology, Taiwan
2Inventec Corporation, Taiwan

3Skywatch Innovation Inc., Taiwan

d10515805@mail.ntust.edu.tw, yichun8447@gmail.com

chen.trista@inventec.com, weichao.chen@skywatch24.com

Abstract

In this paper, we propose a framework called Trust-

MAE to address the problem of product defect classifica-

tion. Instead of relying on defective images that are diffi-

cult to collect and laborious to label, our framework can

accept datasets with unlabeled images. Moreover, unlike

most anomaly detection methods, our approach is robust

against noises, or defective images, in the training dataset.

Our framework uses a memory-augmented auto-encoder

with a sparse memory addressing scheme to avoid over-

generalizing the auto-encoder, and a novel trust-region

memory updating scheme to keep the noises away from

the memory slots. The result is a framework that can re-

construct defect-free images and identify the defective re-

gions using a perceptual distance network. When compared

against various state-of-the-art baselines, our approach

performs competitively under noise-free MVTec datasets.

More importantly, it remains effective at a noise level up

to 40% while significantly outperforming other baselines.

1. Introduction

For manufacturing facilities, product appearance assess-

ment is an essential step in quality assurance. Undetected

defects, such as scratches, bumps, and discolorations, can

result in costly product returns and customer trust loss. To-

day, humans still perform most appearance inspection tasks

because of the difficulty of describing various defects us-

ing traditional computer vision algorithms in the automatic

optical inspection machines (AOIs). However, managing

human inspectors has been a significant management prob-

lem because it is difficult to maintain a consistent inspection

standard across different product lines.

At first, it appears that one could address the problem

with the ever-popular object detector networks [9, 10, 24,

37]. However, these fully-supervised models [21, 30, 31]

require datasets with clearly annotated bounding boxes,

which can be laborious and equally tricky to label with con-

sistency. Additionally, because these methods tend to per-

form poorly for defects not present in the dataset, it can take

an indefinite amount of time to collect sufficient training

data. In many cases, we have experienced months of de-

lays between data collection and model acceptance by the

facilities, which is unacceptable for products with relatively

short life cycles.

Instead of relying on explicitly labeled defects, it is pos-

sible to learn the distribution from normal samples and

treat those deviating too far as defects, thus enabling the

models to detect previously unseen defects [8, 13, 19]. A

popular candidate is an auto-encoder that can erase de-

fects from the input images upon trained with normal im-

ages [3, 15, 25, 27, 44, 46]. However, in practice, the auto-

encoders can become overly general and learn to reconstruct

the defects [12]. In particular, when the surfaces contain lots

of texture [2, 3], the reconstructions can be erratic, leading

to many false-positives.

Also, while the generative approaches do not require de-

tailed labeling of the images, they often assume the input

data are free of defective images. As a result, the algorithms

can become overly sensitive to noise when defective images

accidentally leak into the dataset, which frequently occurs

in many manufacturing facilities. Furthermore, many input

images tend to contain some imperfections, and if we need

to detect these as defects, the percentage of normal images

would undoubtedly drop. Thus, it becomes essential for our

approach to be resilient to data noise, as the defect-free im-

age regions can also be helpful for training purposes.

To address these issues using auto-encoders, we need to

limit the latent space effectively such that it can still re-

construct normal image regions without over-generalizing

to defects. For this purpose, we devise a scheme inspired

276

by MemAE [12] with several significant differences. We

adopt a memory store for the latent space, but during the

update phase, we increase the sparsity such that the updated

information focus only on essential memory slots. Addi-

tionally, we add trust regions, which essentially classify de-

fective latent space samples and avoid noisy samples from

polluting the memory slots. To solve the textured surface

problem, we further employ a perceptually-based distance

approach to effectively separate defects from normal. Fig-

ure 1 illustrates the proposed TrustMAE method. We can

achieve competitive results on the MVTec [2] dataset across

all product types against baselines. Our framework is re-

silient to noise, achieving good performance even when the

training data contain over 40% of defective images. We fur-

ther include an ablation study in the results to demonstrate

the effectiveness of these ideas. Our contributions are as

follows:

• A defect classification framework resilient to noise in

the training dataset,

• A novel sparse memory addressing scheme to avoid

over-generalization of memory slots for the auto-

encoder,

• A memory update scheme using trust regions to avoid

noise contamination, and

• A perceptual-based classification method to effectively

detect defective high-level regions for textured images.

2. Trust Memory Auto-Encoder (TrustMAE)

Given a dataset containing both normal and defective

images, we aim to learn a model to separate normal from

defective images without accessing labels that differentiate

the two. Moreover, by treating small imperfections as de-

fects, we reduce the percentage of defect-free images in the

dataset. Consequently, it would be desirable to utilize both

the normal images and the good image patches within the

defective images to increase the available data for training,

which means the model should be robust against noise (de-

fect images).

Figure 1 shows an overview of our proposed method,

which contains the following three components:

1. A memory-augmented auto-encoder (Section 2.1) with

sparse memory addressing. It stores normal image fea-

tures in a memory bank and reconstructs a normal ver-

sion of the input image from memory. Large differ-

ences between the input and its reconstruction indicate

potential defects.

2. Trust region memory updates (Section 2.2). This up-

date process prevents the memory from storing un-

wanted defect features.

3. Spatial perceptual distance (Section 2.3). It produces

patch-level differences using deep features between

the input image with its reconstructed normal, mak-

ing our methods more robust to slight shifts and color

inaccuracies than shallow pixel-wise distances such as

mean square error.

Next, we describe these components and how they can

increase robustness against data noise.

2.1. MemoryAugmented AutoEncoder

The standard auto-encoder follows an encoder-decoder

structure wherein an encoder E projects the input image

x ∈ R
H×W into a lower-dimensional latent vector z, and

the decoder D produces an output image x̂ ∈ R
H×W which

is a reconstruction of the input image x. To prevent defects

from being reconstructed, we incorporate an external mem-

ory [12, 14] module M that stores a set of normal feature

prototypes during training. We can think of these feature

prototypes as puzzle pieces that the network uses to recon-

struct the input image. At inference time, the set of feature

prototypes are fixed, which makes it harder for the auto-

encoder to reconstruct defects because the memory module

only contains normal features, assuming it was trained on

only normal images.

2.1.1 Reconstructing from Memory

The memory module is implemented as a tensor M ∈
R

M×Z where M denotes the number of memory slots, and

Z denotes the dimensions of the latent vector z. Given an

input image x, we first compute its latent representation

Z = E(x). Note that in our setting, we want to preserve the

spatial information so we designed our encoder to produce a

feature map Z ∈ R
h×w×Z with a lower resolution than the

original input image. For convenience, we use zi ∈ R
Z to

refer to the ith element of Z. Each vector zi in Z represents

features of a patch in the input image. Instead of passing

the features map Z directly to the decoder D, we compute

approximate features ẑi for every zi using a convex combi-

nation of the feature prototypes stored in the memory mod-

ule. Eq. 1 defines the memory addressing operation, where

w is a weight vector indicating how similar z is with each

of the feature prototypes stored in the memory module M.

The decoder then outputs a reconstruction x̂ = D(Ẑ) using

only approximates ẑ derived from the memory entries.

ẑ = wM,

M
∑

i=1

wi = 1 (1)

The weight vector w acts as a soft-addressing mecha-

nism that retrieves the closest feature prototypes from the

memory that are necessary for reconstruction. We measured

277

Upsample

Upsample

⊖
Intermediate

Feature Maps

Intermediate

Feature Maps

SqueezeNet

Reconstructing from Memory

Input

"

#
$

%#

&

Reconstruction

⊕

!""
""

Perceptual Distance to Extract Difference

Distance Map

SqueezeNet

Shared

WeightsInputLearned with

Trust Region

Figure 1: Framework of TrustMAE. Given a defective image, TrustMAE reconstructs a normal version of the input from

memory. Then, it computes the perceptual difference between the input and its reconstruction, generating a distance map

where large errors are indicative of defects.

the similarity between the feature vector z and the mem-

ory items Mi using negative euclidean distance and apply

a softmax function to normalize the weights, as shown in

Eq. 2.

wi =
exp

(

− ‖z −Mi‖2
)

∑M

j=1 exp
(

− ‖z −Mj‖2
)
, i = {1, ...,M}. (2)

2.1.2 Sparse Memory Addressing

Enforcing sparsity in memory addressing forces the model

to approximate the feature vector z using fewer but more

relevant memory items. It effectively prevents the model

from unexpectedly combining several unrelated memory

items to reconstruct defects. Moreover, it implicitly per-

forms memory selection [29], allowing us to save compu-

tation by removing items in the memory that were never

accessed when reconstructing the training data.

Let superscript w(i) denote an ordinal rank indexing of

the elements of w, where w(1) > w(2) > ... > w(M). We

compute a sparse approximation ŵ of the weight vector w

that corresponds to getting the k closest memory items fol-

lowed by a re-nomalization step, as shown in Eq. 3, where

1 is the indicator function that returns a value of 1 if the

condition inside is true and 0 otherwise.

ŵ(i) =
w(i)

1{i ≤ k}
∑

j w
(j)1{j ≤ k}

(3)

Since we are only using a select few memory items for

reconstruction, it is desirable to prevent the model from

learning redundant memory items. Therefore, we impose a

margin between the closest memory item M
(1) and second

closest memory item M
(2) with respect to the input latent

vector z.

Figure 2: Illustration of the trust region memory updates.

Lmargin =
[

‖z −M
(1)‖2 − ‖z −M

(2)‖2 + 1
]

+
(4)

2.2. Trust Region Memory Updates

Without the assumption that the training data set only

contains normal samples, the memory auto-encoder will

treat defective samples as normal and learn to store defect

features into the memory, leading to poor defect detection

performance. We leverage on two key observations to pre-

vent defective samples from contaminating the memory: (1)

Defects are rare and they do not always appear in the same

location, which means that the proportion of defects at the

patch level will be significantly smaller than the proportion

of defects at the image level. (2) Normal data have regu-

larity in appearance, making it easier for the memory auto-

encoder to reconstruct normal as compared to defects dur-

ing the early stages of training. This implies that normal

features are initially mapped closer to the memory items

than defective features.

Based on these insights, we update memory items based

on a specified trust region that pulls the features within the

278

region towards the closest memory item and push the fea-

tures outside the region away from the memory item, as il-

lustrated in Figure 2. More specifically, we split the feature

space based on a distance radius with respect to each mem-

ory item in M, as shown in Eq. 5. Everything within δ1
radius are considered normal features that we want to pull

closer, while everything outside are considered potential de-

fects that we want to push farther. To prevent the model

from pushing the defective features to infinity, we ignore

everything farther than a predefined trust threshold δ2.

r(z,M(1)) =

1 ‖z −M
(1)‖2 ≤ δ1

−1 δ1 < ‖z −M
(1)‖2 ≤ δ2

0 otherwise

(5)

We implement the trust region updates as an additional

loss function defined in Eq. 6, where M(1) denotes the clos-

est memory item in M with respect to z.

Ltrust = r(z,M(1))‖z −M
(1)‖2 (6)

Since patches that are easy to reconstruct tend to to have

smaller distances to the memory slots than patches that are

harder to reconstruct, we require δ1 to be adaptive to each

of these cases. We set δ1 to be the average distances be-

tween memory item Mi with the features zi in the current

batch that retrieves Mi as its closest memory item. Our

main intuition is that, assuming normal features are abun-

dant and are similar to each other, then normal features will

mostly be pulled closer to the memory and only occasion-

ally pushed out, but defect features will always be pushed

out since they would always be farther than the average dis-

tance, thus, preventing contamination of the memory items.

2.2.1 Loss Functions

Following recent works on image synthesis [26], we employ

several loss functions to encourage sharper images: Recon-

struction loss Lrec [26], SSIM loss Lsm [3], VGG feature

loss Lvgg [18], GAN loss LGAN [13], and GAN feature loss

Lfeat [42, 43]. Please refer to the supplementary materials

for more details on these loss functions. The total loss func-

tion is then defined in Eq. 7, where the λ co-efficients are

hyper-parameters that control the relative weighting of each

term. We used similar weightings as [26].

Ltotal = λrecLrec + λsmLsm + λvggLvgg + λGANLGAN

+ λfeatLfeat + λmarginLmargin + λtrustLtrust

(7)

2.3. Spatial Perceptual Distance

The difference between the input and its normal recon-

struction dictates whether it will be considered a defect

or not. Ideally, we want a distance measure that assigns

high scores on defective regions while assigning low scores

on normal regions. Previous approaches [2, 3, 12, 25] use

shallow pixel-wise distances such as mean squared error,

which is sensitive to slight global shifts and small recon-

struction inaccuracies. As a result, they do not work well

when our focus is on texture pattern similarity rather than

exact pixel alignments. Therefore, we use a spatial percep-

tual distance [45] that computes differences on a patch level

using deep features extracted from a pre-trained convolu-

tional neural network. Computing deep features allows us

to incorporate high-level information in measuring distance,

which has been shown to correlate well with human per-

ception [45], making it a more suitable distance measure.

Moreover, operating on a patch level allows us to capture

texture information that are impossible to get from shal-

low pixel-wise distances such as the mean squared error that

only considers pixel intensities.

Let φl(x) ∈ R
Hl×Wl×Cl denote the features extracted

from the lth layer of a convolutional neural network. The

perceptual distance PD(x, x̂) ∈ R
H×W is defined as

PD(x, x̂) =
∑

l

γT
l g

(

φl(x)− φl(x̂)
)2
, (8)

where g is a bilinear up-sampling function that resizes

the feature tensors to H ×W and γl ∈ R
Cl is a weight vec-

tor used to aggregate the channel-wise feature differences at

layer l. Note that, for brevity, we abuse the notation of dot

product to refer to the channel-wise aggregation, which can

be implemented efficiently as a 1×1 convolution. We adopt

the weights of [45] for γl and φ, which were optimized for

the Berkeley Adobe Perceptual Patch Similarity (BAPPS)

dataset.

We define the reconstruction error as a multiplicative

combination of the mean squared error and the percep-

tual distance, which further highlights defective regions and

suppress the non-defective regions.

3. Experimental Results

We demonstrate the effectiveness of our proposed

method on a real-world MVTec [2] dataset consisting of

15 different industrial products. It contains over 70 dif-

ferent types of defects labeled with both defect types and

segmentation masks. We use the original train-test splits to

compare against prior works in a noise-free setting. But for

the noisy setting, we re-sample half of the defect images as

part of our training data since the original training set does

not contain any defective image. The number of normal and

defective images in the new training set are 3629 and 610,

respectively. In the testing set, there are 467 normal images

and 648 defective images.

279

Table 1: Image-based comparison in terms of AUC with several state-of-the-art baselines on the MVTec Dataset. (Best score

in bold and the second best score in bold italic.)

Method mean AUC bo
tt
le

ca
bl

e

ca
ps

ul
e

ca
rp

et

gr
id

ha
ze

ln
ut

le
at

he
r

m
et

al
nu

t

pi
ll

sc
re

w

ti
le

to
ot

hb
ru

sh

tr
an

si
st

or

w
oo

d

zi
pp

er

GeoTrans [11] 67.23 74.40 67.00 61.90 84.10 63.00 41.70 86.90 82.00 78.30 43.70 35.90 81.30 50.00 97.20 61.10

GANomaly [1] 76.15 89.20 73.20 70.80 84.20 74.30 79.40 79.20 74.50 75.70 69.90 78.50 70.00 74.60 65.30 83.40

ARNet [16] 83.93 94.10 68.10 88.30 86.20 78.60 73.50 84.30 87.60 83.20 70.60 85.50 66.70 100 100 92.30

f-Ano-GAN [33] 65.85 91.36 76.37 72.79 56.57 59.63 63.15 62.50 59.70 64.07 50.00 61.34 67.31 77.92 75.00 50.00

MemAE [12] 81.85 86.19 56.65 75.71 74.55 98.91 97.39 95.48 53.12 77.88 83.59 79.11 96.78 71.62 97.11 83.71

TrustMAE-noise free (max) 90.78 96.98 85.06 78.82 97.43 99.08 98.50 95.07 76.10 83.31 82.37 97.29 96.94 87.50 99.82 87.45

TrustMAE-noise free (mean) 88.04 98.57 91.64 79.34 87.40 92.73 93.36 87.33 74.14 92.12 61.94 89.50 90.28 91.71 96.32 94.22

Table 2: Pixel-based comparison in terms of Area Under the Receiver Operating Curve (AUC) with several state-of-the-art

baselines on the MVTec Dataset. (Best score in bold and the second best score in bold italic.)

Method mean AUC bo
tt
le

ca
bl

e

ca
ps

ul
e

ca
rp

et

gr
id

ha
ze

ln
ut

le
at

he
r

m
et

al
nu

t

pi
ll

sc
re

w

ti
le

to
ot

hb
ru

sh

tr
an

si
st

or

w
oo

d

zi
pp

er

AE-L2 [3] 80.40 90.90 73.20 78.60 53.90 96.00 97.60 75.10 88.00 88.50 97.90 47.60 97.10 90.60 63.00 68.00

AE-SSIM [3] 81.83 93.30 79.00 76.90 54.50 96.00 96.60 71.00 88.10 89.50 98.30 49.60 97.30 90.40 64.10 82.80

MemAE [12] 85.74 85.04 71.17 92.95 81.16 95.56 97.15 92.91 78.99 93.25 95.57 70.76 94.77 66.73 85.44 84.65

Towards Visually Explaining [22] 86.07 87.00 90.00 74.00 78.00 73.00 98.00 95.00 94.00 83.00 97.00 80.00 94.00 93.00 77.00 78.00

CNN Feature Dictionary [23] 78.07 78.00 79.00 84.00 72.00 59.00 72.00 87.00 82.00 68.00 87.00 93.00 77.00 66.00 91.00 76.00

AnoGAN [34] 74.27 86.00 78.00 84.00 54.00 58.00 87.00 64.00 76.00 87.00 80.00 50.00 90.00 80.00 62.00 78.00

AE-SSIM Grad [6] 86.38 95.10 85.90 88.40 77.40 98.00 96.60 60.20 92.00 92.70 92.50 62.60 98.40 93.40 73.80 88.70

γ-VAE Grad [6] 88.77 93.10 88.00 91.70 72.70 97.90 98.80 89.70 91.40 93.50 97.20 58.10 98.30 93.10 80.90 87.10

AE-L2 Grad [6] 88.77 91.60 86.40 95.20 73.40 98.10 98.40 92.10 89.90 91.20 98.00 57.50 98.30 92.10 80.50 88.90

VAE Grad [6] 89.29 92.20 91.00 91.70 73.50 96.10 97.60 92.50 90.70 93.00 94.50 65.40 98.50 91.90 83.80 86.90

TrustMAE-noise free 93.94 93.39 92.85 87.42 98.53 97.45 98.51 98.05 91.76 89.90 97.63 82.48 98.10 92.72 92.62 97.76

3.1. Implementation Details

We train our model on unlabeled training data for 100

epochs using Adam optimizer with a learning rate of 0.0001
for the generator and 0.0004 for the discriminator. We

set the batch size to 16, the number of memory slots to

M = 64, and the latent dimension Z = 512. As shown

by Gong et al. [12], the number of memory slots M have

little effect in performance as long as it is large enough.

Based on trial and error, using top k = 3 memory slots

work well. We set δ1 to be the mean distances between the

features and memory item and δ2 = 20. As we show in

Section 3.6, the performance of the model is robust to the

setting of δ2. We adopt a symmetric architecture for our

encoder-decoder networks with three residual blocks in the

bottleneck layer on both the encoder and decoder networks.

We use five down-sampling layers in the encoder, except

on grid, screw, pill, and capsule where we only use three

down-sampling layers. We defer the discussion on this de-

sign choice to Section 3.7. Following previous works, we

evaluate the models using the area under the receiver oper-

ating characteristic curve (AUC).

3.2. Varying Noise Levels

We conduct experiments for defect classification on in-

creasing noise levels by introducing more defects into the

training data. For defect classification, we need to define a

single defect score for an input image to indicate the likeli-

hood of it being defective. We define our defect score as the

spatial pooling of the reconstruction errors computed with

the perceptual distance. Since there are limited number of

defective images, we reduced the number of normal data

instead to match the desired noise percentage for experi-

ments with higher noise (defect) level (30% - 40%). Fig-

ure 4 shows defect classification results at varying noise

levels. For auto-encoders trained using mean squared er-

ror (AE-MSE) and SSIM (AE-SSIM), their performance

significantly drop as we increase the noise levels. Auto-

encoders are sensitive to noise since defect information can

be directly passed from the encoder to the decoder, thus,

280

Figure 3: Visual comparison of defect segmentation results with state-of-the-art baselines. Ground-truth is represented by

the red contour, and predicted defect segmentation is represented by the green overlay.

0 5 10 15 20 25 30 35 40
Noise level (%)

70

75

80

85

90

95

M
ea

n
A

U
C

 (%
)

Ours
MemAE
AE-SSIM
AE-MSE

Figure 4: Comparison with baselines at different noise per-

centages.

easily reconstructing defects. MemAE [12] also does not

perform well, because without enough sparsity and filtering

mechanism, it could still memorize and reconstruct defects.

Building on top of MemAE, our model enhances the noise

robustness of the memory through our trust region memory

updates, and uses a more suitable perceptual distance, thus,

improving the overall performance, even at high noise lev-

els.

3.3. Comparison with Baselines

To better compare with prior works, we report the per-

formance of our model using spatial max pooling and mean

pooling of the reconstruction errors as our defect score,

which are the two most common pooling methods. We use

the original train-test splits and train our model on only nor-

mal data (noise-free) to maintain a fair comparison. Table

1 shows our defect classification performance measured in

terms of image level AUC in comparison with several re-

cent works on defect detection [1,11,12,16,33]. Our model

with max pooling achieves the best AUC score on majority

of the classes as well as the best mean AUC overall.

We analyzed the classes with lower performance (e.g.

metal nut, pill, screw, and capsule), and observed that the

model have difficulties modeling large variations in the

normal data due to large rotations or randomly appearing

prints. This is because the sparse memory addressing com-

bined with the trust region memory updates restricts the

variations that the memory can capture. Note that we can

improve the performance by adding a warping module to

align the data but it is outside the scope of this paper.

We also compared against prior works in the defect

segmentation setting, which is evaluated using pixel-level

AUC. To get a segmentation map, we can directly impose

a threshold on the reconstruction errors. Table 2 shows our

defect segmentation performance in comparison with sev-

eral recent works on defect segmentation [3, 5, 6, 12, 19, 22,

23, 34]. We can observe that our method consistently per-

forms competitively across all classes, achieving the best

mean AUC among all the baselines.

We also show visual results on defect segmentation in

Figure 3. Our model is able to capture a more complete

segmentation of the defects as compared with the baselines,

especially on textured objects. This is due to our spatial per-

ceptual distance that can better measure texture similarity as

opposed to shallow distance metrics that the baselines used.

3.4. Ablation Study

We conduct an ablation study to evaluate how each of our

design choices affect the performance of the model. Figure

5 shows the defect classification results in terms of mean

AUC across all classes at varying noise levels.

Trust Region Memory Updates. In the low noise

regime (5% − 10% noise levels), we can observe similar

281

5 10 15 20 25 30 35 40
Noise level (%)

75

80

85

90

95

100

M
ea

n
A

U
C

(%
)

Ours
Ours w/o TR
Ours w/o PD
Ours w/o SP
Ours w/o PD w/o TR

Figure 5: Ablation studies of our model trained with differ-

ent levels of noisy data.

Normal w/o TR w/ TR Defective w/o TR w/ TR

Figure 6: When the model is trained without trust region

(TR), it could hallucinate defects when reconstructing from

either normal data (left) or defective (right) data when train-

ing data are polluted with noises.

performance between the models with and without trust re-

gion memory updates (TR). However, the performance gap

starts to widen as the noise levels increase. We observe that

at higher noise levels, there are more chances for the mem-

ory slots to be contaminated with defective features. This

causes the model to hallucinate defects (as shown in Fig-

ure 6 left) or reconstruct defects well (as shown in Figure

6 right), leading to poorer performance. Our proposed trust

region memory updates (TR) makes the memory more ro-

bust to defect contamination, leading to better normal re-

constructions, thus, better defect detection performance.

Perceptual Distance. Without the perceptual distance,

we can observe a significant drop in performance across all

noise levels. As we show in Figure 7, shallow pixel-wise

distances, such as MSE, are inadequate for defect detection

since they produce lots of noise across the whole image due

to slight shifts and differences in textures between the in-

put image and its reconstruction, leading to an increased

number of false positives. Structural similarity index mea-

sure (SSIM) accounts for patch information but it normal-

izes distances independently for each patch, which makes

it hard to separate defects since the error values are close

to each other. Moreover, SSIM only accounts for the low

Figure 7: Visual comparison of the spatial perceptual dis-

tance (PD) with commonly used distance metrics such as

mean squared error (MSE), and structural similarity index

measure (SSIM).

Figure 8: Memory Access with and without sparse address-

ing.

order statistics (means and covariances) of patch intensi-

ties, which are inadequate for defects that have very similar

patch statistics with normal images such as the tile and car-

pet example shown in the bottom two rows of Figure 7. In

contrast, we use deep features to compute the differences,

allowing us to capture textures and other high level infor-

mation. We can observe that the perceptual distance assigns

noticeably higher values on defective regions and lower val-

ues on normal regions, making defects more pronounced

and easier to separate.

3.5. Memory Access Patterns

We visualize memory access patterns with and without

sparse addressing in Figure 8 for a single item zi (left), and

aggregated access frequencies across all the data (right).

Without any restriction, the model tends to spread the in-

formation across all memory slots. This is because using

282

0 5 10 15 20 25 30 35 40
Trust Threshold 2

75

80

85

90

95

100
A

U
C

(%
)

Figure 9: Effect of varying the trust threshold δ2.

more memory slots gives more flexibility for reconstruc-

tion. This in itself is not detrimental if the model is trained

on only normal data. However, if the training data con-

tains defective images then defect features will also spread

to all the memory slots, making it harder to remove them.

This is reflected in the model’s poorer performance without

sparse addressing (SP), as shown in Figure 5. In contrast,

sparse memory addressing forces the model to rely only a

few memory slots. As a consequence, defect features can

only affect a few memory slots, making it easier to prevent

the memory from being contaminated with defect features.

3.6. Effect of Trust Threshold δ2

Figure 9 shows the results of varying δ2 on cable at 30%

noise level. We can observe that the model is quite robust

in the range δ2 = [15, 40], achieving approximately 88%

AUC. Setting δ2 = 0 is equivalent to ignoring everything

outside the trust region, which performs worse since there

is nothing encouraging the model to map defect features far

from the memory items. We also tried removing δ2, but the

model becomes unstable since it will just keep pushing the

feature vectors to infinity.

3.7. Effect of DownSampling Layers

The number of down-sampling layers control the recep-

tive field, and thus, the patch size that the memory slots op-

erate on. More down-sampling corresponds to larger patch

sizes, and vice versa. We observe that using fewer down-

sampling achieves better results for classes that have many

small details that greatly vary across different instances (e.g.

grid, screw, pill, and capsule). This is because the mem-

ory combined with the trust region updates has the effect

of limiting the variations of patch features that the memory

can store. Without enough variations captured by the mem-

ory slots, it becomes difficult for the network to reconstruct

varying small details accurately using limited set of large

patch features.

4. Related Works

Techniques for defect detection can be broadly grouped

into: classification-based [11,24,32,35,36], detection-based

[10, 37], segmentation-based [7, 10, 17, 20, 28, 38–40], and

reconstruction-based [3, 5, 6, 23, 25, 34, 41, 46].

Our method belongs to the reconstruction-based, which

relies on auto-encoders trained on normal data to recon-

struct an image that is close to the normal data. It then clas-

sifies defects based on their reconstruction error. Schlegl

et al. [34] and Chen et al. [4] combined auto-encoders with

generative adversarial networks (GAN) [13] to better model

the distribution of normal images. Likewise, Akcay et al.

[1] used a conditional GAN and computed defect scores us-

ing the discriminator. Schlegl et al. [33] detected defects

by combining discriminator feature error and image recon-

struction error.

To prevent the model from reconstructing defects, Hasel-

mann et al. [15] cropped out holes and inferred the pixels in

the hole. Gong et al. [12] augmented auto-encoders with

memory and reconstructs inputs based on features stored in

its memory. Ye et al. [16] restored original data by forcing

the network to learn high-level feature embeddings of se-

lected attributes. While existing approaches work well un-

der the assumption that training data only contains normal

samples, they tend to perform poorer when training data are

polluted with noise, which common in reality. We propose

trust region memory updates to further increase model’s re-

sistance to pollution in training data.

Other than modeling normal images, different ways to

compute distances are also gaining focus. Several works

[2,3,12,25] used shallow pixel-wise distances such as MSE.

However, they are sensitive to slight shifts, making it unsuit-

able for texture similarity. Bergmann et al. [3] used SSIM,

while Liu et al. [22] used gradient attention maps computed

from image embeddings to segment defects. In contrast,

we propose to use spatial perceptual distance that computes

patch-wise differences of deep features.

5. Conclusion

We presented TrustMAE, a noise-resilient and unsuper-

vised framework for product defect detection. It addresses

the common defect data collection problem using unlabeled

images while enabling a mixture of defective images within

the training dataset. Our framework compares favorably to

state-of-the-art baselines, and we showed the effectiveness

of its components via an extensive ablation study.

We believe the noise-resilience property is a novel and

useful one because the normal-defective classification of the

training images can change according to practical applica-

tion requirements. While most anomaly detection frame-

works require noise-free datasets, we hope to gain more in-

sights into these methods and create a noise-robust frame-

work that performs well across all product classes soon.

283

References

[1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P

Breckon. Ganomaly: Semi-supervised anomaly detection

via adversarial training. In Asian Conference on Computer

Vision, pages 622–637. Springer, 2018.

[2] Paul Bergmann, Michael Fauser, David Sattlegger, and

Carsten Steger. Mvtec ad–a comprehensive real-world

dataset for unsupervised anomaly detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9592–9600, 2019.

[3] Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattleg-

ger, and Carsten Steger. Improving unsupervised defect seg-

mentation by applying structural similarity to autoencoders.

In Proceedings of the 14th International Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory

and Applications (VISIGRAPP), pages 372–380, 2019.

[4] Xiaoran Chen and Ender Konukoglu. Unsupervised de-

tection of lesions in brain mri using constrained adversar-

ial auto-encoders. In International Conference on Medical

Imaging with Deep Learning, MIDL 2018, 4-6 July 2018,

Amsterdam, Netherlands, 2018.

[5] Bin Dai and David Wipf. Diagnosing and enhancing vae

models. arXiv preprint arXiv:1903.05789, 2019.

[6] David Dehaene, Oriel Frigo, Sébastien Combrexelle, and

Pierre Eline. Iterative energy-based projection on a nor-

mal data manifold for anomaly localization. arXiv preprint

arXiv:2002.03734, 2020.

[7] Xinghui Dong, Chris J Taylor, and Tim F Cootes. Small

defect detection using convolutional neural network features

and random forests. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 0–0, 2018.

[8] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex

Lamb, Martı́n Arjovsky, Olivier Mastropietro, and Aaron C.

Courville. Adversarially learned inference. In 5th Interna-

tional Conference on Learning Representations, ICLR 2017,

Toulon, France, April 24-26, 2017, Conference Track Pro-

ceedings, 2017.

[9] Max Ferguson, Ronay Ak, Yung-Tsun Tina Lee, and Kin-

cho H Law. Automatic localization of casting defects with

convolutional neural networks. In 2017 IEEE International

Conference on Big Data (Big Data), pages 1726–1735.

IEEE, 2017.

[10] Max K Ferguson, Ak Ronay, Yung-Tsun Tina Lee, and Kin-

cho H Law. Detection and segmentation of manufactur-

ing defects with convolutional neural networks and transfer

learning. Smart and sustainable manufacturing systems, 2,

2018.

[11] Izhak Golan and Ran El-Yaniv. Deep anomaly detection us-

ing geometric transformations. In Advances in Neural Infor-

mation Processing Systems, pages 9758–9769, 2018.

[12] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha,

Moussa Reda Mansour, Svetha Venkatesh, and Anton

van den Hengel. Memorizing normality to detect anomaly:

Memory-augmented deep autoencoder for unsupervised

anomaly detection. arXiv preprint arXiv:1904.02639, 2019.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014.

[14] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing

machines. arXiv preprint arXiv:1410.5401, 2014.

[15] Matthias Haselmann, Dieter P Gruber, and Paul Tabatabai.

Anomaly detection using deep learning based image com-

pletion. In 2018 17th IEEE International Conference on

Machine Learning and Applications (ICMLA), pages 1237–

1242. IEEE, 2018.

[16] Chaoqin Huang, Fei Ye, Jinkun Cao, Maosen Li, Ya

Zhang, and Cewu Lu. Attribute Restoration Framework for

Anomaly Detection. arXiv e-prints, page arXiv:1911.10676,

Nov. 2019.

[17] Yibin Huang, Congying Qiu, Yue Guo, Xiaonan Wang, and

Kui Yuan. Surface defect saliency of magnetic tile. In 2018

IEEE 14th International Conference on Automation Science

and Engineering (CASE), pages 612–617. IEEE, 2018.

[18] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European conference on computer vision, pages 694–711.

Springer, 2016.

[19] Diederik P. Kingma and Max Welling. Auto-encoding vari-

ational bayes. In 2nd International Conference on Learning

Representations, ICLR 2014, Banff, AB, Canada, April 14-

16, 2014, Conference Track Proceedings, 2014.

[20] Jie Lei, Xin Gao, Zunlei Feng, Huamou Qiu, and Min-

gli Song. Scale insensitive and focus driven mobile screen

defect detection in industry. Neurocomputing, 294:72–81,

2018.

[21] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016.

[22] Wenqian Liu, Runze Li, Meng Zheng, Srikrishna Karanam,

Ziyan Wu, Bir Bhanu, Richard J Radke, and Octavia Camps.

Towards visually explaining variational autoencoders. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 8642–8651, 2020.

[23] Paolo Napoletano, Flavio Piccoli, and Raimondo Schettini.

Anomaly detection in nanofibrous materials by cnn-based

self-similarity. Sensors, 18(1):209, 2018.

[24] Vidhya Natarajan, Tzu-Yi Hung, Sriram Vaikundam, and

Liang-Tien Chia. Convolutional networks for voting-based

anomaly classification in metal surface inspection. In 2017

IEEE International Conference on Industrial Technology

(ICIT), pages 986–991. IEEE, 2017.

[25] Duc Tam Nguyen, Zhongyu Lou, Michael Klar, and Thomas

Brox. Anomaly detection with multiple-hypotheses predic-

tions. In International Conference on Machine Learning,

pages 4800–4809, 2019.

[26] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019.

[27] Yongzhi Qu, Miao He, Jason Deutsch, and David He. De-

tection of pitting in gears using a deep sparse autoencoder.

Applied Sciences, 7(5):515, 2017.

284

[28] Domen Racki, Dejan Tomazevic, and Danijel Skocaj. A

compact convolutional neural network for textured surface

anomaly detection. In 2018 IEEE Winter Conference on Ap-

plications of Computer Vision (WACV), pages 1331–1339.

IEEE, 2018.

[29] Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley,

Andrew W Senior, Gregory Wayne, Alex Graves, and Tim-

othy Lillicrap. Scaling memory-augmented neural networks

with sparse reads and writes. In Advances in Neural Infor-

mation Processing Systems, pages 3621–3629, 2016.

[30] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.

[32] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas

Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Em-

manuel Müller, and Marius Kloft. Deep one-class classifi-

cation. In International Conference on Machine Learning,

pages 4393–4402, 2018.

[33] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein,

Georg Langs, and Ursula Schmidt-Erfurth. f-anogan: Fast

unsupervised anomaly detection with generative adversarial

networks. Medical image analysis, 54:30–44, 2019.

[34] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein,

Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised

anomaly detection with generative adversarial networks to

guide marker discovery. In International Conference on In-

formation Processing in Medical Imaging, pages 146–157.

Springer, 2017.

[35] Bernhard Schölkopf, Robert C Williamson, Alex J Smola,

John Shawe-Taylor, and John C Platt. Support vector method

for novelty detection. In Advances in neural information pro-

cessing systems, pages 582–588, 2000.

[36] Benjamin Staar, Michael Lütjen, and Michael Freitag.

Anomaly detection with convolutional neural networks for

industrial surface inspection. Procedia CIRP, 79:484–489,

2019.

[37] Xiaohong Sun, Jinan Gu, Rui Huang, Rong Zou, and Ben-

jamin Giron Palomares. Surface defects recognition of wheel

hub based on improved faster r-cnn. Electronics, 8(5):481,

2019.

[38] Domen Tabernik, Samo Šela, Jure Skvarč, and Danijel

Skočaj. Segmentation-based deep-learning approach for

surface-defect detection. Journal of Intelligent Manufactur-

ing, pages 1–18, 2019.

[39] Daniel Stanley Tan, Robert Neil Leong, Ann Franchesca La-

guna, Courtney Anne Ngo, Angelyn Lao, Divina Amalin,

and Dionisio Alvindia. A framework for measuring infec-

tion level on cacao pods. In 2016 IEEE Region 10 Sympo-

sium (TENSYMP), pages 384–389. IEEE, 2016.

[40] Daniel Stanley Tan, Robert Neil Leong, Ann Franchesca La-

guna, Courtney Anne Ngo, Angelyn Lao, Divina M Amalin,

and Dionisio G Alvindia. Autodidac: Automated tool for dis-

ease detection and assessment for cacao black pod rot. Crop

Protection, 103:98–102, 2018.

[41] Xian Tao, Dapeng Zhang, Wenzhi Ma, Xilong Liu, and De

Xu. Automatic metallic surface defect detection and recog-

nition with convolutional neural networks. Applied Sciences,

8(9):1575, 2018.

[42] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 8798–8807, 2018.

[43] Xiangyu Xu, Deqing Sun, Jinshan Pan, Yujin Zhang,

Hanspeter Pfister, and Ming-Hsuan Yang. Learning to super-

resolve blurry face and text images. In Proceedings of the

IEEE International Conference on Computer Vision, pages

251–260, 2017.

[44] Yong-Ho Yoo, Ue-Hwan Kim, and Jong-Hwan Kim. Convo-

lutional recurrent reconstructive network for spatiotemporal

anomaly detection in solder paste inspection. arXiv preprint

arXiv:1908.08204, 2019.

[45] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 586–595, 2018.

[46] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cris-

tian Lumezanu, Daeki Cho, and Haifeng Chen. Deep autoen-

coding gaussian mixture model for unsupervised anomaly

detection. In International Conference on Learning Repre-

sentations, 2018.

285

