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Abstract

Existing visual navigation approaches leverage classifi-

cation neural networks to extract global features from vi-

sual data for navigation. However, these networks are not

originally designed for navigation tasks. Thus, the neural

architectures might not be suitable to capture scene con-

tents. Fortunately, neural architecture search (NAS) brings

a hope to solve this problem. In this paper, we propose an

Auto-Navigator to customize a specialized network for vi-

sual navigation. However, as navigation tasks mainly rely

on reinforcement learning (RL) rewards in training, such

weak supervision is insufficiently indicative for NAS to op-

timize visual perception network. Thus, we introduce imita-

tion learning (IL) with optimal paths to optimize navigation

policies while selecting an optimal architecture. As Auto-

Navigator can obtain a direct supervision in every step,

such guidance greatly facilitates architecture search. In

particular, we initialize our Auto-Navigator with a learn-

able distribution over the search space of visual perception

architecture, and then optimize the distribution with IL su-

pervision. Afterwards, we employ an RL reward function to

fine-tune our Auto-Navigator to improve the generalization

ability of our model. Extensive experiments demonstrate

that our Auto-Navigator outperforms baseline methods on

Gibson and Matterport3D without significantly increasing

network parameters.

1. Introduction

Visual navigation aims to enable an autonomous agent

to navigate through an environment based on sequentially

observed images [14, 44, 41, 11, 46, 26]. An agent needs

to understand the visual observation, memorize the previ-

ous trajectory, and deduce appropriate actions. According

to the objective of visual navigation, we categorize naviga-

tion methods into three groups: (i) PointGoal, the agent is

asked to navigate to a specific point. (ii) ObjectGoal, the

agent searches a specific object in a scene. A target object

is either specified by a language description or an image.
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Figure 1: Illustration of our Auto-Navigator framework. We

pre-define a search space of our visual perception network,

where the candidate network blocks are parameterized by

a probabilistic distribution. We optimize the parameterized

distribution of the search space following two steps alterna-

tively: (i) we first optimize the parameterized distribution

of candidates under the supervision of IL and then sample a

candidate from the distribution. (ii) this sampled candidate

takes visual signals of the current state (green point) as in-

put to predict an action (e.g., turn right) directing to the goal

(orange point). Then, our navigation network is updated by

minimizing the IL loss.

(iii) AreaGoal, the agent is asked to move to a specific area,

such as “foyer”. In this paper, we mainly focus on Point-

Goal navigation tasks without losing generalization to other

navigation tasks.

Previous visual navigation works leverage hand-crafted

visual encoder architectures to extract global features and

then feed the extracted features to a navigation policy net-

work. However, these visual encoder architectures are orig-

inally designed for image classification but visual naviga-

tion. Even after fine-tuning, those networks may not be op-

timal to capture scene contents for visual navigation due to

different scales and complexity of scenes. This poses a chal-
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lenge to designing a deep visual perception network that is

capable of extracting informative clues from observations.

Due to the vast space of architecture choices in terms of

the network depth, width and resolution, it is very difficult

to manually decide an optimal perception network for nav-

igation. Inspired by the advantages of network architecture

search (NAS) techniques, we therefore intend to design a

representative perception network for visual navigation in a

data-driven fashion.

A straightforward solution is to apply existing neural ar-

chitecture search (NAS) algorithms to a visual perception

network. As RL rewards are mainly used to train a navi-

gation policy network, we also firstly employ RL rewards

as our supervision in searching our visual encoder architec-

ture. However, we observed that such RL rewards are not

suitable for NAS to search visual encoder architectures, and

the navigation networks fail to converge in training. This is

mainly because the changes of feature representations from

our visual encoder significantly affect the internal states of

the policy network, and it is hard to find a stable point where

the perception network changes do not affect the internal

states dramatically.

In this paper, we propose an Auto-Navigator to fully ex-

plore visual information from observations by optimizing

a visual perception network architecture and introduce a

newly developed multi-stage training strategy. We firstly

define a parameterized distribution on the candidate archi-

tectures of our perception network and then introduce im-

itation learning (IL) as step-wise supervision for NAS to

search an optimal architecture. This allows the supervi-

sion signal to impact on the visual network more directly

without rolling through a recurrent neural networks based

navigation policy network. The IL loss will be propagated

to update the distribution of our visual encoder candidates.

Then, we sample a candidate with respect to the parame-

terized distribution and then use the new architecture for

navigation. IL loss in the next iteration will be used to opti-

mize our navigation policy network. We conduct candidate

selection and weight optimization in an alternating manner.

To improve the generalization ability of our Auto-

Navigator, we employ RL rewards to fine-tune our naviga-

tion network in the second stage. To be specific, we select

the optimal architecture with the highest probability from

the parameterized distribution. Then, we only fine-tune the

policy network via RL to avoid that our navigation policy

might overfit to a specific scene.

Overall, our contributions can be summarized as follows:

• Our Auto-Navigator is the first attempt to automate the

design for a visual navigation agent.

• We proposed an architecture searching schedule tailed

to visual navigation by optimizing the parameterized

architecture of a visual perception network and a pol-

icy network in an alternating fashion.

• Our method achieves superior performance in compar-

ison to our baseline methods, thus demonstrating the

effectiveness of our NAS to visual navigation tasks.

2. Related Work

Visual Navigation has a long history and is growing

sensationally recently. For decades of research, a classical

pipeline for navigation consists of building the map, locat-

ing an agent over the map via feature matching [24, 45, 38],

and designing an optimal path based on the map. Mapping

and locating are jointly viewed as the simultaneous localiza-

tion and mapping (SLAM) problem [4, 10, 13]. Path plan-

ning has also been identified as an individual sub-task[18].

Recent learning-based navigation methods, in opposi-

tion to the classical pipeline, have received great atten-

tion. As representation learning and RL algorithms de-

velop [14, 29, 15, 25, 46, 41], navigation methods have been

boosted greatly. Several methods [14, 29] explore the se-

mantic cues of environments via representation learning for

navigation. Additionally, Mirowski et al. [27] employ an

auxiliary depth prediction task to capture spatial geomet-

ric cues and Asynchronous Actor-Critic Agents (A3C) [28]

to learn navigation policies. Beyond learning visual repre-

sentations from RGB images, researchers also develop al-

gorithms to learn scene structure information from RGB-D

images [36, 29]. Du et al. [9] integrate object relationships

and design a specialized memory-augmented tentative pol-

icy network for object navigation tasks.

Imitation learning allows an agent to take human expert

trajectories or the shortest paths as supervision [29, 15]. Be-

havioral cloning (BC) [2] as a popular IL-based method has

been widely adopted in navigation tasks to sample the short-

est trajectory as ground-truth. It is used to initialize a net-

work as a warm-up procedure, and then RL is employed

to train a navigation policy network [46, 27, 26]. A self-

adaptive visual navigation method [41] has been proposed

to learn how to adapt to an unseen environment from in-

teractions via meta-learning [12, 23, 22]. Ma et al. [25]

present a system that allows an agent to learn when to back-

track. However, previous works pay little attention to the

design of network architectures suitable for visual naviga-

tion tasks.

Neural Architecture Search aims to construct neural

network architectures automatically. To improve heavily

hand-crafted network design [17, 37, 16], many NAS al-

gorithms have been proposed to maximize the validation

accuracy [33, 32, 21, 6, 20, 7, 39]. The search strategy con-

sists of random search, Bayesian optimization, evolution-

ary methods, RL, and gradient-based methods. Preceding

works [21, 47, 48, 8, 3, 30, 42] focus on searching the archi-

tectures on proxy classification tasks and extend the found
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CNN architecture for large scale image recognition chal-

lenges. Zoph et al. [47, 48] employ NAS to search neural

architectures via RL rewards for image classification prob-

lems, while Real et al. [33] employ evolutionary algorithms

to optimize neural architectures. Liu et al. [21] sample ar-

chitectures from the parametric distribution and iteratively

optimize weight parameters and the learnable distribution.

Cai et al. [5] directly search architectures on large-scale

datasets by random sampling one single path from candi-

date paths. Quan et al. [31] incorporate the structure in-

formation of input images to search a specifically designed

reID architecture. Li et al. [19] develop a lightweight seg-

mentation head via NAS with the resource-aware constraint.

As the visual navigation task involves visual perception and

navigation policy components, how to use NAS with RL

rewards in this task still remains unknown.

3. Methodology

Preliminary. We formulate PointGoal navigation as a

partially observable Markov decision process (POMDP). At

the timestamp t, the policy network receives an observation

ot (e.g., RGB or RGB-D image) and outputs an action at.

The agent takes this action, which causes the environment

to transition to the next state st+1. Afterwards, the agent

receives a reward rt. During training the agent, we try to

maximize the cumulative rewards over an episode.

The reward function is specified according the task. In

this paper, we use the following reward rt [34, 14]:

rt =

{
θ + dt−1 − dt + λ, if reach the goal,

dt−1 − dt + λ, otherwise,
(1)

where dt is the geodesic distance to point target at times-

tamp t. θ is a constant reward activated when the agent

reaches the target goal. λ is a time penalty. Let π denote

a stochastic policy. We formulate the cumulative reward as

η(π) =
∑T

t=1
γt−1rt , where γ is the discount factor. Pre-

vailing methods utilize proximal policy optimization (PPO)

[35] to optimize the policy network.

3.1. Auto­Navigator Framework

Auto-Navigator framework, seen in Figure 1, is the first

attempt to automate the design of navigation agent. Specif-

ically, we (1) design the search space of the perception

modules, (2) initialize a parametric distribution A over the

search space, (3) alternately optimize the parameters of the

distribution and the weights of all policy networks ω, (4)

derive the final perception module α∗ from the parametric

distribution. We formulate this procedure as follows:

α∗ = argmin
α∈A

Lval(α, ωα), (2)

s.t. ωα = argmin
ω

Ltrain(α, ω), (3)

where Ltrain(·) is the objective function using the training

set and Lval(.) is the loss function with the validation set.

Both training and validation set are from the original train-

ing set, and we split it for our searching algorithm. We up-

date the parameters of the distribution over the search space

ωα with the validation split. The policy network is opti-

mized with the training split.

We separate the agent into two concise parts: perception

module f and policy decoder π. The perception module f

extracts visual features f(ot), which encode the observa-

tion ot. We initialize the agent with a learnable distribu-

tion over the search space of the perception module. The

policy module π takes f(ot) as input and predicts the prob-

ability of each action at. Followed by SplitNet [14], we

employ a one-layer GRU as our final policy network. To

obtain better generalization in unseen environments, we op-

timize the neural architecture followed by Eq. (3) and em-

ploy a three-stage training pipeline. Stage1: pre-training

the perception module f via auxiliary tasks (see details in

Sec. 3.2). Stage2: pre-training the policy module π with

fixed f using behavioral cloning. Stage3: fine-tuning the

policy module π with fixed f using PPO. We perform our

searching methods when we update the policy module in

the second stage. However, the agent consists of perception

module and policy network , which is different from the

CNN-based architectures in other vision tasks. Moreover,

the objective functions are dynamic during the multi-stage

training. These issues cause conventional NAS methods un-

suitable in our task.

The classical gradient-based methods (e.g.,

DARTS [21]) have to face this problem of dynamic

objectives for multi-stage training. Inspired by the idea

of separating visual representation learning and naviga-

tion policy learning, we tailor our searching strategy via

decoupling A and ω. Denote ωf as the weights of the

perception module, and ωπ as the weights of the policy

module. We search the optimal perception module and

optimize the policy alternately to solve the above issue.

The perception representation ensembles feature selection

to guarantee navigation performance although the objective

functions are dynamically changed. We visualize our

complete pipeline in Figure 2 and we update ωf , A and ωπ

independently. However, it is impractical to directly search

the architecture via gradient-based methods due to high

memory consumption for visual navigation tasks. During

training ωf , we only select one path from all candidate

nodes in one neural block by uniformly sampling, and

we update A through sampling two paths as if other

competitive paths do not exist.

In the following sections, we first introduce the widely

used visual representations in Sec. 3.2 to be self-contained

and then describe the search algorithm as well as search

space in Sec. 3.3.
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(a)  auto-navigator training pipeline (b)  cell level search space 
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Figure 2: Left: The training pipeline of Auto-Navigator. We display four searchable cell structures as perception module

and ignore pooling layers in this figure. Given the extracted features from the autoencoder, the policy network is optimized

by the objective functions. For improving the generalization of the agent, we propose a three-stage training strategy. We

first improve the visual representation via training with auxiliary tasks. Next, we search for the architectures of perception

modules and train the policy network via behavioral cloning. In the third stage, we finetune the policy network via PPO. The

forward pass and the gradient back-propagation can be represented as the grey lines and the orange lines. The blue lines are

depicted for updating the policy network, and the purple arrows are depicted for optimizing the learnable distribution over

the search space. Right: The search space we designed. α is the learnable distribution in our experiments.

3.2. Visual Representations

Representation learning has demonstrated the efficiency

of the pre-training method and speeds up the convergence

of training. We train one encoder-decoder network with su-

pervised auxiliary tasks, which share the weights ωf . This

feature f(ot) is used as input for different visual decoders

with auxiliary tasks and is also viewed as input for the nav-

igation policy network.

To extract better geometric information, we leverage

depth prediction, surface normals prediction, image recon-

struction, egomotion prediction and feature prediction as

auxiliary tasks. The respective decoders are denoted as D,

S , R, E , P . The corresponding objective functions are

shown below:

LD =
1

|V |

∑

V

∥∥D(f(ot))− d̄t
∥∥
1
, (4)

LS = 1−
∑

V

S(f(ot)) · ϕt

‖S(f(ot))‖2 ∗ ‖ϕt‖2
, (5)

LR =
1

|V |

∑

V

‖R(f(ot))− ot‖1 , (6)

where V stands for existing pixel points, and |V | defines

the total number of pixel points. d̄t, ϕt are corresponding

ground truth. We apply l1 loss for depth and reconstruction

and cosine loss for surface normals.

LE = −
∑

a∈A

p(at = a) log(E(f(ot), f(ot−1))), (7)

where at is the real action viewed as ground truth for the

motion decoder, and we train the decoder with the cross-

entropy loss.

LP = 1−
∑

features

P(f(ot−1), at) · f(ot)

‖P(f(ot−1), at)‖2 ∗ ‖f(ot)‖2
, (8)

where at is one-hot encoding of the action and f(ot−1) is

previous feature.

Our overall objective function can be formulated as fol-

lows:

L = λDLD + λSLS + λRLR + λELE + λPLP , (9)

where λD, λS , λR, λE , λP stand for controllable weights

of the corresponding loss.

Different from the classical neural network, we build a

search space that contains all candidate nodes. GPU mem-

ory is limited if we directly train this network. Therefore,

we randomly sample only one path for optimizing every it-

eration via uniformly sampling. We formulate the optimiza-

tion for ωf as

ωf = argminEi∼U [L(αi, ωf (αi))], (10)
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Algorithm 1: Auto-Navigator

Input : the whole original training set

the auxiliary training set

randomly initialized A, ωf and ωπ

Pre-train:

Update ωf by optimizing Eq. (10) with the auxiliary

training set.

Behavioral cloning:

Split the original training set into two disjoint sets

DT and DV

Fix the perception module weights ωf while not

converged do
1. Update A by optimizing Eq. (12)

2. Update ωπ by optimizing Eq. (13)

end

Derive the final agent α∗ from A

where U is a uniform distribution, and αi represents the

probability from the learnable distribution, which reflects

the ranking of architecture.

As stated in SplitNet, representation learning is non-

trivial for navigation tasks. It is even more challenging in

our Auto-Navigator, because we need to learn the weights

of all candidate agents over the search space. To reduce

memory footprint, we only optimize the weights over the

sampled agent at each iteration.

3.3. Path Sampling Search Algorithm

As illustrated in our Algorithm 1, the agent inherits the

perception module weights ωf from representation learn-

ing. The searching stage and training policy decoder are

decoupled as two alternate steps to avoid joint optimiza-

tion. The original training dataset is also separated into two

parts: the training set DT for training policy decoder and

the validation set, DV for searching architectures. To main-

tain navigation performance, we freeze the weights from the

perception module during both the searching and the train-

ing stages.

During the searching stage, the perception module could

be treated as one graph with N nodes, which are the se-

quence of N operations in a cell (e.g., convolution, max

pooling, identity, zero). The parameters of the distribution

A over the search space reflect the probabilities of the con-

nection between these nodes. we introduce a learnable vec-

tor βi ∈ A, where i is the sequential index. For example,

if βi is equal to zero, it means that the operation ōi discon-

nects with the previous node. A natural solution is to re-

lax the discrete choice of operation into a continuous search

space by applying softmax to architecture vectors {βi}
N
i=1,

and the normalized vector values could be viewed as the

probabilities of searching for different operations:

m(x) =

N∑

i=1

expβi∑
q expβq

gi(x) s.t. gi ∈ F , (11)

where the final output m is viewed as the weighted sum of

different candidate features through various operations, x is

the input and q is the index for different nodes.

However, the cost of memory is still unaffordable during

searching. To alleviate this problem, we first sample two

candidate paths according to the multinormal distribution

that is calculated by softmax, as shown in Eq. (11), where

we set N = 2. Benefiting from the sampling strategy, the

searching procedure reduces memory footprint from N to 2.

We ignore other nodes that are not selected. The optimiza-

tion for the parameters of the distribution A process could

be expressed as minimizing the following expectation:

Eα∼A[Lval(α, ωf , ωπ)], (12)

where A indicates the parametric distribution.

During training policy decoder alternately, we sample

a single path by uniformly sampling while we freeze ωf ,

which is identical with the sampling strategy for representa-

tion learning. The same strategy guarantees the adaption be-

tween different stages and reduces N − 1 times GPU mem-

ory than the previous search approaches(e.g., DARTS [21]).

Therefore, we can expand our search space with the con-

sumption cost, which is the same as one classical convolu-

tional architecture. This optimization could be formulated

as minimizing the following expectation:

Eα∼U [Ltrain(α, ωf , ωπ)], (13)

where U is uniform distribution over all candidate agents.

The original training pipeline consists of multiple stages,

where the objective dramatically changes. Behavioral

cloning viewed the shortest path as ground truth, which for-

mulates navigation into one supervised classification task.

We utilize the reward based on the geodesic distance to the

goal, as mentioned in Eq.(1) during PPO. In consideration

of the policy decoder optimized with half of the whole train-

ing set, we concern about the agent would learn more bias

about the environment via PPO. During the searching pe-

riod, we propose behavioral cloning to update the architec-

ture vectors. At the end of searching, we select the best

operation with the highest probability:

opi = argmax
gi∈F

βi, (14)

where all {opi} consist the agent α.

A complete training process includes a pre-training stage

with auxiliary tasks and two alternative searching stages via

behavioral cloning. To achieve better performance during
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searching, we learn the decoder with the split training set

DT . After we discover the best architecture of the agent,

we re-train it with a three-stage training protocol, which is

referred to Sec. 3.1.

Our baseline neural network is one simple 7-layers neu-

ral architecture consists of convolution, group normaliza-

tion, ELU, and max pooling. We define one cell-level

search space that covers the primary network and repeats

multiple times to construct the whole structure.

We apply two different search spaces. One con-

tains five operations, called Auto-Navigator-S (Small):

• 1× 1 conv

• 3×3 max pooling

• 3× 3 conv

• 7× 7 conv

• 5× 5 conv

Another one, Auto-Navigator-L (Large), contains nine

operations, where more prevalent layer types are added:

• 3× 3 max pooling

• 3× 3 sepconv (expansion 3)

• 7× 7 sepconv (expansion 3)

• 5× 5 sepconv (expansion 6)

• identity

• 1× 1 conv

• 5× 5 sepconv (expansion 3)

• 3× 3 sepconv (expansion 6)

• 7× 7 sepconv (expansion 6)

4. Experiments

We conduct experiments on the Habitat scene renderer

[34] of Matterport 3D (referred to as MP3D) and Gibson to

evaluate Auto-Navigator.

4.1. Experiment Setup

Datasets. We validate the effectiveness of our proposed

method on three popular benchmarks. Habitat [34] is a new

platform for training agents in different 3D simulated envi-

ronments. Based on the platform, we evaluated our naviga-

tion models constructed automatically on two point-to-point

navigation datasets. Gibson provides real-world perception

for active robots. We follow the same training/val/test split

strategy as the previous works [34]. To be specific, Gibson

has 72 training scenes with 4.9 million episodes and 994

unseen episodes for testing. MP3D is a large-scale indoor

scene dataset. There are 5 million training episodes and 495

episodes in the validation set. The validation set is unknown

to a navigation policy model during training.

During moving the environment, an agent could access

the static target point with a noiseless GPS sensor and a

camera sensor. The action space includes moving forward

by 0.25 meters, turning left by 10 degrees and turning right

by 10 degrees. The discrete action “stop” is disregarded be-

cause the action “stop” tends to terminate an agent earlier to

avoid further penality in training. An agent will stop when

the agent reaches a position within 0.2 meters away from

the target point or walks more than 500 steps during one

episode.

Searching details. We utilize the structure of SplitNet

with the hand-crafted backbone as our baseline. SplitNet

consists of four convolutional layers with group normaliza-

tion layers [43] and three pooling layers. We adopt the same

policy model, which consists of a one-layer GRU and lin-

ear layers. There are two formulations for the search space:

Auto-Navigator-S and Auto-Navigator-L. Auto-Navigator-

S has four searched cells with five different nodes, which

includes 625 architecture candidates. Auto-Navigator-L

searches for a 7-layer structure, which has nine operations

in a cell and 4.8 × 106 cell architectures. Both search

spaces employ group normalization layers, and the number

of groups is set to eight. For a fair comparison, we compare

SplitNet [14] with its provided training strategy and net-

work configuration with our navigation algorithm. SplitNet

is also referred to as “baseline” in our results.

Training details. Before searching, we utilize the above

objective function, as mentioned in Sec. 3.2 to optimize

the perception network. The training dataset and ground-

truth target points are provided as the same as SplitNet. We

sample one candidate architecture every iteration and ignore

other existing nodes. We input an image of size 256 × 256
pixels on Gibson and use an Adam optimizer with a learn-

ing rate of 0.0005. The whole training requires 200 epochs,

and the batch size is set to 32.

During searching, the gradient will not back-propagate

to the perception module. We introduce behavioral cloning

to learn the architecture vectors and optimize the policy

module. Similar to training SplitNet, we utilize Adam with

a learning rate of 0.00025 and momentum β = (0.5, 0.999).
The number of training steps is 100M in our experiments.

Habitat provides the baseline with 50M training steps,

which are scaled to 100M in SplitNet. Their experimen-

tal results demonstrate using longer training steps is able to

achieve better performance. Therefore, we apply the same

training steps, and thus it is fair to compare our method with

SplitNet. We select the highest probability nodes for our vi-

sual perception network.

To attain stronger generalization of our navigation net-

work, we apply the PPO algorithm to our policy network

initialized weights via behavioral cloning. The reward, as

mentioned in Eq. (1), aims to decrease the geodesic distance

between the target coordinate and the agent, which assists in

avoiding over-fitting the supervised trajectory from behav-

ioral cloning and increases the generalization in unseen test

scenes. The training configuration is the same as the behav-

ioral cloning stage. Additionally, we set a discount factor

to 0.99 and the Generalized Advantage Estimation (GAE)

parameter to 0.95. The weight decay in both stages is set to

0.001. There are 16 workers collecting 128 images in paral-

lel and then we train our agent with four epochs with batch

size 1.
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Figure 3: Comparisons for different agents on Gibson validation set. Visualization for the same episode, where the blue dot

is the starting point and the red dot is the ending point. The line with many color variations reflects the number of steps in

one episode.

4.2. Evaluation Metrics

Success rate is one primary evaluation metric for vi-

sual navigation. In one episode, it is considered as success

when the agent stops within 0.2m geodesic distance from

the endpoint. On the contrary, the episode fails after the

agent walks 500 steps and is still far from the target point.

We calculate the ratio of success in all validation episodes,

called success rate (success).

SPL is the “Success weighted by Path Length” metric

[1], defined as:

SPL =
1

Ñ

Ñ∑

i=1

S̃i

li

max(pi, li)
, (15)

where S̃i represents a binary success indicator for episode

i, pi is the path length for our agent, and li is the shortest

distance between our current position and the target point.

This metric estimates the efficient of a navigation agent, and

if a trajectory is close to the optimal one the SPL will be

close to 1.0.

4.3. Navigation Results

In this section, we report the experimental results about

Gibson and MP3D. In Table 1, we compare both searched

architectures with SplitNet. We adjust different training

strategies, including behavioral cloning and PPO. As shown

in the table, both architectures outperform SplitNet via BC

or PPO. Our best model (Auto-Navigator-S) via PPO im-

proves the performance of SPL by 5.57%. Another agent

also outperforms the performance by 6.25%.

In Table 2, we experiment with different search spaces

repeatedly. We show that the architectures from the same

search space perform general enough on Gibson. For Auto-

Navigator-S, the second running agent outperforms SPL by

0.25% but introduces more FLOPs and parameters. For

Auto-Navigator-L, another agent outperforms the perfor-

mance by 1.4% and reduce half of the FLOPs.

To better understand the generalization for our searched

architecture, we plot mean SPL on the validation set with

different training steps, shown as the top of Figure 4.

Through this figure, we notice the searched architectures

outperform our baseline by a wide margin. We also com-

pare mean SPL with different starting geodesic distances at

the bottom of Figure 4. We can view it more complicated

with farther geodesic distance. All agents perform worse

with faraway geodesic distance, but our agents perform a

stronger generalization of complicated episodes.

We analyze the performance on MP3D in Table 3. Auto-

Navigator-S achieves 52.74% SPL, which is surpassed by

51.70% SPL with 100 million training steps. We also re-

port the result with other state-of-the-art modules. DD-PPO

[40] utilizes RGB images and depth as input, whereas our

approach only takes images as input.

Compared with other state-of-the-art models, as shown

in Table 4, we achieve the best agent with the SPL of

76.35% and the success rate of 84.91% on the Gibson

validation dataset. We notice that DD-PPO uses SE-

ResNeXt101 as backbone and the training time is 250 times

larger than ours.

4.4. Discussion

We notice one unusual situation that the success rate de-

creases, but SPL increases while the agent is optimized via

PPO. It means that the agent performs a shorter path tra-

jectory but fails in some episodes, which succeed in the be-

havioral cloning stage. The reward in PPO tends to decrease

the geodesic distance. The agent may go round in the wrong

room, which is close to the target point. Due to rare difficult

episodes, the imbalance of the episodes may lead the agent
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Figure 4: Top: Validation SPL during 100 million train-

ing steps with different architectures. Bottom: Mean SPL

vs. starting geodesic distance on the Gibson dataset. We

compare our approaches with SplitNet. We report mean

SPL with different starting geodesic distances in unseen

episodes. Both architectures perform better than our base-

line, especially for difficult episodes

Method BC PPO FLOPs Params SPL (%) Success (%)

Auto-Navigator-S ✓ 474.94M 0.39M 60.65 91.65

Auto-Navigator-L ✓ 898.56M 0.59M 59.60 89.84

Auto-Navigator-S ✓ ✓ 474.94M 0.39M 75.67 85.81

Auto-Navigator-L ✓ ✓ 898.56M 0.59M 76.35 84.91

Random [14] - - 4.60 2.80

SplitNet [14] ✓ 208.57M 0.25M 58.40 86.50

SplitNet [14] ✓ ✓ 208.57M 0.25M 70.10 85.50

Table 1: Gibson validation set results with different Auto-

Navigator models. BC: behavioral cloning.

Method FLOPs Params SPL (%) Success (%)

Baseline 208.57M 0.25M 56.96 85.92

Auto-Navigator-S (run 1) 474.94M 0.39M 60.65 91.65

Auto-Navigator-S (run 2) 676.27M 0.63M 60.90 92.35

Auto-Navigator-S (run 3) 537.72M 1.02M 60.57 91.95

Auto-Navigator-S (run 4) 235.47M 0.23M 57.57 87.82

Auto-Navigator-L (run 1) 898.56M 0.59M 59.60 89.84

Auto-Navigator-L (run 2) † 368.63M 0.57M 61.01 91.85

Table 2: The effect of different search spaces on Gibson.

All models are trained in the same training strategy. We

analyze the effect of different architectures via behavioral

cloning with 100 million steps. †: training with 64 million

steps.

Method FLOPs Params SPL (%) Success (%)

Baseline 208.57M 0.25M 51.22 80.81

Auto-Navigator-S † 1112.47M 1.65M 54.30 85.05

Random [14] - - 1.10 1.60

SplitNet [14] 208.57M 0.25M 51.70 80.80

Table 3: MP3D validation set results. We experiment with

Auto-Navigator-S and optimize the agent through behav-

ioral cloning. †: training with 80 million steps.

to the local optimum.

Method RGB RGBD SPL (%) Success (%)

Habitat [34] ✓ 46.00 64.00

Habitat [34] ✓ 70.00 80.00

SplitNet [14] ✓ 70.10 85.50

DD-PPO [40] ✓ 96.90 -

Auto-Navigator-S ✓ 75.67 85.81

Auto-Navigator-L ✓ 76.35 84.91

Table 4: Comparisons with state-of-the-art navigation

model on Gibson validation set. RGB: inputs only include

RGB images. RGBD: using RGB images and depth maps.

During searching, we expect the larger search space

could assist in the improvement of our performance. Un-

fortunately, both search spaces perform similar results on

Gibson and MP3D. In Figure 4, we notice there exists

the probability of improving the performance via enlarging

training steps. Moreover, the curve for Auto-Navigator-L

is not smooth enough due to the hyper-parameter setting.

We could achieve better performance by expanding training

steps and adjusting the configuration.

5. Conclusion

In this paper, we have proposed Auto-Navigator to au-

tomate the agent design for visual navigation. In order to

solve the difficulty of training with weak supervision in RL,

we introduce imitation learning to provide step-wise guid-

ance as ground truth. Our derivations imply that a multi-

stage training strategy is essential for improving the perfor-

mance of our agent. We incorporate the multi-stage train-

ing strategy to our search algorithm in an alternating fash-

ion. The induced searching method is both efficient and

effective. Benefiting from our NAS method and the train-

ing strategy, our Auto-Navigator achieves superior perfor-

mance on two widely-used benchmarks compared to our

baseline methods while restricting our navigation model to

be relatively small. This also makes our proposed naviga-

tion method more practical.
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