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Abstract

In recent years, correlation filter based trackers (CF track-

ers) have attracted much attention from the vision community

because of their top performance in both localization accu-

racy and efficiency. The society of visual tracking, however,

still needs to deal with the following difficulty on CF track-

ers: avoiding or eliminating the boundary effect completely,

in the meantime, exploiting non-linear kernels and running

efficiently. In this paper, we propose a fast kernelized cor-

relation filter without boundary effect (nBEKCF) to solve

this problem. To avoid the boundary effect thoroughly, a

set of real and dense patches is sampled through the tradi-

tional sliding window and used as the training samples to

train nBEKCF to fit a Gaussian response map. Non-linear

kernels can be applied naturally in nBEKCF due to its dif-

ferent theoretical foundation from the existing CF trackers’.

To achieve the fast training and detection, a set of cyclic

bases is introduced to construct the filter. Two algorithms,

ACSII and CCIM, are developed to significantly accelerate

the calculation of kernel correlation matrices. ACSII and

CCIM fully exploit the density of training samples and cyclic

structure of bases, and totally run in space domain. The

efficiency of CCIM exceeds that of the FFT counterpart re-

markably in our task. Extensive experiments on six public

datasets, OTB-2013, OTB-2015, NfS, VOT2018, GOT10k,

and TrackingNet, show that compared to the CF trackers

designed to relax the boundary effect, BACF and SRDCF,

our nBEKCF achieves higher localization accuracy without

tricks, in the meanwhile, runs at higher FPS.

1. Introduction

Visual tracking is one of the fundamental problems in

computer vision with many applications. Despite significant

progress in recent years [22, 19, 18, 20, 25, 21], visual track-
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ing is still a challenge [41] due to some severe interferences

(e.g. large appearance changes, occlusions, background clut-

ters and fast motion), very limited training samples, and the

requirement of low computational cost. In tracking task,

it is crucial to construct a robust appearance model from

very limited samples to distinguish a target from distractive

background, while maintaining high efficiencies.
Since 2010, correlation filter based trackers (CF trackers)

have been achieving a great success [5, 13, 9, 32, 10, 16,
7, 4, 33, 31, 44]. Almost all CF trackers learn their filters
with cyclic samples to regress Gaussian response maps, and
their training and detection are accelerated with the convo-
lution theorem and fast Fourier transform (FFT). Bolme et
al. [5] proposed the Minimum Output Sum of Squared Er-
ror (MOSSE) for very high speed tracking on gray-scale
sequences. They used base image patches and all their cycli-
cal shifts to train the appearance model directly in Fourier
domain. Henriques et al. [14] reformulated MOSSE as a
ridge regression problem in space domain, being able to ap-
ply multi-channel features and non-linear kernels naturally
to improve the localization accuracy. In their CF tracker,
kernelized correlation filter (KCF), the regression function
and its optimization problem are expressed as

f(X) =

m−1
∑

s=0

n−1
∑

t=0

αs,tκ(X,Xs,t) (1)

and
min
α

‖Kα− y‖22 + λα
⊤
Kα, (2)

respectively, where X and Xs,t’s are cyclic sample, and

K is the kernel matrix with κ(Xu,v,Xs,t) as its elements,

{Xu,v} ≡ {Xs,t} ≡ XKCF, XKCF is the set of cyclic samples.

Compared to MOSSE, KCF achieves a much higher accuracy

on OTB-2013 [40] when exploiting HOG feature [6] and

Gaussian kernel, meanwhile, it is still able to run at a high

speed. However, the use of FFT produces the cyclicity of

samples which leads to the problem of boundary effect [17]

in MOSSE, KCF, and many CF trackers [32, 27, 29, 35,

43, 33]. As shown in Fig. 1a, the boundary effect means

that almost all training and detection samples are unreal and

synthesized by cyclically shifting base samples, and these

unreal samples are still supposed to represent those real ones
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Figure 1: (a) Comparison of sampling methods in KCF [14] (the first row), BACF [16] (the second row), fdKCF* [44] and

our nBEKCF (the last row). Training samples of KCF come from all possible cyclic shifts of a base sample (i.e., the central

patch), and they are all virtual except for the base one. So do those of SRDCF [9] and ECO [7]. BACF obtains its training

samples of target size (cyan boxes) by clipping the middle parts of all training samples of KCF, therefore, some of them

are virtual. Different from KCF and BACF, in fdKCF* and our nBEKCF, the training samples of target size (red boxes) are

densely sampled from the learning region X with the traditional sliding window, and they are all real. We call such sampling

method as real and dense sampling. (b) Illustrations of a training set X and a set Z of cyclic bases in nBEKCF. Xu,v’s are

sampled from X by using the real and dense sampling method. The elements, Zs,t’s, of Z are pre-defined and totally cyclic.

Z is constructed by all possible cyclic shifts of the target patch (i.e., the central red box on the last row of (a)) in X, although

theoretically it is not necessary to use target patches to generate Zs,t’s. Note that both the density of X and the cyclicity of Z
are crucial to the high efficiency of our nBEKCF.

at different translational shifts in training and localization.1

As for the training of KCF, all training samples, except

for a real base sample, i.e., X0,0, are unreal in Problem

(2). In practice, the boundary effect dramatically reduces

the discriminative power of appearance models and greatly

degrades the localization accuracy which MOSSE and KCF

could have achieved.

In order to relax the boundary effect to improve localiza-

tion accuracy of the KCF with linear kernel, Galoogahi et

al. [16] and Danelljan et al. [9] proposed the background-

aware correlation filter (BACF) and spatially regularized

discriminative correlation filter (SRDCF), respectively. In

BACF, a rectangular mask is introduced into the error item

of Problem (2) to cover the cyclic samples, and then the alter-

nating direction method of multipliers (ADMM) is employed

to solve the optimization problem with equality constraints.

Although the boundary effect can be reduced greatly by in-

troducing the mask, it cannot be eliminated completely in

BACF, as pointed out in [17] and [39]. In SRDCF, a smooth

spatial regularization factor is introduced into the regularizer

of Problem (2) to penalize the filter coefficients depending

on their spatial locations. The regularization factor acts re-

ally similarly to the mask of BACF in practice [39], being

not able to eliminate the boundary effect thoroughly. On the

1Readers may refer to the 4th paragraph of Sec.1 in [17] for other details.

other hand, due to the ways they relax the boundary effect,

SRDCF and BACF cannot run in high efficiencies when em-

ploying the powerful high-dimensional features. Although it

has been shown that trackers can improve their accuracies

by large margins with non-linear kernels [45], SRDCF and

BACF are also unable to exploit the non-linear kernels to im-

prove their localization accuracy because the window shape

is unknown in the non-linear kernel space, despite the fact

that it is known in an image or filter with linear kernel.

fdKCF* [44] is another try to avoid boundary effects of

KCF. It optimizes the regression model of KCF in space

domain, eliminates almost all repeated calculations, and then

uses GPU to accelerate the remaining ones. But, fdKCF*

has to resort to GPU to run in super-real-time even if low

dimensional hand-crafted features are employed.

According to the above, it is seen that there still exists the

following problem for CF trackers: avoiding or eliminating

the boundary effect completely, and in the meantime, ex-

ploiting non-linear kernels and running in a high efficiency.

In fact, the efficiencies of MOSSE and KCF totally rely

on the boundary effect. Therefore, the efforts of BACF and

SRDCF to reduce the boundary effect on the theoretical foun-

dation of KCF is bound to weaken their efficiencies seriously.

Moreover, as a side-effect, BACF and SRDCF’s efforts to

reduce the boundary effect inhibit them from applying non-

linear kernels to improve their accuracies. According to this
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analysis, we believe that a totally novel theoretical founda-

tion other than that of KCF is necessary to develop a novel

type of correlation filter to address the above problem.

Now that both the efficiency and the boundary effect of

KCF is from the cyclicity of XKCF, if {Xu,v} and {Xs,t} are

treated as two different sets, i.e., treat {Xu,v} as a training

set and {Xs,t} as a base set, the cyclicity of {Xu,v} is can-

celled, i.e., all Xu,v’s are real, and the cyclicity of {Xx,t}
is kept, then the boundary effect of KCF disappears and

the efficient calculation is still able to achieved. According

to this idea, in this paper, we propose a novel type of CF

tracker, a fast kernelized correlation filter without boundary

effect (nBEKCF), which is totally different from KCF in

theory, to solve the above problem. As shown in Fig.1a,

unlike most existing CF trackers which exploit both real

and synthetic patches generated from a base image patch as

training samples to train their filters with FFT, our nBEKCF

draws a set of training samples by using the real and dense

sampling method to fit a Gaussian response map, avoiding

the boundary effect thoroughly. To train the filter and locate

the target object efficiently, a set of cyclic bases is intro-

duced and exploited without FFT. Specifically, a set of basis

functions, {κ(·,Zs,t)}, is generated with a set of pre-defined

cyclic bases Z = {Zs,t}, and our filter is formulated with

this basis function set, i.e., f(·;Zs,t) =
∑

s,t αs,tκ(·,Zs,t).
Training set X consists of real Xu,v’s which are densely

sampled from learning region X in a pixel-wise way. Fig.1b

illustrates training sets X and Z . Then, filter f(·;Zs,t) re-

gresses training set X = {Xu,v} to a Gaussian response

map. Note that the non-linear kernels can be applied nat-

urally in f(·;Zs,t). In order to treat multiple frames and

update the filter efficiently, the modeling scheme over mul-

tiple frames [11, 33] is adapted to nBEKCF. It is worth

noticing that X 6= Z and only Z is cyclic in nBEKCF, but

X ≡ Z ≡ XKCF and XKCF is cyclic in KCF.

It is found that the key to improve the efficiency of train-

ing and detection is the quick calculation of kernel correla-

tion matrices in nBEKCF. Therefore, we develop two non-

FFT based algorithms, autocorrelation with squared integral

image (ACSII) and cyclic correlation with integral matrix

(CCIM), to significantly accelerate the calculation by fully

exploiting the density of X and cyclic structure of Z . In

our approach, a kernel correlation matrix is constructed with

κ(, ), Z and X . By exploiting a great deal of overlap among

densely sampled Xu,v’s, ACSII calculates the autocorrela-

tion efficiently. By exploiting both the density of Xu,v’s and

the cyclicity of Zs,t’s, CCIM is remarkably more efficient

than that of FFT in calculating the correlation in our task.

Consequently, the regression problem is solved efficiently

in space domain, rather than by means of frequency domain,

in nBEKCF. It is X 6= Z and all elements of X being real

that make nBEKCF free from the boundary effect, and it is

X 6= Z and the cyclicity of X that make nBEKCF locate

the target object really efficiently.

Our nBEKCF is tested on six public datasets, OTB-2013,

OTB-2015, NfS, VOT2018, GOT10k, and TrackingNet. The

experimental results show that nBEKCF achieves state-of-

the-art accuracy, and compared to the trackers designed to

relax the boundary effect, BACF and SRDCF, our nBEKCF

with hand-crafted features, HOG and CN, obtains higher

localization accuracy without tricks and is able to run at

higher FPS (50 on average).

2. Kernelized Correlation Filter without

Boundary Effect (nBEKCF)

In this section, we will first introduce our novel nBEKCF

with a single frame, then extend it to the historical frames,

and finally present how to locate the target object with n-

BEKCF in the current frame.

2.1. nBEKCF with Single Frame

Let Z ∈ R
m×n×D be the D-channel feature map of

the base patch. In our current implementation, the base

patch is the target object patch. The set of cyclic bases,

Z = {Zs,t}m−1,n−1
s=0,t=0 , is generated by

Zs,t (d) = Ps
mZ (d)Qt

n, (3)

where d = 0, . . . , D− 1, Z (d) is the d-th channel of Z, Pm

and Qn are the m×m and n×n permutation matrices [12],
respectively,

Pm =

[

0⊤

m−1 1

Im−1 0m−1

]

, Qn =

[

0n−1 In−1

1 0⊤

n−1

]

,

where 0l−1 is the (l − 1) × 1 zero vector, Il−1 is the

(l − 1) × (l − 1) identity matrix, l ∈ {m,n}, and Pρ
m and

Qρ
n are the ρ-th power of Pm and Qn, respectively. Note

that Z0,0(d) = Z(d). Intuitively, Pρ
mZ(d) cyclically shifts

Z(d)’s rows down by ρ rows and Z(d)Qρ
n cyclically shifts

Z(d)’s columns right by ρ columns, when ρ > 0.2 There-

fore, Z0,0 = Z, and Z consists of all possible cyclic shifts

of Z on 2D spatial domain.

Furthermore, let X ∈ R
M×N×D be the D-channel

feature map of learning region. We generate the set

of real (i.e., non-cyclic) training samples of target size,

X =
{

Xu,v ∈ R
m×n×D

}M−m,N−n

u=0,v=0
, through real and

dense sampling from X, as shown in Fig.1.
Then, let f : Rm×n×D → R, kernel κ : Rm×n×D ×

R
m×n×D → R, and consider {κ(·,Zs,t)}m−1,n−1

s=0,t=0 as a set
of basis functions. We define the kernelized correlation filter
without boundary effect (nBEKCF) as

f(Xr) =

m−1
∑

s=0

n−1
∑

t=0

αs,tκ(Xr,Z
s,t), (4)

2If ρ < 0, the direction of shift is opposite to that of ρ > 0.
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where Xr ∈ R
m×n×D, and model the ridge regression

problem as

min
α

F (α) ≡
M̃
∑

u=0

Ñ
∑

v=0

(f(Xu,v)− yu,v)
2
+ λα⊤

α

= ‖Kα− y‖22 + λ ‖α‖22 ,

(5)

where λ > 0 is the regularization parameter, M̃ = M −m,

Ñ = N − n, y = [y0,0, y0,1, . . . , yM̃,Ñ−1, yM̃,Ñ ] is the

vector of gaussian labels, and

K =











κ
(

X0,0,Z0,0
)

· · · κ
(

X0,0,Zm−1,n−1
)

...
. . .

...

κ
(

XM̃,Ñ ,Z0,0
)

· · · κ
(

XM̃,Ñ ,Zm−1,n−1

)











is called the kernel correlation matrix of X and Z . Note

that the α of Problem 5 is not the variable of dual space,

thus different from the α of KCF.

To solve for α∗, let ∇αF (α) = 0; it is achieved that
(

K⊤K+ λI
)

α
∗ = K⊤y. Because K⊤K is semi-positive

definite, K⊤K+ λI is invertible. Consequently, the optimal

solution of Problem (5) is

α
∗ =

(

K⊤K+ λI
)−1

K⊤y. (6)

The efficiency of calculating α
∗ is mainly determined by

that of constructing K, and the computational burdens of

multiplication and inversion of matrices are almost negligible

relative to that of constructing K. It is thanks to the real and

dense samples in X and the totally cyclic bases in Z that the

fast construction of K can be realized. Sec 3 will elaborate

how to exploit the density of X and the cyclicity of Z to

construct K efficiently without FFT.

It is clear that if X is cyclic and Z ≡ X , K will be a Gram

matrix and the error item of Problem (5) will be exactly

the same as that of KCF in Problem (2). But, the learned

f(·;Zs,t) in Eq.(4) is essentially different from Eq.(1) of

KCF, because Z 6= X , X is not cyclic and Z is cyclic

in Eq.(4). It is the characteristics of Z and X that make

possible the efficient optimization of Problem (5) (Sec. 3).

Note that KCF is not a special case of nBEKCF because their

regularization items are different. Sec. 4 will present major

differences between nBEKCF and the existing CF trackers.

2.2. nBEKCF with Historical Frames

In visual tracking task, the appearance model is often

trained with multiple frames of different times to improve its

robustness. In this section, we will adapt the update scheme

proposed in [11] to our nBEKCF.

Specifically, we model the ridge regression problem of

multiple frames as follows.

min
αQ

FQ(αQ) ≡
Q
∑

q=1

βq ‖KqαQ − y‖22 + λ ‖αQ‖22 , (7)

where Q is the number of historical frames, q = 1 is the

initial frame and q = Q is the present one, Kq is the kernel

correlation matrix of Xq and Zq in frame q, β1 = (1−γ)Q−1,

βq = γ(1 − γ)Q−q for all q > 2,
∑Q

q=1 βq = 1, and γ ∈
[0, 1] is the learning rate.

Let ∇αQ
FQ(αQ) = 0. It is achieved that

α
∗

Q =

[

Q
∑

q=1

βqK
⊤

q Kq + λI

]−1
Q
∑

q=1

βqK
⊤

q y.

While the frames come sequentially, an efficient update
scheme can be designed as follows.

α
∗

Q = (AQ + λI)−1
BQ,

AQ = (1− γ)AQ−1 + γK
⊤

QKQ,BQ = (1− γ)BQ−1 + γK
⊤

Qy,

X̂Q = (1− γ) X̂Q−1 + γXQ, ẐQ = (1− γ) ẐQ−1 + γZQ,

where XQ and ZQ are the X and Z in frame Q, respectively.

X̂Q is updated for the calculation of KQ. This scheme

allows the model to update without storing the previous ones.

Only the current {AQ,BQ, X̂Q, ẐQ} needs to be saved.

2.3. Detection of Target Object

Given D-channel feature map X′

Q+1 ∈ R
M×N×D of

search region in the current frame Q+ 1. Construct X ′

Q+1

and ẐQ based on X′

Q+1 and ẐQ, respectively, with the meth-

ods of constructing X and Z presented in Sec. 2.1. Then, the

response map of X ′

Q+1 can be obtained with y′ = K′
α

∗

Q,

where K′ is the kernel correlation matrix of X ′

Q+1 and ẐQ.

The element of y′ which takes the maximal value is ac-

cepted as the optimal location of the target object in frame

Q + 1. The optimal scale of target object is estimated by

using DSST [8].

3. Fast Calculation of Correlation Matrix

While solving for the optimal α∗ and detecting the tar-

get object, kernel correlation matrix, K,3 has to be con-

structed first. It is clear that K can be constructed by us-

ing the brute-force approach with computational complexity

O
(

m2n2MND
)

because (M̃ +1)(Ñ +1)×mn elements

are contained and the calculation of each element involves t-

wo samples of mnD dimensions. This complexity, however,

is too high for some time-sensitive tasks such as visual track-

ing, because m2n2MND is often too large there. Typically,

M = N = 60, m = 15, n = 20, and D = 31 + 10 when

HOG [6] and CN [36] are adopted with the cell size being

4 × 4 in CF trackers [32, 7, 33]. Therefore, it is necessary

to develop a fast algorithm to construct K. Otherwise, it is

almost impossible to apply nBEKCF in such time-sensitive

tasks. On the other hand, it is noticed that, while solving

3Refer to K, KQ, and K
′ in Sec. 2.
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for α∗, the computational cost of matrix inversion is usually

not a main bottleneck for efficient solution if the inversion

is achieved through solving a system of linear equations,

because K⊤K ∈ R
mn×mn and mn is usually not too large,

i.e., 300 in the above example.
While constructing K, most common kernels, such as

dot-product kernels, polynomial kernels, and Gaussian k-
ernel [14], can be employed to calculate its elements. The
calculation of these kernels in calculating K is involved in
the autocorrelation of X ,

X ◦ X =











〈X0,0,X0,0〉, · · · , 〈X0,Ñ ,X0,Ñ 〉

...
. . .

...

〈XM̃,0,XM̃,0〉 · · · 〈XM̃,Ñ ,XM̃,Ñ 〉











,

and the cross-correlation (briefly, correlation) of X and Z ,

X ⋄ Z =









〈X0,0,Z0,0〉 · · · 〈X0,0,Zm−1,n−1〉

...
. . .

...

〈XM̃,Ñ ,Z0,0〉 · · · 〈XM̃,Ñ ,Zm−1,n−1〉









,

where 〈·, ·〉 is the dot product. It is clear that the computa-

tional complexities of constructing X ◦ X and X ⋄ Z will

be O(mnMND) and O(m2n2MND), respectively, if the

brute-force approach is employed.

A simple idea is to employ FFT to accelerate the construc-

tion of K. FFT, however, can only accelerate X ⋄Z with the

computational complexity O(mnMND logMN). This is

still not satisfactory for time-sensitive tasks. The reason that

FFT is not the optimal choice for our task is that it can only

take advantage of the density of X but is not able to exploit

the cyclicity of Z . Moreover, FFT cannot accelerate X ◦ X .

In this section, by means of the principle of integral im-

age [38], we will present two novel algorithms, autocorrela-

tion with integral image (ACSII) and cyclic correlation with

integral matrix (CCIM), to calculate X ◦ X and X ⋄ Z effi-

ciently in space domain. The key idea of ACSII and CCIM

is to fully exploit the structures of bases and samples, i.e.,

the bases are cyclic in Z and samples are densely sampled

in X , to eliminate all redundant computations.

3.1. Autocorrelation with Squared Integral Image

Let
{

xp,q ∈ R
D
}M−1.N−1

p=0,q=0
enumerate all 2D spatial lo-

cations of X. If the brute-force approach is employed to

calculate X ◦ X , i.e., to calculate all its elements via

〈Xu,v,Xu,v〉 =
u+m−1
∑

p=u

v+n−1
∑

q=v

‖xp,q‖22 ,

where u = [0, M̃ ], v = [0, Ñ ], there will exist large

amounts of redundant calculations because there are high

overlaps between neighboring samples of X , as shown in

Fig.1b. ‖xp,q‖22 and ‖xp,q‖22 + ‖xp′,q′‖22 will be performed

multiple times for most (p, q)’s and their neighbors (p′, q′)’s.

Figure 2: The division of cyclic base Zs,t into four sub-

bases, Ls,t, Gs,t, Ks,t, and Js,t, by the location of z0,0.

The relative spatial locations of elements of Ds,t are

the same as their relative locations in Z, where Ds,t ∈
{Ls,t,Gs,t,Ks,t,Js,t}.

To eliminate the redundancy, we propose a novel algo-

rithm, ACSII, to fast calculate the autocorrelation X ◦ X
by means of integral image I ∈ R

M×N with Ip,q =
∑p

i=0

∑q

j=0 ‖xi,j‖22 as its elements. In this way, any

〈Xu,v,Xu,v〉 is calculated in a constant time, i.e., three ad-

ditions of scalars, as follows.

〈Xu,v,Xu,v〉 = Iu+m−1,v+n−1−Iu,v+n−1−Iu+m−1,v+Iu,v.

The detailed technical steps of ACSII are presented in

Alg. 1 of [34] and supplementary material. It can be seen

that ACSII is really similar to the integral image. In fact,

ACSII is the integral image except that it acts on the squared

vector norm.

3.2. Cyclic Correlation with Integral Matrix

Suppose H((a1,b1),(a2,b2)) is the sub-matrix of matrix H

with (a1, b1) and (a2, b2) as its top-left and down-right cor-

ners. Let {zs,t ∈ R
D}m−1,n−1

s=0,t=0 enumerate all 2D spatial
locations of Z. If the brute-force approach is employed to
calculate X ⋄ Z , i.e., to calculate X ⋄ Z through

X ⋄ Z = [vec(Z0,0
9X), · · · , vec(Zm−1,n−1

9X)], (9)

where9 is the correlation operator and vec(H) indicates

the vectorization of H, there will be large amounts of re-

dundant calculations because all bases, Zs,t’s, of Z are

obtained by cyclically shifting Z. In fact, 〈zs,t,xp,q〉 and

〈zs,t,xp,q〉+ 〈zs+∆s,t+∆t,xp+∆s,q+∆t〉 will be performed

multiple times for most s, t, p, and q.

As shown in Fig. 2, according to the cyclicity of Z , any

base Zs,t ∈ Z can always be divided into four sub-bases,

Ls,t, Gs,t, Ks,t, and Js,t, according to the location of z0,0,

where z0,0 is the top-left element of Z, and the relative

spatial locations of elements of each sub-base are the same

as their relative locations in Z. Therefore, Zs,t9X can be

decomposed into four items,

Zs,t
9X = (Ls,t

9X)((0,0),(M−m,N−n))

+ (Gs,t
9X)((0,t),(M−m,N−n+t))

+ (Ks,t
9X)((s,0),(M−m+s,N−n))

+ (Js,t
9X)((s,t),(M−m+s,N−n+t)).
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If 〈zs,t,xp,q〉’s for all possible (s, t)’s and (p, q)’s
are calculated and stored, then Ds,t9X, where Ds,t ∈
{Ls,t,Gs,t,Ks,t,Js,t}, can be obtained by first retrieving

stored calculations and then summing them. In this way, the

multiple calculations on 〈zs,t,xp,q〉’s are eliminated. In our

algorithm, 〈zs,t,xp,q〉’s for all possible (s, t)’s and (p, q)’s
are called fundamental calculation, and stored as a series

of fundamental matrices. In order to obtain Z0,09X by the

summation of all fundamental matrices, cyclic shifting is

performed on the fundamental matrices. Each element of

Z0,09X equals to an element of the summation.

Another part of repeated calculations is the summation.

It is clear that large amounts of summations calculated in

Ds,t9X are repeated in Ds′,t′9X, where s 6= s′ or t 6= t′.

For example, if s′ = s+ 1 and t′ = t, most summations of

fundamental calculations involved in Js,t9X are repeated

by those involved in Js′,t′9X. Because the fundamental

calculations are stored as the fundamental matrices in our

algorithm, the repeated summations are the repeated sum-

mations of fundamental matrices. To eliminate all these

repeated summations, inspired by the integral image, we de-

sign the integral matrix M so as to calculate each Ds,t9X in

a constant time. Because the fundamental matrices are con-

structed according to the calculation of Z0,09X, Ds,t9X’s

have to be cyclically shifted to align each other and then are

summed to achieve Zs,t9X correctly, if s 6= 0 or t 6= 0.

Consequently, Zs,t9X is calculated efficiently. Note that

M is a block matrix and the same as the integral image in

principle. The difference between them is that M operates

on block matrices, whereas the integral image on scalars.

According to the above analysis, we develop the algo-

rithm, cyclic correlation with integral matrix (CCIM), to

calculate X ⋄ Z efficiently. The formal steps of CCIM is p-

resented in Algorithm 2 of [34] and supplementary material.

The appendices also provide an example to illustrate how

CCIM works exactly and the proof of its correctness.

3.3. Characteristics of ACSII and CCIM

The computational complexity of ACSII is O(MND)
because those of its three steps, constructing squared image,

constructing squared integral image, and calculating auto-

correlation, are O(MND), O(MN), and O(MN), respec-

tively. Because the computational complexities of the three

steps of CCIM, construct fundamental matrices, construct

integral matrix, and calculate correlation, are O(mnMND),
O(mnMN), and O(mnMN), respectively, its computa-

tional complexity is O(mnMND), much lower than that

with FFT. In order to experimentally verify the superior effi-

ciency of CCIM over that of FFT, we calculate X ⋄ Z on a

PC with Intel Core i7 CPU under the typical situation stated

in the beginning of Sec. 3. It is not surprising to see that

CCIM takes only 20 ms, while FFT 530 ms, to achieve X ⋄Z .

In addition, ACSII takes 3 ms to calculate X ◦ X . By fully

exploiting the structures of bases and samples, ACSII and

CCIM eliminate all redundant computations in calculating

X ◦X and X ⋄Z in space domain. It is seen from the above

analysis that the efficiency of CCIM is much higher than

that of FFT in both theory and practice, because FFT cannot

use the relations among the bases. Table 1 summarizes the

characteristics of ACSII, CCIM, and FFT in our task.

4. Related Work

Our novel nBEKCF is essentially different from all ex-

isting CF trackers, because it is NOT based on KCF at

all. Specifically, there are three key differences between

nBEKCF and existing CF trackers. 1) The theoretical foun-

dations are different. 2) The sampling strategies are different

(non-cyclic vs. cyclic). 3) The efficient optimization proce-

dures are different (non-FFT vs. FFT-related). The reason to

cause these differences is the separation of the sets of real

and dense training samples and cyclic bases in nBEKCF. In

contrast, the both sets are identical and cyclic in KCF.

We do not model our problem with Tikhonov regulariza-

tion [33] when deriving nBEKCF. Therefore, Problem (5)

does not have to be transferred into the dual space by means

of Representer Theorem [30] to solve. In addition, we also

do not require the kernelized correlation filter f to lie in a

bounded convex subset of a reproducing kernel Hilbert space

(RKHS) defined by a positive definite kernel function κ(·, ·).
Sκ ≡ {κ(·,Xu,v)} can be considered as a set of basis func-

tions, and it will be orthogonal if f lies in a bounded convex

subset of a RKHS defined by κ(·, ·).
In almost all existing CF trackers, the training sets are

constructed through cyclically shifting a single image patch

(i.e., base sample) in a pixel-wise way, and the training

samples are the cyclically shifted base samples themselves

(e.g., in KCF, MKCF [32, 33], and SRDCF) or their clipped

parts (e.g., in BACF). Therefore, there are more or less

synthetic samples in their training sets. In our nBEKCF,

however, the training samples are drawn from an image

region in the traditional sliding window way, and there is no

cyclic shifting of the image region. Therefore, all training

samples are non-synthetic, i.e., real, in nBEKCF, avoiding

the boundary effect completely.

Unlike almost all existing CF trackers which resort to

FFT for fast optimization, we develop two novel algorithms,

ACSII and CCIM, to achieve efficient training and detection.

CCIM is even more efficient than its FFT counterpart.

It is clear that nBEKCF is different from fdKCF* because

their regression models and optimization schemes are both

totally different. While nBEKCF applies ACSII and CCIM

to accelerate its optimization, fdKCF* relies on the look-up

table to efficiently optimize the regression model of KCF.

On the other hand, the major computational costs of fdKCF*

and nBEKCF are O(M2N2(D +mn)) and O(MNDmn),
respectively. Because M(N) > m(n), the cost of fdKCF* is
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Object of Computational Elapsed Time Space or Exploiting Exploiting

Calculation Complexity (M = N = 60, m = 15, n = 20, D = 41) Frequency Domains Density of X Cyclicity of Z
ACSII X ◦ X O(MND) 3ms Space Yes -

CCIM X ⋄ Z O(mnMND) 20ms Space Yes Yes

FFT X ⋄ Z O(mnMND logMN) 530ms Frequency Yes No

Table 1: Characteristics of ACSII, CCIM, and FFT in our task. ‘-’ means the algorithm is not involved in the data.

much larger than that of nBEKCF. In practice, only on GPU

can fdKCF* run in super-real-time even if low dimensional

hand-crafted features are employed, because one of its major

computational costs, O(M2N2mn), is large and irrelative

to the dimensionality of features. Whereas, nBEKCF can

construct its kernel correlation matrices in a high efficien-

cy, running in super-real-time on CPU if low dimensional

hand-crafted features are employed. Note that the speed of

constructing a kernel correlation matrix of nBEKCF on CPU

is really close to that of fkKCF* on GPU, if the pre-trained

network features of high dimensionality are exploited.

In comparison to Siamese trackers [2, 24], our nBEKCF,

as a CF tracker, can be trained discriminatively, while they

cannot, as pointed out by [3]. That is, nBEKCF utilizes both

foreground and background to train its filter, while Siamese

trackers only use the target patch when training their models.

Consequently, in terms of trackers themselves, nBEKCF is

more robust than Siamese trackers for various backgrounds.

5. Experiments

We implement two versions of our nBEKCF, nBEKCF-

HC and nBEKCF-D by employing hand-crafted features

and deep convolutional neural networks (CNNs) features, re-

spectively. nBEKCF-HC is evaluated on three public bench-

marks, OTB-2013, OTB-2015, and NfS, and compared a-

gainst state-of-the-art trackers with hand-crafted features.

nBEKCF-D is evaluated on other three public benchmark-

s, VOT2018, GOT10k, and TrackingNet, and compared to

state-of-the-art trackers with CNNs features. We do not

test nBEKCF-HC on the latter three ones because the hand-

crafted features are too weak on them.

In our experiments, for a fair comparison, the same type

of state-of-the-arts trackers are among the list of compared

trackers. The same type of state-of-the-arts trackers means

the top ones with the similar motivation, similar features, and

similar scale adaptation scheme to the nBEKCF’s. Therefore,

ECO-HC [7] is selected from the trackers with hand-crafted

features, and UPDT [4] from the trackers with ImageNet

pre-trained features, which, like nBEKCF, both adopt the

scale-pyramid scheme to decide proper scales of target. 4

5.1. Implementation Details

In nBEKCF-HC, as in the top CF tracker with hand-

crafted features, ECO-HC, HOG with 31-channels and color-

4Due to the space limitation, the implementation details of nBEKCF-

D and its comparison to trackers with ImageNet pre-trained features are

provided in [34] and supplementary material.

name (CN) with 10-channels are employed, and both their

cell sizes are 4× 4. Gaussian kernel is applied with standard

deviation 6 to construct the kernel correlation matrices. The

learning rate γ is 0.008. The size of learning or search region

is M = N = 3
√
mn for the tradeoff between localization

accuracy and speed. ACSII and CCIM are implemented

in C++, and other parts in Matlab. The experiments are

performed on a single Intel I7 CPU.

Regularization parameter λ = 0.01. Gaussian response y

is identical to that in KCF with variance 0.01.

5.2. Ablation Study

Our nBEKCF is the first CF tracker which is not plagued

by the boundary effect at all and is able to exploit non-linear

kernels and high-dimensional hand-crafted features, while

running in a fast speed with single CPU. Here, we investi-

gate the impacts of avoiding the boundary effect thoroughly

and choosing different kernels in nBEKCF. We conduct the

ablation experiments with nBEKCF-HC on OTB2015 [41].

As a baseline tracker in our ablation study, SAMF [26]

is the KCF with scale-pyramid scheme, exploits HOG and

CN as its features, and suffers from the boundary effect. Be-

cause the motivation of BACF and SRDCF is also to address

the boundary effect of KCF and they both employ scale-

pyramid scheme to determine the scale of target, they are

compared with SAMF and nBEKCF in this section. For the

fair comparison, we implement SRDCF-HC and BACF-HC

by adding color features (CN) into the public source codes

of SRDCF and BACH, and the linear kernel is employed

in nBKECF-HC because SRDCF and BACF are not able to

employ any non-linear kernel.

Table 2 shows the results where AUC [41] is used to

evaluate their accuracies. It is seen that the right four trackers

outperform the base tracker SAMF-HC with large margins,

and nBEKCF-HC-L performs better than SRDCF-HC and

BACF-HC. Therefore, alleviating or avoiding the boundary

effect will increase the accuracy, and avoiding the boundary

effect completely in nBEKCF improves the accuracy more

than just alleviating it in SRDCF-HC and BACF-HC.

On the other hand, the accuracy of nBEKCF-HC is higher

than that of nBEKCF-HC-L, confirming that employing non-

linear kernels will achieve a higher accuracy than employing

the linear one, as shown by Zuo et al. [45].

Table 2 also shows that nBEKCF-HC-L and nBEKCF-

HC not only outperform other trackers, but are able to run at

much faster speeds. It is interesting to notice that nBEKCF-

HC-L and nBEKCF-HC even run faster than SAMP which,
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Figure 3: The mean success plots of our nBEKCF-HC and other state-of-the-art trackers with hand-crafted features on

OTB-2013, OTB-2015, and NfS. The mean AUCs are reported in the legend. nBEKCF-HC achieves the best results.

SAMF SRDCF-HC BACF-HC nBEKCF-HC-L nBEKCF-HC

AUC 0.572 0.616 0.620 0.632 0.643

mFPS 40 3 30 55 50

Table 2: AUCs and mean FPSs on OTB-2015. “-HC” means

the indicated tracker exploits HOG and CN features, and “-L”

indicates the tracker applies the linear kernel.

Tracker nBEKCF-HC BACF ECO-HC LCT MKCFup

mFPS 50 35 40 30 150

Tracker CSR-DCF SRDCF MEEM Staple SAMF

mFPS 15 10 15 70 30

Table 3: The mean FPSs of our nBEKCF-HC and other

state-of-the-art trackers with hand-crafted features.

exactly like KCF, is plagued by the boundary effect.

5.3. Evaluation on OTB­2013, OTB­2015, and NfS

OTB-2013/2015 [40, 41]. OTB-2013 and OTB-2015 are

the most popular benchmarks with various challenges for

the evaluation of trackers, and contain 50 and 100 videos,

respectively. On the OTB-2013 and OTB-2015 experiments,

we compare our nBEKCF-HC against nine hand-crafted fea-

ture based state-of-the-art trackers, MEEM [42], SAMF [26],

SRDCF [9], LCT [28], Staple [1], BACF [16], ECO-HC [7],

CSR-DCF [27], and MKCFup [33]. All trackers are evaluat-

ed by success plot and AUC. Figs. 3a and 3b show that our

nBEKCF-HC obtains the mean AUC of 67.1% and 64.3% on

OTB-2013 and OTB-2015, respectively, outperforming all

other state-of-the-art CF trackers with hand-crafted features.

In addition, table 3 5 shows the mean FPS of the above

trackers on OTB-2015. It can be seen that the running speed

of our nBEKCF-HC is faster than all other trackers, except

for MKCFup and Staple which take full advantage of the

cyclic structure of samples. Although MKCFup and Staple

are two fastest trackers, they suffer from the boundary effect,

resulting in lower localization accuracies. It is worth noting

that ECO-HC applies several tricks, such as sparse update

and feature dimension reduction, to speed up. Whereas,

nBEKCF-HC does not employ any similar tricks but is still

faster than ECO-HC.

5We ran nBEKCF-HC, BACF, and ECO-HC on an identical PC for the

fair comparison of fps.

NFS [15]. We evaluate nBEKCF-HC on the 240 FPS version

of NfS benchmark which contains 100 challenging videos.

On the NfS experiment, we compare nBEKCF-HC against

five representative CF trackers, KCF, SRDCF, ECO-HC,

BACF, and MKCFup. All trackers are evaluated by suc-

cess plot and AUC. Fig. 3c shows that our nBEKCF-HC

obtains the mean AUC of 0.464, outperforming all other

CF trackers, except for ECO-HC. It is worth noting that

ECO-HC uses sample clustering to improve its accuracy.

Whereas, nBEKCF-HC does not apply any similar tricks but

still achieves competitive accuracy with ECO-HC. In addi-

tion, it is seen that the success rate at overlap threshold 0.5,

i.e., the mean overlap precision, of nBEKCF-HC is slightly

higher than that of ECO-HC.

It can be concluded from the above experiments that our

nBEKCF-HC achieves the best trade-off between accuracy

and speed among all hand-crafted feature based trackers.

6. Conclusions

The novel nBEKCF is presented in this paper. Without

the boundary effect, being able to exploit non-linear kernels,

and running at high fps, nBEKCF possesses all these charac-

teristics that were hard to manage simultaneously before.

Historically, the pioneering work of VanderLugt [37] was

the start of applying correlation filters to pattern recogni-

tion [23]. MOSSE and KCF were seminal works in applying

correlation filters to visual tracking. Nevertheless, they all

were plagued by the well-known defect - the boundary effect.

After them, the three representative works, CFLB, SRDCF,

and BACF, were proposed to address the defect. While the

three alleviated the boundary effect, they lost the merits -

high speed and the ability of applying non-linear kernels - of

KCF. In this paper, our nBEKCF provides a totally different

line to cast off the above dilemma thoroughly, not resorting

to FFT. We believe that nBEKCF is an alternative in applying

correlation filters to pattern recognition and visual tracking,

and the performance of most modern CF trackers would be

improved by means of nBEKCF. Even in the era of deep

learning, nBEKCF may also provide a theoretical basis for

the network design of trackers.
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