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Abstract

In this paper, we focus on semi-supervised object de-

tection to boost performance of proposal-based object de-

tectors (a.k.a. two-stage object detectors) by training on

both labeled and unlabeled data. However, it is non-trivial

to train object detectors on unlabeled data due to the un-

availability of ground truth labels. To address this prob-

lem, we present a proposal learning approach to learn pro-

posal features and predictions from both labeled and unla-

beled data. The approach consists of a self-supervised pro-

posal learning module and a consistency-based proposal

learning module. In the self-supervised proposal learning

module, we present a proposal location loss and a con-

trastive loss to learn context-aware and noise-robust pro-

posal features respectively. In the consistency-based pro-

posal learning module, we apply consistency losses to both

bounding box classification and regression predictions of

proposals to learn noise-robust proposal features and pre-

dictions. Our approach enjoys the following benefits: 1) en-

couraging more context information to be delivered in the

proposals learning procedure; 2) noisy proposal features

and enforcing consistency to allow noise-robust object de-

tection; 3) building a general and high-performance semi-

supervised object detection framework, which can be eas-

ily adapted to proposal-based object detectors with differ-

ent backbone architectures. Experiments are conducted on

the COCO dataset with all available labeled and unlabeled

data. Results demonstrate that our approach consistently

improves the performance of fully-supervised baselines. In

particular, after combining with data distillation [39], our

approach improves AP by about 2.0% and 0.9% on average

compared to fully-supervised baselines and data distillation

baselines respectively.

1. Introduction

With the giant success of Convolutional Neural Net-

works (CNNs) [25, 27], great leap forwards have been

achieved in object detection [14, 15, 17, 29, 31, 40, 41].

However, training accurate object detectors relies on the

availability of large scale labeled datasets [10, 30, 42, 44],

which are very expensive and time-consuming to collect.

In addition, training object detectors only on the labeled

datasets may limit their detection performance. By con-

trast, considering that acquiring unlabeled data is much eas-

ier than collecting labeled data, it is important to explore ap-

proaches for the Semi-Supervised Object Detection (SSOD)

problem, i.e., training object detectors on both labeled and

unlabeled data, to boost performance of current state-of-the-

art object detectors.

In this paper, we focus on SSOD for proposal-based ob-

ject detectors (a.k.a. two-stage object detectors) [14, 15, 41]

due to their high performance. Proposal-based object de-

tectors detect objects by 1) first generating region proposals

that may contain objects and 2) then generating proposal

features and predictions (i.e., bounding box classification

and regression predictions). Specially, we aim to improve

the second stage by learning proposal features and predic-

tions from both labeled and unlabeled data.

For labeled data, it is straightforward to use ground truth

labels to get training supervisions. But for unlabeled data,

due to the unavailability of ground truth labels, we can-

not learn proposal features and predictions directly. To ad-

dress this problem, apart from the standard fully-supervised

learning for labeled data [41] shown in Fig. 1 (a), we

present an approach named proposal learning, which con-

sists of a self-supervised proposal learning module and a

consistency-based proposal learning module, to learn pro-

posal features and predictions from both labeled and unla-

beled data, see Fig. 1.

Recently, self-supervised learning has shown its efficacy

to learn features from unlabeled data by defining some pre-

text tasks [9, 16, 23, 53, 57]. Our self-supervised pro-

posal learning module uses the same strategy of defining

pretext tasks, inspired by the facts that context is impor-

tant for object detection [2, 8, 20, 34] and object detectors

should be noise-robust [32, 52]. More precisely, a pro-

posal location loss and a contrastive loss are presented to

learn context-aware and noise-robust proposal features re-
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Figure 1. The design of our proposal learning approach. The proposed modules are highlighted in dashed boxes. Given an image,

original/noisy proposal features and predictions are generated. (a) The standard fully-supervised learning is chosen for labeled data.

(a) and (b) Our proposal learning approach learns proposal features and predictions from both labeled and unlabeled data.

spectively. Specifically, the proposal location loss uses pro-

posal location prediction as a pretext task to supervise train-

ing, where a small neural network are attached after pro-

posal features for proposal location prediction. This loss

helps learn context-aware proposal features, because pro-

posal location prediction requires proposal features under-

standing some global image information. At the same time,

the contrastive loss learns noise-robust proposal features by

a simple instance discrimination task [16, 53, 57], which en-

sures that noisy proposals features are closer to their orig-

inal proposal features than to other proposal features. In

particular, instead of adding noise to images to compute

contrastive loss [16, 57], we add noise to proposal features,

which shares convolutional feature computations for the en-

tire image between noisy proposal feature computations and

the original proposal feature computations for training effi-

ciency [14].

To further train noise-robust object detectors, our

consistency-based proposal learning module uses consis-

tency losses to ensure that predictions from noisy pro-

posal features and their original proposal features are con-

sistent. More precisely, similar to consistency losses for

semi-supervised image classification [33, 43, 54], a consis-

tency loss for bounding box classification predictions en-

forces class predictions from noisy proposal features and

their original proposal features to be consistent. In addi-

tion, a consistency loss for bounding box regression predic-

tions enforces object location predictions from noisy pro-

posal features and their original proposal features also to

be consistent. With these two consistency losses, proposal

features and predictions are robust to noise.

We apply our approach to Faster R-CNN [41] with fea-

ture pyramid networks [28] and RoIAlign [17], using dif-

ferent CNN backbones, where our proposal learning mod-

ules are applied to both labeled and unlabeled data, as

shown in Fig. 1. We conduct elaborate experiments on the

challenging COCO dataset [30] with all available labeled

and unlabeled data, showing that our approach outperforms

fully-supervised baselines consistently. In particular, when

combining with data distillation [39], our approach obtains

about 2.0% and 0.9% absolute AP improvements on aver-

age compared to fully-supervised baselines and data distil-

lation based baselines respectively.

In summary, we list our main contributions as follows.

• We present a proposal learning approach to learn

proposal features and predictions from both labeled

and unlabeled data. The approach consists of 1) a

self-supervised proposal learning module which learns

context-aware and noise-robust proposal features by a

proposal location loss and a contrastive loss respec-

tively, and 2) a consistency-based proposal learning

module which learns noise-robust proposal features

and predictions by consistency losses for bounding box

classification and regression predictions.

• On the COCO dataset, our approach surpasses var-

ious Faster R-CNN based fully-supervised baselines

and data distillation [39] by about 2.0% and 0.9% re-

spectively.

2. Related Work

Object detection is one of the most important tasks in

computer vision and has received considerable attention

in recent years [4, 14, 15, 17, 20, 21, 28, 29, 31, 40, 41]

[45, 49, 52, 60]. One popular direction for recent object de-

tection is proposal-based object detectors (a.k.a. two-stage

object detectors) [14, 15, 17, 28, 41], which perform object
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Figure 2. The overall framework of our proposal learning approach. All arrows have forward computations during training, only the
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p
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self
)

”: SSPL
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(

C
p
n,R

p
n, Ĉ

p
n, R̂

p
n

)

”: consistency-based proposal learning loss. See Section 3.2 for more details. Best viewed in color.

detection by first generating region proposals and then gen-

erating proposal features and predictions. Very promising

results are obtained by these proposal-based approaches. In

this work, we are also along the line of proposal-based ob-

ject detectors. But unlike previous approaches training ob-

ject detectors only on labeled data, we train object detec-

tors on both labeled data and unlabeled data, and present

a proposal learning approach to achieve our goal. In addi-

tion, Wang et al. [52] also add noise to proposal features

to train noise-robust object detectors. They focus on gen-

erating hard noisy proposal features and present adversarial

networks based approaches, and still train object detectors

only on labeled data. Unlike their approach, we add noise

to proposal features to learn noise-robust proposal features

and predictions from both labeled and unlabeled data by our

proposal learning approach.

Self-supervised learning learns features from unlabeled

data by some defined pretext tasks [9, 13, 16, 24, 37, 57, 59].

For example, Doersch et al. [9] predicts the position of one

patch relative to another patch in the same image. Gidaris et

al. [13] randomly rotate images and predict the rotation of

images. Some recent works [16, 53, 57] use an instance dis-

crimination task to match features from noisy images with

features from their original images. Please see the recent

survey [23] for more self-supervised learning approaches.

Our self-supervised proposal learning module applies self-

supervised learning approaches to learn proposal features

from both labeled and unlabeled data. Inspired by unsu-

pervised feature learning task [9] and the instance discrim-

ination task [16, 53, 57] of image level, we introduce self-

supervised learning to SSOD by designing a proposal loca-

tion loss and contrastive loss on object proposals.

Semi-supervised learning trains models on both labeled

and unlabeled data. There are multiple strategies for semi-

supervised learning, such as self-training [56], co-training

[3, 38, 61], label propagation [62], etc. Please see [5] for

an extensive review. Recently, many works use consistency

losses for semi-supervised image classification [1, 26, 33,

43, 47, 54], by enforcing class predictions from noisy in-

puts and their original inputs to be consistent, where noise

is added to input images or intermediate features. Here

we add noise to proposal features for efficiency and apply

consistency losses to both class and object location predic-

tions of proposals. Zhai et al. [58] also suggest to benefit

semi-supervised image classification from self-supervised

learning. Here we further apply self-supervised learning to

SSOD by a self-supervised proposal learning module.

Semi-supervised object detection applies semi-supervised

learning to object detection. There are some SSOD works

with different settings [7, 11, 19, 35, 46, 50, 51]. For exam-

ple, Cinbis et al. [7] train object detectors on data with ei-

ther bounding box labels or image-level class labels. Hoff-

man et al. [19] and Tang et al. [46] train object detectors on

data with bounding box labels for some classes and image-

level class labels for other classes. Gao et al. [11] train ob-

ject detectors on data with bounding box labels for some

classes and either image-level labels or bounding box la-

bels for other classes. Unlike their settings, in this work

we explore the more general semi-supervised setting, i.e.,

training object detectors on data which either have bound-

ing box labels or are totally unlabeled, similar to the stan-

dard semi-supervised learning setting [5]. Jeong et al. [22]
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also use consistency losses for SSOD by adding noise to

images. Unlike their approach, we add noise to proposal

features instead of images and present a self-supervised pro-

posal learning module. In addition, all these works mainly

conduct experiments on simulated labeled/unlabeled data

by splitting a fully annotated dataset and thus cannot fully

utilize the available labeled data [39]. Our work follows the

setting in [39] which trains object detectors on both labeled

and unlabeled data and uses all labeled COCO data during

training. Unlike the data distillation approach presented in

[39] which can be viewed as a self-training-based approach,

our approach combines self-supervised learning and consis-

tency losses for SSOD. In experiments, we will show that

our approach and the data distillation approach are comple-

mentary to some extent.

3. Approach

In this section, we will first give the definition of our

Semi-Supervised Object Detection (SSOD) problem (see

Section 3.1), then describe our overall framework (see Sec-

tion 3.2), and finally introduce our proposal learning ap-

proach, consisting of the self-supervised proposal learning

module (see Section 3.3) and consistency-based proposal

learning module (see Section 3.4). If not specified,the con-

tents we described here are the training procedures since we

aim to train object detectors under the SSOD setting.

3.1. Problem Definition

In SSOD, a set of labeled data Dl = {(I,G)} and a set

of unlabeled data Du = {I} are given, where I and G de-

note an image and ground truth labels respectively. In object

detection, G consists of a set of objects with locations and

object classes. Our goal of SSOD is to train object detectors

on both labeled data Dl and unlabeled data Du.

3.2. The Overall Framework

The overall framework of our approach is shown in

Fig. 2. As in standard proposal-based object detec-

tors [28, 41], during the forward process, first, an in-

put image I is fed into a CNN backbone (e.g., ResNet-

50 [18] with feature pyramid networks [28]) with param-

eters θb, which produces image convolutional feature maps

F
b(I;θb). Then, a Region Proposal Network (RPN) with

parameters θ
rpn takes F

b(I;θb) as inputs to generate re-

gion proposals P
(

F
b(I;θb);θrpn

)

. We use F
b,P later for

simplification, dropping the dependence on I,θb,Fb,θrpn.

Next, an RoIAlign [17] layer takes each proposal Pn =
(xn, yn, wn, hn) ∈ P and F

b as inputs to extract pro-

posal convolutional feature maps F
p-conv
n (simplification

of F
p-conv(Fb,Pn), dropping the dependence on F

b,Pn),

where (xn, yn, wn, hn) denotes the location of the ith pro-

posal Pn, i ∈ {1, 2, ..., N}, and N is the number of propos-

als in P . After that, F
p-conv
n is fed into a Region-based CNN

(R-CNN) to generate proposal features F
p(Fp-conv

n ;θr-cnn)
and predictions (i.e., bounding box classification predic-

tions C
p
(

F
p(Fp-conv

n ;θr-cnn);θcls
)

and bounding box re-

gression predictions R
p
(

F
p(Fp-conv

n ;θr-cnn);θreg
)

), where

θ
r-cnn,θcls, and θ

reg denote parameters of the R-CNN to

generate proposal features, bounding box classification pre-

dictions, and bounding box regression predictions, respec-

tively. We use F
p
n,C

p
n,R

p
n later for simplification, drop-

ping the dependence on F
p-conv
n ,θr-cnn,Fp

n,θcls,θreg.

For each labeled data (I,G) ∈ Dl, it is straightfor-

ward to train object detectors according to the standard

fully-supervised learning loss defined in Eq. (1), where

the first and second terms denote the RPN loss and R-

CNN loss respectively. This loss is optimized w.r.t.

θ
b,θrpn,θr-cnn,θcls,θreg to train object detectors during the

back-propagation process. More details of the loss function

can be found in [41].

Lsup
(

I,G;θb,θrpn,θr-cnn,θcls,θreg
)

= Lrpn
(

I,G;θb,θrpn
)

+
1

N

∑

n

Lr-cnn
(

I,Pn,G,θ
b,θr-cnn,θcls,θreg

)

= Lrpn
(

F
b,G;θrpn

)

+
1

N

∑

n

Lr-cnn (Cp
n,R

p
n,G) .

(1)

However, for unlabeled data I ∈ Du, there is no avail-

able ground truth labels G. Thus we cannot use Eq. (1)

to train object detectors on Du. To train object detectors

also on Du, we present a proposal learning approach, con-

sisting of a self-supervised proposal learning module and a

consistency-based proposal learning module, to also learn

proposal features (i.e., F
p
n) and predictions (i.e., C

p
n,R

p
n)

from Du. It is possible to also benefit RPN from Du. We

only focus on the R-CNN-related parts, because 1) the final

object detection results are from R-CNN-related parts and

thus improving the R-CNN-related parts will benefit object

detectors directly; 2) gradients will also be back-propagated

from the R-CNN-related parts to the CNN backbone to learn

better Fb, which could potentially improve RPN.

For the nth proposal Pn of image I, during the forward

process, we first generate a set of noisy proposal features

F̂p
n = {F̂p

nk}
K
k=1 and predictions Ĉp

n = {Ĉp

nk}
K
k=1, R̂

p
n =

{R̂p

nk}
K
k=1, where K denotes the number of noisy pro-

posal features for each Pn. As we stated in Section 1,

we add noise to proposal features to share convolutional

feature computations for the CNN backbone (i.e., Fb) be-

tween noisy proposal feature computations and the orig-

inal proposal feature computations for efficiency. More

specifically, we add random noise {ǫnk}
K
k=1 to proposal

convolutional feature maps F
p-conv
n , which generates a set

of noisy proposal convolutional feature maps F̂p-conv
n =

{F̂p-conv(Fp-conv
n , ǫnk)}

K
k=1, see Fig. 2. We use F̂

p-conv

nk for

simplification, dropping the dependence on F
p-conv
n , ǫnk.

Similar to the procedure to generate F
p
n,C

p
n,R

p
n, the noisy
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proposal feature maps are fed into the R-CNN to generate

the noisy proposal features F̂p
n = {F̂p

nk}
K
k=1 and predic-

tions Ĉp
n = {Ĉp

nk}
K
k=1, R̂

p
n = {R̂p

nk}
K
k=1 (we drop the de-

pendence on F̂
p-conv

nk ,θr-cnn, F̂p

nk,θ
cls,θreg for notation sim-

plification).

For Self-Supervised Proposal Learning (SSPL), as

shown in Fig. 2, during the forward process, we pass the

original proposal features F
p
n and the noisy proposal fea-

tures F̂p
n through a small SSPL network with parameters

θ
self. The outputs of the SSPL network and the proposal

location Pn = (xn, yn, wn, hn) are taken as inputs to com-

pute SSPL loss Lself
(

{Fp
n}Nn=1, F̂

p
n,Pn;θ

self
)

which is de-

fined in later Eq. (6). Since this loss does not take any

ground truth labels G as inputs, by optimizing this loss

w.r.t. F
p
n, F̂

p
n,θself, i.e., θ

b,θr-cnn,θself, during the back-

propagation process, we can learn proposal features also

from unlabeled data. We will give more details about this

module in Section 3.3.

For consistency-based proposal learning, as shown in

Fig. 2, during the forward process the original proposal pre-

dictions C
p
n,R

p
n and the noisy proposal predictions Ĉp

n, R̂
p
n

are taken as inputs to compute loss Lcons
(

C
p
n,R

p
n, Ĉ

p
n, R̂

p
n

)

which is defined in later Eq. (9). Following [33, 54], this

loss is optimized w.r.t. Ĉp
n, R̂

p
n (not w.r.t. C

p
n,R

p
n), i.e.,

θ
b,θr-cnn,θcls,θreg, during the back-propagation process.

Computing this loss does not require any ground truth labels

G, and thus we can learn proposal features and predictions

also from unlabeled data. We will give more details about

this module in Section 3.4.

We apply the standard fully-supervised loss defined

in Eq. (1) to labeled data Dl, and the self-supervised

proposal learning loss Lself
(

{Fp
n}Nn=1, F̂

p
n,Pn;θ

self
)

and the consistency-based proposal learning loss

Lcons
(

C
p
n,R

p
n, Ĉ

p
n, R̂

p
n

)

to unlabeled data Du. The

object detectors are trained on Dl,Du by optimizing the

loss Eq. (2) w.r.t. θb,θrpn,θr-cnn,θcls,θreg,θself during the

back-propagation process.

L
(

I,G;θb,θrpn,θr-cnn,θcls,θreg,θself
)

=
1

|Dl|

∑

(I,G)∈Dl

Lsup
(

I,G;θb,θrpn,θr-cnn,θcls,θreg
)

+
1

|Du|

∑

I∈Du

1

N

∑

n

Lself
(

{Fp
n}

N
n=1, F̂

p
n,Pn;θ

self
)

+
1

|Du|

∑

I∈Du

1

N

∑

n

Lcons
(

C
p
n,R

p
n, Ĉ

p
n, R̂

p
n

)

.

(2)

We can also apply the self-supervised and consistency-

based proposal learning losses to both labeled and unla-

beled data, following the semi-supervised learning works

[26, 33, 58]. Then the overall loss is written as Eq. (3).

L
(

I,G;θb,θrpn,θr-cnn,θcls,θreg,θself
)

=
1

|Dl|

∑

(I,G)∈Dl

Lsup
(

I,G;θb,θrpn,θr-cnn,θcls,θreg
)

+
1

|Dl|+ |Du|

∑

I∈Dl,Du

1

N

∑

n

Lself
(

{Fp
n}

N
n=1, F̂

p
n,Pn;θ

self
)

+
1

|Dl|+ |Du|

∑

I∈Dl,Du

1

N

∑

n

Lcons
(

C
p
n,R

p
n, Ĉ

p
n, R̂

p
n

)

.

(3)

During inference, we simply keep the parts of the stan-

dard proposal-based object detectors, see the blue arrows in

Fig. 2. Therefore, our approach does not bring any extra

inference computations.

3.3. Self­Supervised Proposal Learning

Previous works have shown that object detectors can

benefit from context [2, 8, 20, 34] and should be noise-

robust [32, 52]. Our self-supervised proposal learning mod-

ule uses a proposal location loss and a contrastive loss to

learn context-aware and noise-robust proposal features re-

spectively.

To compute proposal location loss, we use proposal loca-

tion prediction as the pretext task, inspired by the approach

in [9]. More specifically, we pass F
p
n, F̂

p
n through two fully-

connected layers with parameters θ
self-loc and a sigmoid

layer to compute location predictions L
p
n, L̂

p
n = {L̂p

nk}
K
k=1,

where the numbers of the outputs of the two fully-connected

layers are 1024 and 4 respectively. Here we drop the depen-

dence on F
p
n, F̂

p
n,θself-loc for notation simplification. Then

we use ℓ2 distance to compute proposal location loss, see

Eq. (4), where P̃n = (xn/W, yn/H,wn/W, hn/H) is a

normalized version of Pn, and W,H denote the width and

height of image I respectively.

Lself-loc
(

F
p
n, F̂

p
n,Pn;θ

self-loc
)

= Lself-loc
(

L
p
n, L̂

p
n,Pn

)

=
1

K + 1

(

‖Lp
n − P̃n‖

2
2 +

∑

k

‖L̂p

nk − P̃n‖
2
2

)

.

(4)

By optimizing this loss w.r.t. F
p
n, F̂

p
n,θself-loc, i.e.,

θ
b,θr-cnn,θself-loc, we can learn context-aware proposal fea-

tures because predicting proposal location in an image re-

quires proposal features understanding some global infor-

mation of the image. We do not use the relative patch lo-

cation prediction task [9] directly, because images are large

and there are always multiple objects in the same image for

object detection, which makes relative patch location pre-

diction hard to be solved.
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To compute contrastive loss, we use instance discrimina-

tion as the pretext task, following [16, 53, 57]. More specif-

ically, we first use a fully-connected layer with parameters

θ
self-cont and an ℓ2 normalization layer to project F

p
n, F̂

p
n to

embedded proposal features Fembed
n , F̂ embed

n = {F̂embed
nk }Kk=1

(dropping the dependence on F
p
n, F̂

p
n,θself-cont), where the

numbers of the outputs of the fully-connected layer is 128.

Then the contrastive loss is written as Eq. (5), where τ is a

temperature hyper-parameter.

Lself-cont
(

{Fp
n}

N
n=1, F̂

p
n;θ

self-cont
)

= Lself-cont
(

{Fembed
n }Nn=1, F̂

embed
n

)

= −
1

K

∑

k

log
exp((F̂embed

nk )T
F

embed
n /τ)

∑

n′ exp((F̂embed
nk )TFembed

n′ /τ)
.

(5)

By optimizing this loss w.r.t. F
p
n, F̂

p
n,θself-cont, i.e.,

θ
b,θr-cnn,θself-cont, noisy proposal features are enforced to

be closer to their original proposal features than to other

proposal features, which learns noise-robust proposal fea-

tures and thus learns noise-robust object detectors.

By combining the proposal location loss in Eq. (4)

and the contrastive loss in Eq. (5), the overall

self-supervised proposal learning loss is written as

Eq. (6), where λself-loc, λself-cont are loss weights and

θ
self = {θself-loc,θself-cont}. This loss is optimized w.r.t.

θ
b,θr-cnn,θself to learn proposal features.

Lself
(

{Fp
n}

N
n=1, F̂

p
n;θ

self
)

= λself-locLself-loc
(

F
p
n, F̂

p
n,Pn;θ

self-loc
)

+ λself-contLself-cont
(

{Fp
n}

N
n=1, F̂

p
n;θ

self-cont
)

.

(6)

3.4. Consistency­Based Proposal Learning

To further train noise-robust object detectors, we apply

consistency losses [33, 43, 54] to ensure consistency be-

tween noisy proposal predictions and their original proposal

predictions. More precisely, we apply consistency losses to

both bounding box classification and regression predictions.

For consistency loss for bounding box classification pre-

dictions C
p
n, Ĉ

p
n, we use KL divergence as the loss to en-

force class predictions from noisy proposals and their origi-

nal proposals to be consistent, follwing [33, 54], see Eq. (7).

Lcons-cls
(

C
p
n, Ĉ

p
n

)

=
1

K

∑

k

KL
(

C
p
n‖Ĉ

p

nk

)

. (7)

Unlike image classification containing only classifica-

tion results, object detection also predicts object locations.

To further ensure proposal prediction consistency, we com-

pute consistency loss in Eq. (8) to enforce object location

predictions from noisy proposals and their original propos-

als to be consistent. Here we use the standard bounding

box regression loss, i.e., smoothed ℓ1 loss [14]. We only

selected the easiest noisy proposal feature to compute this

loss for training stability.

Lcons-reg
(

R
p
n, R̂

p
n

)

= min
k

(

smoothℓ1

(

R
p
n − R̂

p

nk

))

.

(8)

By combining the consistency losses for bounding box

classification predictions in Eq. (7) and for bounding box

regression predictions in Eq. (8), the overall consistency-

based proposal learning loss is written as Eq. (9), where

λcons-cls, λcons-reg are loss weights. Following [33, 54], this

loss is optimized w.r.t. Ĉp
n, R̂

p
n (not w.r.t. C

p
n,R

p
n), i.e.,

θ
b,θr-cnn,θcls,θreg. Then we can learn more noisy-robust

proposal features and predictions.

Lcons
(

C
p
n,R

p
n, Ĉ

p
n, R̂

p
n

)

= λcons-clsLcons-cls
(

C
p
n, Ĉ

p
n

)

+ λcons-regLcons-reg
(

R
p
n, R̂

p
n

)

.

(9)

4. Experiments

In this section, we will conduct thorough experiments to

analyze our proposal learning approach and its components

for semi-supervised object detection.

4.1. Experimental Setup

4.1.1 Dataset and evaluation metrics.

We evaluate our approach on the challenging COCO dataset

[30]. The COCO dataset contains more than 200K images

for 80 object classes. Unlike many semi-supervised object

detection works conducting experiments on a simulated set-

ting by splitting a fully annotated dataset into labeled and

unlabeled subsets, we use all available labeled and unla-

beled training data in COCO as our Dl and Du respec-

tively, following [39]. More precisely, we use the COCO

train2017 set (118K images) as Dl and the COCO

unlabeled2017 set (123K images) as Du to train object

detectors. In addition, we use the COCO val2017 set (5K

images) for validation and ablation studies, and the COCO

test-dev2017 set (20K images) for testing.

We use the standard COCO criterion as our evaluation

metrics, including AP (averaged average precision over

different IoU thresholds, the primary evaluation metric of

COCO), AP50 (average precision for IoU threshold 0.5),

AP75 (average precision for IoU threshold 0.75), APS (AP

for small objects), APM (AP for medium objects), APL (AP

for large objects).
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Table 1. Experimental results of different components of our proposal learning approach on the COCO val2017 set. ResNet-50 is

chosen as our CNN backbone here. No “X”, “Lself-loc”, “Lself-cont”, “Lcons-cls”, “Lcons-reg”, “PLLD”, and “FSWA” denote the fully-supervised

baseline, the proposal location loss in Eq. (4), the contrastive loss in Eq. (5), the consistency loss for bounding box classification predictions

in Eq. (7), the consistency loss for bounding box regression predictions in Eq. (8), Proposal Learning for Labeled Data, and Fast Stochastic

Weight Averaging, respectively.

L
self-loc

L
self-cont

L
cons-cls

L
cons-reg PLLD FSWA AP AP50 AP75 APS APM APL

37.4 58.9 40.7 21.5 41.1 48.6

X 37.6↑0.2 58.9↑0.0 40.7↑0.0 21.4↓0.1 41.1↑0.0 49.2↑0.6
X 37.6↑0.2 59.0↑0.1 41.2↑0.5 21.2↓0.3 41.0↓0.1 49.0↑0.4

X X 37.7↑0.3 59.2↑0.3 40.6↓0.1 21.8↑0.3 41.3↑0.2 49.1↑0.5
X 37.8↑0.4 59.2↑0.3 41.0↑0.3 21.6↑0.1 41.2↑0.1 50.1↑1.5

X 37.6↑0.2 59.0↑0.1 40.8↑0.1 21.0↓0.5 41.3↑0.2 49.2↑0.6
X X 37.9↑0.5 59.2↑0.3 40.9↑0.2 21.4↓0.1 41.1↑0.0 50.6↑2.0

X X X X 38.0↑0.6 59.2↑0.3 41.1↑0.4 21.6↑0.1 41.5↑0.4 50.4↑1.8
X X X X X 38.1↑0.7 59.3↑0.4 41.2↑0.5 21.7↑0.2 41.2↑0.1 50.7↑2.1

X 37.5↑0.1 59.0↑0.1 40.7↑0.0 22.2↑0.7 41.1↑0.0 48.6↑0.0
X X X X X X 38.4↑1.0 59.7↑0.8 41.7↑1.0 22.6↑1.1 41.8↑0.7 50.6↑2.0

4.1.2 Implementation details.

In our experiments, we choose Faster R-CNN [41] with

feature pyramid networks [28] and RoIAlign [17] as our

proposal-based object detectors, which are the foundation

of many recent state-of-the-art object detectors. Differ-

ent CNN backbones, including ResNet-50 [18], ResNet-

101 [18], ResNeXt-101-32×4d [55], and ResNeXt-101-

32×4d with Deformable ConvNets [63] (ResNeXt-101-

32×4d+DCN), are chosen.

We train object detectors on 8 NVIDIA Tesla V100

GPUs for 24 epochs, using stochastic gradient descent with

momentum 0.9 and weight decay 0.0001. During each

training mini-batch, we randomly sample one labeled image

and one unlabeled image for each GPU, and thus the effec-

tive mini-batch size is 16. Learning rate is set to 0.01 and

is divided by 10 at the 16th and 22nd epochs. We use linear

learning rate warm up to increase learning rate from 0.01/3

to 0.01 linearly in the first 500 training iterations. In addi-

tion, object detectors are first trained only on labeled data

using loss Eq. (1) for 6 epochs. We also use fast stochastic

weight averaging for checkpoints from the last few epochs

for higher performance, following [1].

Loss weights λself-loc, λself-cont, λcons-cls, λcons-reg are set to

0.25, 1, 1, 0.5, respectively. We add two types of noise,

DropBlock [12] with block size 2 and SpatialDropout [48]

with dropout ratio 1/64, to proposal convolutional feature

maps. Other types of noise are also possible and we find

that these two types of noise work well. The number of

noisy proposal features for each proposal is set to 4, i.e.,

K = 4. The temperature hyper-parameter τ in Eq. (5) is

set to 0.1, following [57]. Images are resized so that the

shorter side is 800 pixels with/without random horizontal

flipping for training/testing. Considering that most of the

proposals mainly contain backgrounds, we only choose the

positive proposals for labeled data and the proposals having

maximum object score larger than 0.5 for unlabeled data to

compute proposal learning based losses, which ensures net-

works focusing more on objects than backgrounds.

Our experiments are implemented based on the PyTorch

[36] deep learning framework and the MMDetection [6]

toolbox.

4.2. Ablation Studies

In this part, we conduct elaborate experiments to analyze

the influence of different components of our proposal learn-

ing approach, including different losses defined in Eq. (4),

(5), (7), (8), applying proposal learning for labeled data, and

Fast Stochastic Weight Averaging (FSWA). Without loss of

generality, we only use ResNet-50 as our CNN backbone.

For the first two subparts, we only apply proposal learning

to unlabeled data, i.e., using Eq. (2). For the first three sub-

parts, we do not use FSWA. Results are shown in Table 1,

where the first row reports results from fully-supervised

baseline, i.e., training object detectors only on labeled data

using Eq. (1). For all experiments, we fix the initial random

seed during training to ensure that the performance gains

come from our approach instead of randomness.

Self-supervised proposal learning. We first discuss the in-

fluence of our self-supervised proposal learning module. As

shown in Table 1, compared to the fully-supervised base-

line, both the proposal location loss and the contrastive loss

obtain higher AP (37.6% vs. 37.4% and 37.6% vs. 37.4%

respectively). The combination of these two losses, which

forms the whole self-supervised proposal learning module,

improves AP from 37.4% to 37.7%, which confirms the ef-

fectiveness of the self-supervised proposal learning module.

The AP gains come from that this module learns better pro-

posal features from unlabeled data.
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Consistency-based proposal learning. We then discuss

the influence of our consistency-based proposal learning

module. From Table 1, we observe that applying consis-

tency losses to both bounding box classification and regres-

sion predictions obtains higher AP than the fully-supervised

baseline (37.8% vs. 37.4% and 37.6% vs. 37.4% respec-

tively). The combination of these two consistency losses,

which forms the whole consistency-based proposal learn-

ing module, improves AP from 37.4% to 37.9%. The AP

gains come from that this module learns better proposal fea-

tures and predictions from unlabeled data. In addition, af-

ter combining the consistency-based proposal learning and

self-supervised proposal learning modules, i.e., using our

whole proposal learning approach, the AP is improved to

38.0% further, which shows the complementarity between

our two modules.

Proposal learning for labeled data. We also apply our pro-

posal learning approach to labeled data, i.e., using Eq. (3).

From Table 1, we see that proposal learning for labeled data

boosts AP from 38.0% to 38.1%. This is because our pro-

posal learning benefits from more training data. The re-

sults also show that our proposal learning can improve fully-

supervised object detectors potentially, but since we focus

on semi-supervised object detection, we would like to ex-

plore this in the future.

Fast stochastic weight averaging. We finally apply FSWA

to our approach and obtain 38.4% AP, as shown in Table 1.

This result suggests that FSWA can also boost performance

for semi-supervised object detection. To perform a fair

comparison, we also apply FSWA to the fully-supervised

baseline. FSWA only improves AP from 37.4% to 37.5%.

The results demonstrate FSWA gives more performance

gains for our approach compared to the fully-supervised

baseline.

According to these results, in the rest of our paper, we

use all components of our proposal learning on both labeled

and unlabeled data (i.e., using Eq. (3)), and apply FSWA to

our approach.

4.3. Main Results

We report the result comparisons among fully-

supervised baselines, Data Distillation (DD) [39], and our

approach in Table 2 on the COCO test-dev2017 set.

As we can see, our approach obtains consistently better

results compared to the fully-supervised baselines for dif-

ferent CNN backbones. In addition, both DD and our ap-

proach obtain higher APs than the fully-supervised base-

lines, which demonstrates that training object detectors on

both labeled and unlabeled data outperforms training object

detectors only on labeled data, confirming the potentials of

semi-supervised object detection. Using our approach alone

obtains comparable APs compared to DD.

In particular, we also evaluate the efficiency of our

Table 2. Experimental result comparisons among fully-supervised

baselines (no “X”), Data Distillation (DD) [39], and our approach

(Ours) on the COCO test-dev2017 set. Different CNN back-

bones are chosen. Results of DD are reproduced by ourselves and

are comparable with or even better than the results reported in the

original DD paper.

CNN backbone DD Ours AP AP50 AP75 APS APM APL

ResNet-50

37.7 59.6 40.8 21.6 40.6 47.2

X 38.5 60.4 41.7 22.5 41.9 47.4

X 38.6 60.2 41.9 21.9 41.4 48.9

X X 39.6 61.5 43.2 22.9 42.9 49.8

ResNet-101

39.6 61.2 43.2 22.2 43.0 50.3

X 40.6 62.2 44.3 23.2 44.4 50.9

X 40.4 61.8 44.2 22.6 43.6 51.6

X X 41.3 63.1 45.3 23.4 45.0 52.7

ResNeXt-101-32×4d

40.7 62.3 44.3 23.2 43.9 51.6

X 41.8 63.6 45.6 24.5 45.4 52.4

X 41.5 63.2 45.4 23.9 44.8 52.8

X X 42.8 64.4 46.9 24.9 46.4 54.4

ResNeXt-101-32×4d+DCN

44.1 66.0 48.2 25.7 47.3 56.3

X 45.4 67.0 49.6 27.3 49.0 57.9

X 45.1 66.8 49.2 26.4 48.3 57.6

X X 46.2 67.7 50.4 27.6 49.6 59.1

method by combining with DD. More specifically, we first

train object detectors using our approach, then follow DD to

label unlabeled data, and finally re-train object detectors us-

ing both fully-supervised loss and proposal learning losses.

The combination of our approach and DD obtains 39.6%

(ResNet-50), 41.3% (ResNet-101), 42.8% (ResNeXt-101-

32×4d), and 46.2% (ResNeXt-101-32×4d+DCN) APs,

which outperforms the fully-supervised baselines by about

2.0% on average and DD alone by 0.9% on average. The

results demonstrate that our approach and DD are comple-

mentary to some extent.

5. Conclusion

In this paper, we focus on semi-supervised object de-

tection for proposal-based object detectors (a.k.a. two-

stage object detectors). To this end, we present a proposal

learning approach, which consists of a self-supervised pro-

posal learning module and a consistency-based proposal

learning module, to learn proposal features and predictions

from both labeled and unlabeled data. The self-supervised

proposal learning module learns context-aware and noise-

robust proposal features by a proposal location loss and a

contrastive loss respectively. The consistency-based pro-

posal learning module learns noise-robust proposal features

and predictions by consistency losses for both bounding box

classification and regression predictions. Experimental re-

sults show that our approach outperforms fully-supervised

baselines consistently. It is also worth mentioning that we

can further boost detection performance by combining our

approach and data distillation. In the future, we will explore

more self-supervised learning and semi-supervised learning

ways for semi-supervised object detection, and explore how

to apply our approach to semi-supervised instance segmen-

tation.
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