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Abstract

Generative adversarial networks (GANs) are able to

generate high resolution photo-realistic images of objects

that “do not exist.” These synthetic images are rather diffi-

cult to detect as fake. However, the manner in which these

generative models are trained hints at a potential for infor-

mation leakage from the supplied training data, especially

in the context of synthetic faces. This paper presents exper-

iments suggesting that identity information in face images

can flow from the training corpus into synthetic samples

without any adversarial actions when building or using the

existing model. This raises privacy-related questions, but

also stimulates discussions of (a) the face manifold’s char-

acteristics in the feature space and (b) how to create gener-

ative models that do not inadvertently reveal identity infor-

mation of real subjects whose images were used for train-

ing. We used five different face matchers (face recognition,

FaceNet, ArcFace, SphereFace and Neurotechnology Mega-

Matcher) and the StyleGAN2 synthesis model, and show

that this identity leakage does exist for some, but not all

methods. So, can we say that these synthetically generated

faces truly do not exist? Databases of real and synthetically

generated faces are made available with this paper to allow

full replicability of the results discussed in this work.

1. Introduction

Since generative adversarial networks (GANs) were first

introduced in 2014 [9], they have demonstrated impressive

photo-realistic image-generating capabilities. During the

GAN training process, a generator and a discriminator are

pitted against each other for the purpose of elevating the

generator. In the context of image data, these two adver-

saries battle over the production and recall of “fake” images;

the generator attempts to fool the discriminator by produc-

ing images that mimic the real data distribution while the

discriminator aims not to be fooled by comparing and judg-

ing fake images from real. At the end of this minimax game,
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Figure 1: The proposed identity leakage path through the

StyleGAN2 generator follows the pink line from real im-

ages (FFHQ) to generated images (SG2).

the resulting generator, having learned the general distribu-

tion of the supplied training data, can be used to synthesize

never-before-seen “fake” images that adopt the character-

istics of real face images while not appearing in the train-

ing data. The results and future promise of these generative

models have led to heavy academic intrigue [22, 11]. How-

ever, there is a potential risk regarding their ability to gener-

ate images to establish fake identities that can be exploited.

As a phenomenon closely related to the well-known “fake

news” problem bedeviling rational discourse in politics, sci-

ence, and society, the risks of identity synthesis are analo-

gous to the risks of baseless information synthesis and de-

serve careful attention from the originating domain as well

as the discipline of ethics [25].
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Of primary interest in this paper is an artifact of gen-

erative models that concerns individuals’ sense of privacy

regarding personal image data: identity leakage in gener-

ative models. These models optimize themselves to learn

what comprises a realistic face, and in so doing, devise an

encoding (a latent space) used as a starting point for subse-

quent syntheses. The optimization usually consumes mil-

lions of authentic face images, whose features are implic-

itly incorporated into the discriminator and thus into the re-

sulting model. The model is then sampled to generate im-

ages of the faces of “nonexistent” people, starting with a

latent space vector. There two important research questions

at hand, which we address in this paper:

Q1. Does identity information from the real sub-

jects, as embodied in training data, leak into the

generated (“fake”) samples?

Q2. If answer to Q1 is affirmative, might this be

a threat to privacy?

Figure 1 shows the flow of this information as it passes

through the model training process from real image to fake

image. So, if by chance, one’s face image data exists in

the training data, there is an opportunity for their data to in-

advertently leak. These newly generated faces should then

reproduce training identities in a way that skews the perfor-

mance of a face recognition system. That is, the probability

of being falsely matched to a face that ”does not exist” is

higher than when one’s face is not included in the training

data set. This paper is the first known to us to conduct exper-

imental assessment of this problem in StyleGAN [16], and

we demonstrate that identity information leakage does ex-

ist for some face matchers while for others it does not. This

variation in information leakage across matchers also de-

mands careful consideration in the context of face recogni-

tion system design.

This result stimulates additional intriguing research

questions: can or should we sample the latent space where

realistic face representations reside in some specific way to

avoid such information leakage when generating face im-

ages of “nonexistent” subjects? Is there any specific ar-

rangement of authentic faces in this latent space? If so,

can we learn the general characteristics and geometry of

this realistic manifold? We hope the results presented in

this paper will stimulate a scientific discourse about the role

of generative models in biometrics and their privacy-related

attributes.

We offer databases of real and synthetic faces used in

this work to other researchers to facilitate replication of our

experiments and investigation of new related problems.

Figure 2: Style Mixing with StyleGAN2 (Truncation ψ =

0.5)

2. Related Work

2.1. Generative Models

A primary motivation for the use of generative models

is their ability to produce high-quality data. To this end,

NVIDIA’s most recent contribution to the world of genera-

tive models is called StyleGAN2 [17], which improves upon

their original StyleGAN work [16]. Before StyleGAN,

NVIDIA released ProGAN [15], one of the first GANs to

produce high-quality images. Given a large enough training

data set, all three of these models can be trained to repro-

duce representative images of nearly any object. However,

one of the most popular, successful applications has been

a given model’s ability to generate high-resolution face im-

ages that are informally considered very realistic. Built atop

the ProGAN paradigm and trained on the FFHQ data set

[16], both StyleGAN and StyleGAN2 learned to recreate

these synthetic faces from the ground up using separable

resolution-based “styles,” hence the name. Coarse styles,

also referred to as features, control pose and general face

shape; medium styles control more detailed hair and facial

features; fine features control color scheme for eyes, hair,

skin, and even background. Due to the designed separa-

bility of these learned features, hybrid faces can be synthe-

sized through latent vector manipulation, while still exhibit-

ing real image characteristics, with some degree of useful

control, as seen in Figure 2. In this figure, each “inner” cell

can be seen as a combination of the coarse features of the

column and the medium-to-fine features of the row.

2.2. Information Leakage

GAN-based leakage and model inversion attacks have

proven to be rather effective in terms of extracting sensi-

tive data from generative models, both intentionally and un-

intentionally. Hitaj et al. [13] suggest that GANs can act

like composite artists generating sketches of an eyewitness’s

memory of an individual. Though this “sketch” (a synthetic

sample) may not encompass all features of the individual,
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relevant and distinctive details about this person could be

exposed. This is further explained by Fredrikson et al. [8]

who focus on adversarial attacks. Given access to a gener-

ative model’s architecture and weights, they show that one

can leverage facial recognition confidence scores to recon-

struct a person’s face image. Goodfellow et al. [10] assert

that a GAN (given infinite time and resources) would gen-

erate samples originally found in the training data, i.e. there

is a possibility (albeit small) for an unprovoked 100% infor-

mation leakage for a given sample from the training set.

2.3. Remedies for Information Leakage

Since sensitivity regarding personal data leakage into

machine learning models has been so well documented, sev-

eral solutions have been developed to prevent such infor-

mation leakage [29, 3, 27]. At the heart of many such ef-

forts is the notion of differential privacy, which acts as a

privacy guarantee for sensitive data in the context of ma-

chine learning. For GANs, differential privacy can ensure

synthetic data production with a limited risk of private in-

formation exposure. Xu et al. [28] offer GANobfuscator as

a solution to the problem of data leakage in GANs. GANob-

fuscator adopts differential privacy in two ways: Gaussian

noise injection and gradient-pruning; the latter method also

boosts model stability during the training process. Once the

model has been trained on the noise-infused data, “new”

data can be generated by GANobfuscator and released into

the public with mathematically bounded concern for privacy

attacks, such as the already mentioned reverse engineering

of training data. Similarly, Chen et al. [5] offer GANs based

on auto-encoders and variational auto-encoders designed to

protect privacy while retaining high data utility.

2.4. Fake Image Detection

Substantial efforts have gone into “Deepfake” detection,

which asks the question of whether an image has been dig-

itally created or manipulated in some way [14], [20], [21],

[26]. A famous example of Deepfakes follows a “This X

Does Not Exist” pattern, wherein X could be cats, apartment

units, cars, or faces. For each of these examples, a separate

GAN has been trained to generate fake images of the des-

ignated object. As mentioned earlier, GANs are incredibly

good at doing this convincingly. In response to fake im-

age generation is fake image detection. Further, researchers

have studied the effects of GAN-generated fake face images

on face recognition systems [18], claiming that several state

of the art face matchers are vulnerable to Deepfake videos.

However, this paper aims not to determine whether a face

image is fake. Quite contrarily, we aim to prove that within

these generated fake images are remnants of the real images

ingested during the GAN training process.

3. Data Sets

We use three data sets in experiments presented in this

paper. The first data set is the Flickr-Faces-HQ data set

(FFHQ), which includes 70,000 high-resolution (1024 ×
1024) images of human faces varying in age, ethnicity, im-

age background, and facial clothing/apparel (glasses, hats,

etc). The entirety of the FFHQ data was used by NVIDIA

labs to train the StyleGAN2 model, as well as the original

StyleGAN. Each of 70,000 images in FFHQ represents a

different individual’s face.

The second data set we used is a collection of 70,000

StyleGAN2-generated fake face images developed in this

work and offered along with the paper. We will call this data

set “SG2”. Along with several pre-trained models, NVIDIA

provides scripts to generate faces via latent vector manipu-

lation. In our case, we used latent vectors of length 512,

corresponding to seed values from 0 through 69999. Style-

GAN also adjusts latent vectors using the truncation trick to

balance image quality and image variety. Truncation values

of 0.0 generate high-quality images near the center, or mean

of the latent space, whereas truncation values of 1.0 gener-

ate high-variation images from peripheral areas of poorer

representation in the latent space. For our synthetic im-

age data set (SG2), we used a truncation value of ψ = 0.5

to generate variety-quality balanced face images. The pro-

vided generator script can be found in NVIDIA’s repository:

https://github.com/NVlabs/stylegan2.

The third data set, used solely to assess the face recog-

nition accuracy of various face matchers used in this work,

is an assortment of 12,004 high quality face images col-

lected by the authors1. The data set features 333 subjects

with between 4 and 78 front-facing photos per subject, cap-

tured at a resolution of 1200 × 1600 under good lighting.

This data, further referred to as UNI, was used to gauge

the relative performance of our face matchers. This set is

subject-disjoint with both the FFHQ and SG2 databases.

4. Methodology & Experiments

In this paper, “identity leakage” refers to the flow of

identity-salient facial features from real training data im-

ages (in FFHQ) to fake synthetic images (in SG2). We

hypothesize that these identity-salient features are readily

detectable by face matchers, whose job is to judge the sim-

ilarity or dissimilarity of two face images.

For a given pair of images, a face matcher can quan-

titatively compare the two images via extracted face fea-

ture vectors. This comparison between face images is com-

monly expressed as a distance, where larger distances cor-

respond to dissimilar images and smaller distances corre-

spond to similar images. To prove our hypothesis, we want

1See ND-WACV2021 Data Set at https://cvrl.nd.edu/projects/data/.
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Table 1: Face Matcher Details

Model Name Architecture Training Data (# of images) Feature Vector Length Comparison Score

face recognition [1] ResNet-34 Custom (∼3M) 128 Euclidean Distance

FaceNet [23] GoogLeNet-24 VGGFace2 [4] (∼3.3M) 512 Euclidean Distance

ArcFace [7] ResNet-100 MS-Celeb-1M [12] (∼10M) 512 Cosine Distance

SphereFace [19] ResNet-64 CASIA-Webface [30] (∼0.45M) 512 Cosine Distance

MegaMatcher 11.2 [2] Proprietary Proprietary Proprietary Proprietary

to show that the distance between a real image and a gen-

erated image is, on average, smaller than the distance be-

tween two real images. If this is the case, then identity “in-

formation” (identity-salient features) from the training data

must be spilling into the generated data, as evidenced by the

smaller distances between extracted feature vectors.

Since not all face matchers use dissimilarity-based dis-

tance scores, we simply refer to comparisons of images as

“comparison scores”. Comparison scores between pairs of

real images are referred to as “R-R” (Real-Real) while com-

parison scores between one real image and one generated

image are referred to as “R-G” (Real-Generated). Since

these scores inherently rely on the extracted face feature

vectors, identity leakage might be observable for some face

matchers but not others.

4.1. Face Matcher Details

We used five face matchers to verify our hypothesis

about identity information leakage. Four of the five match-

ers were open source, CNN-based, and implemented in

Python. The fifth technique (MegaMatcher 11.2) was a

commercial face matcher from Neurotechnology imple-

mented in C++. Information regarding model architec-

ture and training data can be found in Table 1. Note that

MegaMatcher 11.2 uses similarity-based scores, i.e. lower

scores correspond to dissimilar face images while higher

scores correspond to similar face images. All other selected

face matchers used distance, or dissimilarity scoring (lower

scores indicate stronger similarity).

4.2. Preliminary Performance Analysis on UNI

We conducted an initial set of experiments on our UNI

data set to determine the relative performance of the se-

lected face matchers, to – potentially – link the strength

of the identity leakage with the accuracy of a given face

matcher. The first step of our pipeline was to extract face

feature vectors from all 12,004 face images. In order to en-

able a fair comparison, we removed from the experiment

all images that failed the face detection step in any of the

five matchers. This yielded a usable image subset of 11,792

images.

Since the UNI data set contains multiple images per sub-

ject, matching experiments yielding both genuine and im-

postor comparison scores were conducted. The genuine

scores numbered 290,122, while the impostor scores num-

bered 442,224. Genuine scores were calculated using all

images available in the data set. On the other hand, impos-

tor scores were calculated using a subset of the data. This

subset was comprised of four images per subject since all

subjects in the UNI data set had at least four images. A

given subject’s “first” two images (indices 0 and 1) were

compared against the two “latter” images (indices 2 and 3)

of all other subjects. So, in total there were 333 subjects ×
2 “first” images × 332 other subjects × 2 “latter” images

= 442,224 impostor comparison scores per matcher. This

methodology was developed to reduce computation time as

well as balance the number of images per subject in the data

set. Comparison score results as well as the failure to enroll

rate (FTE) for each matcher can be seen in Table 2. Im-

postor and genuine score distributions are shown in Figure

3.

Table 2: UNI Comparison Results

Model Name FTE (%) AUC d′

face recognition 9.99e-4 0.9991 5.1930

FaceNet 2.49e-4 0.8945 1.6048

ArcFace 2.49e-4 0.9978 9.5513

SphereFace 2.49e-4 0.9261 2.1124

MegaMatcher 11.2 1.76e-2 0.9999 13.6908

To quantify the similarity and dissimilarity between scor-

ing distributions, we use the decidability measure d′, which

cumulates sample mean and sample variances of compari-

son scores into a scalar factor:

d′ =
|xg − xi|

√

1

2

(

xg + xi
)

(1)

where x and x denote sample mean and sample variance

of a comparison score x, respectively. The value of d′ es-

timates the degree by which the genuine distribution of xg
and impostor distribution of xi overlap (the higher d′ is, the

lower is the overlap). For uncorrelated random variables,

d′ =
√
2ζ where ζ is a standardized difference between the

expected values of two random variables, often used in hy-

pothesis testing.
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Figure 3: Genuine and impostor score distributions for each matcher on UNI. From left to right: face recognition, FaceNet,

ArcFace, SphereFace, MegaMatcher 11.2.

Based on d′ (as seen in Table 2), the relative ranking

of the five matchers is: MegaMatcher 11.2 > ArcFace >

face recognition > SphereFace > FaceNet.

4.3. Impostor Distribution Analysis between FFHQ
& SG2

Two impostor distributions of comparison scores were

produced for each face matcher. The first shows the distri-

bution of “Real-Real” (R-R) comparison scores; the second

shows the distribution of “Real-Generated” (R-G) compari-

son scores.

The R-R partition was created by pairing real images

from the FFHQ data set together. Although FFHQ origi-

nally included 70,000 real images, 12,906 images failed to

enroll in one or more of the matchers and were removed

from the set of usable “real” images. The remaining 57,094

images were split in half and matched together for a total of

28,547 pairs.

The R-G partition was created by pairing each of the us-

able 57,094 “real” images with an image from the usable

“generated” SG2 data set, i.e. the set of synthetic images

that properly enrolled in all five matchers. Note that 628

SG2 images failed to enroll to at least one matcher.

Figure 4 illustrates the R-R and R-G comparison score

distributions for each face matcher. Additionally, FTE for

each matcher for each data set, d′ and the two-sample

Kolmogorov-Smirnov test statistic are reported in Table 3.

Similar to d′, the K-S test quantifies the distance between

two distributions; the larger the test statistic is, the greater

is the distance.

The first immediate and interesting observation (from

Table 3) is that FTE values are lower for synthetic images

that from real images. This may be because face detectabil-

ity in its output is “baked into” the network, by limiting its

training inputs to images with detectable faces. Future work

might investigate how truncation value (ψ) affects face de-

tection and recognition for StyleGAN2-generated face im-

ages.

The second interesting observation is that we see a

noticeable shift between the R-R and R-G impostor

distributions towards genuine scores for ArcFace and

SphereFace matchers in Fig. 4. This type of shift suggests

that the generated face images do in fact contain identity-

salient features from the training data, i.e. identity leakage

is evident. We elaborate more on this observation in the

next section. Note that although the observed differences

are statistically significant (p < 0.001 at the significance

level alpha = 0.01), the difference in means suggests that

only ArcFace and SphereFace have leftward shifts from R-

R to R-G. On the other hand, the face recognition package

and FaceNet model show statistically significant shifts to

the right for the R-G distribution, which actually suggests

Figure 4: R-R and R-G score distributions for each matcher. From left to right: face recognition, FaceNet, ArcFace,

SphereFace, MegaMatcher 11.2.
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Table 3: “Real-real faces” (R-R) and “Real- generated faces” (R-G) comparison results, along with failure-to-enroll rates for

each face matcher, separately for real samples FTER and generated samples FTEG.

Model Name FTER FTEG d′ K-S Test Statistic p-value Difference in Means (R-R→R-G)

face recognition 3.62e-3 0.0 0.0855 0.0332 <0.001 +0.008082

FaceNet 1.71e-4 0.0 0.1055 0.0496 <0.001 +0.01266288

ArcFace 1.71e-4 0.0 0.3801 0.1562 <0.001 −0.05384

SphereFace 1.71e-4 0.0 0.4404 0.1895 <0.001 −0.06824

MegaMatcher 11.2 1.84e-1 8.97e-3 0.0116 0.0026 0.9978 −0.04813

the opposite of identity leakage. This varying behavior be-

tween matchers is curious and will be further discussed the

next section as well.

5. Results & Discussion

5.1. Answering Q1: Does identity information from
the real subjects leak into the generated sam­
ples?

Before conducting any experiments, we hypothesized

that results from all five selected face matchers would

support the existence of identity leakage. However, we

quickly found that this was not the case after generating

and comparing the R-R and R-G impostor distributions

with face recognition, one of the quicker off-the-shelf face

matchers.

We then adjusted our hypothesis, thinking that maybe

only the strongest performing face matchers would sup-

port our leakage claim, hence the need for ranking the face

matchers on the UNI data set. There is a precedent for this

assumption in the iris recognition domain, where the author

found that the most accurate matchers are to the highest ex-

tent sensitive to “biometric template aging” [6]. Based on

the relative ranking of the face matchers (by the d′ metric),

we suspected that the MegaMatcher 11.2 SDK and the Ar-

cFace face matchers would yield leakage-evident results.

However, as seen in Table 3, identity leakage is sup-

ported only in ArcFace and SphereFace, the second and fifth

face matcher in terms of accuracy, respectively. Figure 4 of-

fers visual support to the same conclusions. In the two left-

most plots, we see that the face recognition and FaceNet

matchers do not show signs of identity leakage, as is the

case with MegaMatcher 11.2 in the rightmost plot. There is

strong overlap between the R-R and R-G comparison score

distributions for all three of these matchers, suggesting min-

imal or no information leakage. Contrarily, for ArcFace and

SphereFace, the R-G score distributions are shifted to the

left of the R-R scores. Since ArcFace and SphereFace com-

parison scores are distance-based, a shift to the left (smaller

distances) does support identity leakage as such a shift hints

that generated face images are, on average, “closer” to real

face images.

The question then becomes: why does identity leakage

only appear for certain face matchers? What information

is leaking that leads to difference in impostor comparison

scores? To better understand these inquiries from a qual-

itative standpoint, we constructed “closest image” grids in

Figure 5. The objective of these grids is to investigate how

different face matchers judge “close” face images, and in

so doing, gain insight into why only some matchers think

fake face images look more like the face images from spe-

cific real identities. The base images (5a, 5b) are two real

face images from the FFHQ data set. The grids below each

base image (5c, 5d) show rows of images for each face

matcher. Each row showcases the three closest synthetic

face images from the SG2 data to the corresponding base

image at the top, with the closest image on the left and

farthest on the right. For all matchers but MegaMatcher

11.2, comparison score is a distance measure (Euclidean

distance for face recognition and FaceNet, and cosine dis-

tance for ArcFace and SphereFace). For these matchers,

lower scores correspond to closer or more similar face im-

ages. For MegaMatcher, higher comparison scores mean

more similar face images.

Upon observing Figure 5, we note a few points of in-

terest regarding the face matchers’ ability to match fake and

real face images. Comparison scores for MegaMatcher 11.2

(bottom row) do not offer much in terms of visual corre-

spondence between face images. Inaccurate scores span

race, gender, and age. This suggests that perhaps Mega-

Matcher 11.2 relies on more complex, less obvious facial

features to compare, match, and verify faces. For reference,

to achieve a false acceptance rate of 0.0001%, the matching

threshold is 72, which is 8x the score (9) of the two exam-

ples in 5. Since the software is proprietary and comparison

results are rather stagnant for non-match image pairs, there

is not much we can discuss in terms of leakage.

Between the remaining four models, there seem to be

two groups: matchers that display evidence of identity leak-

age (ArcFace and SphereFace), and matchers that do not

(face recognition and FaceNet). The first group, simply

based on nomenclature, seems to revolve around nonlin-

ear geometry. In [7], Deng et al. explicitly compare Arc-

Face and SphereFace. Though the former improves upon
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(a) FFHQ/51243.png (b) FFHQ/14788.png

(c) The closest samples to (a) (d) The closest samples to (b)

Figure 5: Three closest fake face images (SG2) to real face images from FFHQ shown in (a) and (b) according to each

face matcher: face recognition, FaceNet, ArcFace, SphereFace, MegaMatcher 11.2. Row images are sorted left-to-right in

increasing order of distance to the corresponding base image.

the latter, they retain a few identifying similarities. Both

apply angular margin penalties to boost performance for

intra-class appearance variation, such as extreme pose and

age difference. ArcFace uses additive angular margin while

SphereFace uses multiplicative angular margin. Further,

both matchers compare face feature vectors via trigonomet-

ric functions and share a ResNet model architecture. Per-

haps these similarities may play a role in explaining why

these models seem to support identity leakage while other

models do not. Further work to this end includes using

GradCAM visualization [24] to quantitatively discuss face

matcher behavior regarding real and fake images.

Contrary to ArcFace and SphereFace, the

face recognition and FaceNet matchers seem to favor

linearity. One of the main focuses of Google’s contribution

with FaceNet was Euclidean-based triplet loss. Similarly,

the face recognition matcher measures similarity between

face feature vectors in Euclidean distance. We have yet

to explore this rigorously, but perhaps linearity versus

non-linearity in face matcher geometry has an effect on

identity leakage.
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Circling back to our initial question, we have experimen-

tally shown that the answer to Q1 is affirmative: the iden-

tity information can leak into generated data, although

the strength of this phenomenon is uneven across the

matchers.

5.2. Answering Q2: Might the observed data leak­
age a threat to privacy?

Figure 6 shows the false matching rate as a function

of the acceptance threshold for comparison scores be-

tween real and unrelated-real (R-R), and real vs potentially-

related-generated (R-G) face images when using the Arc-

Face face matcher (the method prone to the identity leak-

age to the highest extent in our experiments). We can note

a clear shift in false match probability when “unexisting”

faces are being matched against real subjects. To better un-

derstand this plot, we can discuss a social media-inspired

example. Recently, Facebook shut down thousands of Face-

book and Instagram accounts that used “AI-generated im-

ages” as profile photos. If Facebook had chosen to use a

matcher behaving as shown in Fig. 6 to hunt down these

fake profile photos (as generated by StyleGAN2), then real

users whose face images appeared in the training data (yel-

low curve) would be 6.6 times more likely to be falsely

matched when compared to someone who did not appear

in the training data (blue curve). The baseline false positive

rate comes from a NIST standard of 0.001 (1 in 1000) for

face recognition. Thus, the answer to Q2 is also affirma-

tive: there does exist a practical threat to privacy, and

its seriousness may be encountered even for matchers pre-

senting solid identification performance for authentic face

images.

5.3. Inconclusiveness

The fact that our findings are split between proving and

disproving identity leakage emphasizes the importance of

careful and thoughtful design in face matching systems.

Why some facial features trickle through one face recog-

nition model while not through others is still unknown. Ac-

cordingly, practical use cases of face recognition need to

account for the fact that generative models can be used to

exploit these models without an obvious adversarial attack.

Further work, including several iterations of retraining of

StyleGAN2, will hopefully shed more light on the causes

and further effects of identity leakage in generative models.

6. Conclusions and Future Directions

Identity leakage in generative models requires careful at-

tention, if only for the potential impact on privacy. It has

been shown in previous works that sensitive data can be

pried out of models via adversarial attacks, but in this pa-

per we have also shown that in some cases this data can

Figure 6: Illustration of how false match rate probability

increases when our face image is included in the training

set of StyleGAN2 with ArcFace-based matching

simply spill out of the training corpus into synthetic sam-

ples without any provocation. We also demonstrated that

identity leakage depends on the face matcher technology

in use, which may be a potentially impactful result for pri-

vacy protection-aware network design used in future mod-

els. As mentioned earlier, future endeavors include the us-

age of network visualization tools, such as GradCAM or

activation atlases, for quantitative studies of matcher be-

havior in the context of identity information leakage. Illus-

trating the differences between face feature extraction for

identity-leaking and identity-preserving models would cer-

tainly help us understand what features are used for com-

paring faces. Are these the same type of facial features that

can be leaked? Additionally, between the combinations of

training data sets, model architectures, and loss functions,

there are many, many more flavors of face matcher to test

for identity leakage. Among those are CosFace, DeepFace,

VGGFace, and SphereFace+. In a similar vein, we intend

to also explore other face synthesizer models, such as Star-

GAN, CycleGAN, and GauGAN. Finally, a validation of

proposed differential privacy-based GANs on an even larger

set of synthetic face images would test the capabilities of

available solutions and offer feedback to better prevent un-

wanted identity leakage.
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