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Abstract

Deep learning frameworks allowed for a remarkable ad-

vancement in semantic segmentation, but the data hungry

nature of convolutional networks has rapidly raised the de-

mand for adaptation techniques able to transfer learned

knowledge from label-abundant domains to unlabeled ones.

In this paper we propose an effective Unsupervised Domain

Adaptation (UDA) strategy, based on a feature clustering

method that captures the different semantic modes of the

feature distribution and groups features of the same class

into tight and well-separated clusters. Furthermore, we in-

troduce two novel learning objectives to enhance the dis-

criminative clustering performance: an orthogonality loss

forces spaced out individual representations to be orthogo-

nal, while a sparsity loss reduces class-wise the number of

active feature channels. The joint effect of these modules is

to regularize the structure of the feature space. Extensive

evaluations in the synthetic-to-real scenario show that we

achieve state-of-the-art performance.

1. Introduction

Semantic segmentation is one of the most challeng-

ing prediction tasks towards complete scene understanding

and has achieved substantial improvements thanks to deep

learning architectures. State-of-the-art approaches typically

rely on an auto-encoder structure, where an encoder extracts

meaningful compact representations of the scene and a de-

coder processes them to obtain a dense segmentation map.

Starting from the well-known FCN architecture [29], many

models have been proposed, such as PSPNet [73], DRN

[70] and DeepLab [6, 5, 4]. The main drawback of such

architectures is their high complexity: indeed, their success

is strictly related to the availability of massive amounts of

labeled data. For this reason, many datasets have been cre-

ated (e.g., Cityscapes [13] or Mapillary [35] for urban scene
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Figure 1: The proposed domain adaptation scheme is driven

by 3 main components, i.e., feature clustering, orthogonal-

ity and sparsity. These push features in the previous step (in

light gray) to new locations (colored) where features of the

same class are clustered, while features of distinct classes

are pushed away. To further improve performances, features

of distinct classes are forced to be orthogonal and sparse.

understanding), but the pixel-wise annotation procedure is

highly expensive and time consuming. To avoid this de-

manding process, UDA has come into play in order to ex-

ploit knowledge extracted from (related) data sources where

labels are easily accessible to the problem at hand.

Three main levels to which adaptation may occur can

be identified [55]: namely, at the input, features or output

stages. A popular solution has become to bridge the do-

main gap at an intermediate or output representation level

by means of adversarial techniques [22, 21, 33]. The ma-

jor drawback of these kind of approaches is that they usu-

ally perform a semantically unaware alignment, as they ne-

glect the underlying class-conditional data distribution. Ad-

ditionally, they typically require a long training time to con-

verge and the process may be unstable.

Differently from these techniques, our approach is sim-
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ple and does not require complex adversarial learning

schemes: it entails only a slight increase of computation

time with respect to the sole supervised learning. In this

work we focus on feature-level UDA. The main idea is de-

picted in Fig. 1: we devise a domain adaptation technique

specifically targeted to guide the latent space organization

and driven by 3 main components. The first is a feature

clustering method developed to group together features of

the same class, while pushing apart features belonging to

different classes. This constraint, which works on both do-

mains, is similar in spirit to the recent progresses in con-

trastive learning for classification problems [8]; however, it

has been developed aiming at a simpler computation, as the

number of features per image is significantly larger than in

the classification task. The second is a novel orthogonality

requirement for the feature space, aiming at reducing the

cross-talk between features belonging to different classes.

Finally, a sparsity constraint is added to reduce the number

of active channels for each feature vector: our aim is to en-

force the capability of deep learning architectures to learn

a compact representation of the scene. The combined ef-

fect of these modules allows to regularize the structure of

the latent space in order to encompass the source and target

domains in a shared representation.

Summarizing, our main contributions are: (1) we extend

feature clustering (similarly to contrastive learning) to se-

mantic segmentation; (2) we introduce orthogonality and

sparsity objectives to force a regular structure of the em-

bedding space; (3) we achieve state-of-the-art results on

feature-level adaptation on two widely used benchmarks.

2. Related Work

Unsupervised Domain Adaptation. The majority of the

UDA techniques focus on a distribution matching to bridge

the statistical gap affecting data representations from dif-

ferent domains. While early approaches directly quantify

the domain shift in terms of first or second order statistics

[60, 30, 31, 51, 52], extremely successful has been the intro-

duction of adversarial learning as an adaptation technique

[19]: a domain discriminator implicitly captures the domain

discrepancy, which is then minimized in an adversarial fash-

ion. Adversarial adaptation has been first introduced for

image classification, both at pixel and feature levels, in or-

der to produce a target-like artificial supervision [28, 3] or

to learn a domain invariant latent space [19, 59]. A vari-

ety of techniques have been proposed to tackle the UDA

task, ranging from completely non-adversarial approaches

[67, 16, 1, 68, 12, 43] to enhanced adversarial strategies

[14, 63].

UDA for Semantic Segmentation. The aforementioned

adaptation methods have been developed in the context of

image classification. Nonetheless, semantic segmentation

introduces further challenges, as dense classification de-

mands for structured predictions that must capture high-

level global contextual information, while simultaneously

reaching pixel-level precision. Thus, domain adaptation in

semantic segmentation calls for more sophisticated tech-

niques to face the additional complexities. In turn, the adap-

tation is overly rewarding, being human effort in pixel-level

labeling extremely expensive and time consuming.

Multiple methods have been recently proposed to tackle this

scenario. Some works seek for statistical matching in the

input (image) space to achieve cross-domain uniformity of

visual appearance. This has been attained through genera-

tive adversarial techniques [21, 34, 46, 10, 56, 39] and with

style transfer solutions [18, 66, 11]. Alternatively, domain

distribution alignment has been enforced over semantic rep-

resentations, both on intermediate or output network lev-

els. In this direction, adversarial learning has been widely

adopted [22, 45, 36, 24, 57, 58, 17, 37], as well as entropy

minimization [7, 61], self-training [2, 33, 50, 75, 74, 69] or

curriculum style approaches [72, 26].

Clustering in UDA. A few approaches have been proposed

recently to address UDA in image classification by resort-

ing to a discriminative clustering algorithm, whose goal is to

disclose target class-conditional modes in the feature space.

A group of works [23, 27, 62, 54] embed variations of the

K-means algorithm in the overall adaptation framework,

where clusters of geometrically close latent representations

are identified, revealing the semantic modes from the un-

labeled target domain. Being developed to address image

classification, these clustering strategies may lose efficacy

when dealing with semantic segmentation. Moreover, they

deeply rely on a geometric measure of feature similarity to

assign target pseudo-labels, which may not be feasible in

a very high-dimensional space. For this reason, this type

of clustering technique is often combined with a learnable

projection to discover a more easily tractable lower dimen-

sional latent space [27, 62, 54].

To overcome the lack of target semantic supervision, other

approaches [67, 16] resort to pseudo-labels directly from

network predictions to discover target class-conditional

structures in the feature space. Those structures are then

exploited to perform a within-domain feature clusterization

[16] and cross-domain feature alignment by centroid match-

ing [67, 16]. Starting from analogous premises, we extend a

similar form of inter and intra class adaptation to the seman-

tic segmentation scenario, by introducing additional mod-

ules that help to address the inherent increased complexity.

Avoiding the need for target pseudo-labels, [43, 44] pro-

pose a self-supervised clustering technique to discover tar-

get modes without any form of supervision. However, their

approach is not easily scalable to semantic segmentation,

as it requires to store feature embeddings of past samples,

which is rather impractical when each data instance is asso-

ciated with thousands of latent representations.
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Quite recently, Tang et al. [53] argue that a direct class-wise

alignment over source and target features could harm the

discriminative structure of target data. Thus, they perform

intrinsic feature alignment by a joint, yet distinct, model

training with both source and target data. Nonetheless, in a

more complex semantic segmentation scenario, an implicit

adaptation could be not enough to bridge the domain gap

that affects the effectiveness of target predictions.

Orthogonality and Sparsity. Deep neural networks are

trained to learn a compact representation of the scene. How-

ever, no constraint is posed on the orthogonality among fea-

ture vectors belonging to different classes or on the sparsity

of their activations [48, 64]. The orthogonality between fea-

ture vectors has been recently proposed for UDA in [38, 65].

In these works, a penalty term is introduced to force the

prototypes (i.e., the class centers) to be orthogonal. Differ-

ently from these approaches, we apply a feature-wise en-

tropy minimization constraint, imposing that each feature is

orthogonal with respect to all but one centroid.

To minimize the interference among features we drive

them to be channel-wise sparse. To the best of our knowl-

edge, there are no prior works employing channel-wise

sparsification in deep learning models. However, some

prior techniques exist for domain adaptation on linear mod-

els exploiting sparse codes on a shared dictionary between

the domains [47, 71]. Additionally, in [40] an expectation

maximization approach is proposed to compute sparse code

vectors which minimize the energy of the model. Although

the approach is applied to linear encoders and decoders for

simplicity, it could be extended to non-linear models.

3. Method

In this section, we provide an in depth description of the

core modules of the proposed method. Our approach lever-

ages a clustering objective applied over the individual fea-

ture representations, with novel orthogonality and sparsity

constraints. Specifically, inter and intra class alignments are

enforced by grouping together features of the same seman-

tic class, while simultaneously pushing away those of differ-

ent categories. By enforcing the clustering objective on both

source and target representations, we drive the model to-

wards feature-level domain alignment. We further regular-

ize the distribution of latent representations by the joint ap-

plication of an orthogonality and a sparsity losses. The or-

thogonality module has a two-fold objective: first, it forces

feature vectors of kindred semantic connotations to activate

the same channels, while turning off the remaining ones;

second, it constrains feature vectors of dissimilar seman-

tic connotations to activate different channels, i.e., with no

overlap, to reduce cross interference. The sparsity objective

further encourages a lower volume of active feature chan-

nels from latent representations, i.e., it concentrates the en-

ergy of the features on few dimensions.

A graphical outline of the approach with all its compo-

nents is shown in Fig. 2: the training objective is given by

the combination of the standard supervised loss with the

proposed adaptation modules, i.e., it is computed as:

L′
tot = Lce + λcl · Lcl + λor · Lor + λsp · Lsp (1)

where Lce is the standard supervised cross entropy loss.

The other components will be detailed in the following sec-

tions: the main clustering objective (Lcl) is introduced in

Section 3.1. The orthogonality constraint (Lor) is discussed

in Section 3.2 and finally the sparsity constraint (Lsp) is de-

tailed in Section 3.3. The λ parameters balance the multiple

losses and are experimentally chosen using a validation set.

In addition, we further integrate the proposed adaptation

method with an off-the-shelf entropy-minimization like ob-

jective (Lem), to provide an extra regularizing action over

the segmentation feature space and ultimately achieve an

improved performance in some evaluation scenarios. In

particular, we adopt the simple, yet effective, maximum

squares objective of [7], in its image-wise class-balanced

version. Hence, we can define the ultimate training objec-

tive comprising the entropy module as:

Ltot = L′
tot + λem · Lem (2)

3.1. Discriminative Clustering

In the considered UDA setting, we are provided with

plenty of samples Xs
n ∈ R

H×W×3 from a source dataset, in

conjunction with their semantic maps Ys
n ∈ R

H×W . Those

semantic maps contain at each spatial location a ground

truth index belonging to the set of possible classes C, which

denotes the semantic category of the associated pixel. Con-

currently, we have at our disposal target training samples

X
t
n ∈ R

H×W×3 with no label maps (we allow only the

availability of a small amount of target labels for valida-

tion and testing purposes). Despite sharing similar high-

level semantic content, the source and training samples are

distributed differently, preventing a source-based model to

achieve a satisfying prediction accuracy on target data with-

out adaptation. We denote as S = F ◦ C the segmentation

network composed of an encoder and a decoder modules,

namely the feature extractor F and the classifier C. No-

tice that the proposed method is agnostic to the employed

deep learning model, except for the assumption of an auto-

encoder structure and of positive feature values as provided

by ReLU activations that are typically placed at the encoder

output (as almost all the current state-of-the-art approaches

for semantic segmentation).

To bridge the domain gap between the source and target

datasets we operate at the feature level. The discrepancy

of input statistics across domains is reflected into a shift of

feature distribution in the latent space spanned by the fea-

ture extractor. This ultimately may cause the source-trained
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Figure 2: Overview of the proposed approach. Features after supervised training on the source domain are represented in

light gray, while features of the current step are colored. A set of techniques is employed to better shape the latent feature

space spanned by the encoder. Features are clustered and the clusters are forced to be disjoint. At the same time, features

belonging to different classes are forced to be orthogonal with respect to each other. Additionally, features are forced to be

sparse and an entropy minimization loss could also be added to guide target samples far from the decision boundaries.

classifier to draw decision boundaries crossing high density

regions of the target latent space [61], since it is inherently

unaware of the target semantic modes extracted from unla-

beled target data. Thus, the classification performance over

the target domain is strongly degraded when compared to

the upper bound of the source prediction accuracy.

We cope with this performance degradation by resort-

ing to a clustering module, that serves as constraint to-

wards a class-conditional feature alignment between do-

mains. Given a batch of source (Xs
n) and target (Xt

n) train-

ing images (for ease of notation we pick a single image per

domain), we first extract the feature tensors F
s
n = F (Xs

n)
and F

t
n = F (Xt

n), along with the computed output segmen-

tation maps Ss
n = S(Xs

n) and S
t
n = S(Xt

n). The clustering

loss is then computed as:

Lcl=
1

|Fs,t
n |

∑

fi∈F
s,t
n

ŷi∈S
s,t
n

d(fi, cŷi
)−

1

|C|(|C|−1)

∑

j∈C

∑

k∈C
k 6=j

d(cj ,ck)

(3)

where fi is an individual feature vector corresponding to a

single spatial location from either source or target domain

and ŷi is the corresponding predicted class (to compute ŷi
the segmentation map S

s,t
n is downsampled to match the

feature tensor spatial dimensions). The function d(·) rep-

resents a generic distance measure, that we set to the L1
norm (we also tried the L2 norm but it yielded lower re-

sults). Finally, cj denotes the centroid of semantic class

j ∈ C computed according to the standard formula:

cj =

∑
fi

∑
ŷi
δj,ŷi

fi∑
ŷi
δj,ŷi

, j ∈ C (4)

where δj,ŷi
is equal to 1 if ŷi = j, and to 0 otherwise.

The clustering objective is composed of two terms, the

first measures how close features are from their respective

centroids and the second how spaced out clusters corre-

sponding to different semantic classes are. Hence, the ef-

fect provided by the loss minimization is twofold: firstly,

feature vectors from the same class but different domains

are tightened around class feature centroids; secondly, fea-

tures from separate classes are subject to a repulsive force

applied to feature centroids, moving them apart.

3.2. Orthogonality

As opposed to previous works on clustering-based adap-

tation methods for image classification, in semantic seg-

mentation additional complexity is brought by the dense

structured classification. To this end, we first introduce an

orthogonality constraint in the form of a training objective.

More precisely, feature vectors from either domains, but of

different semantic classes according to the network predic-

tions, are forced to be orthogonal, meaning that their scalar

product should be small. On the contrary, features shar-

ing semantic classification should carry high similarity, i.e.,

large scalar product. Yet, feature tensors associated to train-

ing samples enclose thousands of feature vectors to cover

the entire spatial extent of the scene and to reach pixel-level

classification. Thus, since measuring pair-wise similarities

requires a significant computational effort, we calculate the

scalar product between each feature vector and every class

centroid cj (centroids are computed using Eq. 4). Inspired

by [43, 44], we devise the orthogonality objective as an en-

tropy minimization loss that forces each feature to be or-

thogonal with respect to all the centroids but one:

Lor = −
∑

fi∈F (Xs,t
n )

∑

j∈C

pj(fi) log pj(fi) (5)

where {pj(fi)} denotes a probability distribution derived as:

pj(fi) =
e〈fi,cj〉

∑
k∈C e

〈fi,ck〉
, j ∈ C (6)
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The loss minimization forces a peaked distribution of the

probabilities {pj(fi)}, promoting the orthogonality prop-

erty as described above, since each feature vector is com-

pelled to carry a high similarity score with a single class

centroid. The overall effect of the orthogonality objective is

to promote a regularized feature distribution, which should

ultimately boost the clustering efficacy in performing do-

main feature alignment.

3.3. Sparsity

To strengthen the regularizing effect brought by the or-

thogonality constraint, we introduce a further training ob-

jective to better shape class-wise feature structures inside

the latent space. In particular, we propose a sparsity loss,

with the intent of decreasing the number of active feature

channels of latent vectors. The objective is defined as fol-

lows:

Lsp = −
∑

i∈C

||c̃i − ρ||22 (7)

where c̃i stands for the normalized centroid ci in [0, 1]D

and D denotes the number of feature maps in the encoder

output. We also empirically set ρ = [0.5]D. It can be noted

that the sparsifying action is delivered on class centroids,

thus applying an indirect, yet homogeneous, influence over

all feature vectors from the same semantic category. The

result is a semantically-consistent suppression of weak ac-

tivations, while rather active ones are jointly raised.

While the orthogonality objective aims at promoting dif-

ferent sets of activations on feature vectors from separate

semantic classes, the sparsity loss seeks to narrow those sets

to a limited amount of units. Again, the goal is to ease the

clustering loss task in creating tight and well distanced ag-

gregations of features of similar semantic connotation from

either source and target domains, by providing an improved

regularity to the class-conditional semantic structures inside

the feature space.

4. Experimental Setup

Datasets. Supervised training is performed on the syn-

thetic datasets GTA5 [41] and SYNTHIA [42]. We employ

Cityscapes [13] as target domain. The GTA5 [41] contains

24966 synthetic images taken from a car perspective in US-

style virtual cities, with a high level of quality and realism.

On the other hand, the SYNTHIA [42] offers 9400 images

from virtual European-style towns with large scene variabil-

ity under various light and weather conditions, but little vi-

sual quality. For evaluation on real datasets, respectively

19 and 16 compatible classes are considered when adapting

from GTA5 and SYNTHIA. The Cityscapes [13] is instead

provided with the limited amount of 2975 images acquired

in 50 European cities. The original training set (without

labels) is used for unsupervised adaptation, while the 500
images in the original validation set are used as a test set.

Model Architecture. The modules introduced in this

work are agnostic to the underlying network architecture

and can be extended to other scenarios. For fair com-

parison with previous works [57, 7, 61] we employ the

DeepLab-V2, a fully convolutional segmentation network

with ResNet-101 [20] or VGG-16 [49] as backbones. Fur-

ther details on the segmentation network architecture can

be found in [57, 61], as we follow the same implementation

adopted in those works. We initialize the two encoder net-

works with ImageNet [15] pretrained weights. In addition,

prior to the actual adaptation phase, we supervisedly train

the segmentation network on source data.

Training Details. The model is trained with the start-

ing learning rate set to 2.5 × 10−4 and decreased with a

polynomial decay rule of power 0.9. We employ weight de-

cay regularization of 5× 10−4. Following [7], we also ran-

domly apply mirroring and gaussian blurring for data aug-

mentation during the training stage. To accommodate for

GPU memory limitations, we resize images from the GTA5

dataset up to a resolution of 1280 × 720 px, as done by

[57]. SYNTHIA images are instead kept to the original size

of 1280×780 px. As for the target Cityscapes dataset, train-

ing unlabeled images are resized to 1024×512 px, whereas

the results of the testing stage are reported at the original

image resolution (2048 × 1024 px). We use a batch size

of 1 and the hyper-parameters are tuned by resorting to a

small subset of labeled target data that we set aside from

the original target training set and reserve only for param-

eter selection. As evaluation metric, we employ the mean

Intersection over Union (mIoU). The entire model is de-

veloped using PyTorch and trained with a single GPU. The

code is available at https://lttm.dei.unipd.it/

paper_data/UDAclustering/.

5. Results

We evaluate the performance of our approach on two

widely used synthetic-to-real adaptation scenarios, namely

the GTA5 → Cityscapes and SYNTHIA → Cityscapes

benchmarks. Table 1 reports the numerical results of the

experimental evaluation. We compare our model to several

state-of-the-art methods, which, similarly to our approach,

resort to a direct or indirect form of feature-level regular-

ization and distribution alignment to achieve domain adap-

tation. With source only we indicate the naı̈ve fine-tuning

approach, in which no form of target adaptation assists the

standard source supervision.

5.1. GTA5 → Cityscapes

For the GTA5 → Cityscapes and ResNet-101 config-

uration, our approach shows state-of-the-art performances

in feature-level UDA for semantic segmentation, achiev-

ing 45.3% of mIoU, which is further boosted up to 45.9%
by the entropy minimization objective. By looking at Ta-
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MinEnt [61] 37.8 18.2 65.8 2.0 0.0 15.5 0.0 0.0 76.0 - 73.9 45.7 11.3 66.6 - 13.3 - 1.5 13.1 27.5 32.5

MaxSquare IW (r) [7] 9.1 12.7 72.5 1.0 0.0 22.3 7.0 8.4 80.0 - 77.9 49.4 10.0 71.8 - 23.8 - 6.0 13.5 29.1 34.0
Ours (L′

tot
) 78.5 29.9 77.7 1.2 0.1 24.1 11.9 15.0 78.7 - 78.5 51.0 15.4 73.7 - 24.7 - 10.1 23.5 37.1 43.7

Ours (Ltot) 78.3 30.1 78.0 1.7 0.1 24.1 12.0 14.6 79.7 - 79.1 51.4 15.5 74.4 - 23.7 - 9.1 22.7 37.1 43.7

R
es

N
et

1
0

1

Source Only 39.5 18.1 75.5 10.5 0.1 26.3 9.0 11.7 78.6 - 81.6 57.7 21.0 59.9 - 30.1 - 15.7 28.2 35.2 40.5

AdaptSegNet (feat) [57] 62.4 21.9 76.3 - - - 11.7 11.4 75.3 - 80.9 53.7 18.5 59.7 - 13.7 - 20.6 24.0 - 40.8
MinEnt [61] 73.5 29.2 77.1 7.7 0.2 27.0 7.1 11.4 76.7 - 82.1 57.2 21.3 69.4 - 29.2 - 12.9 27.9 38.1 44.2
SAPNet [25] 81.7 33.5 75.9 - - - 7.0 6.3 74.8 - 78.9 52.1 21.3 75.7 - 30.6 - 10.8 28.0 - 44.3

MaxSquare IW [7] 78.5 34.7 76.3 6.5 0.1 30.4 12.4 12.2 82.2 - 84.3 59.9 17.9 80.6 - 24.1 - 15.2 31.2 40.4 46.9
Ours (L′

tot
) 64.4 25.5 77.3 14.3 0.9 29.6 21.2 24.2 76.6 - 79.7 53.7 15.5 79.7 - 11.0 - 11.0 35.2 38.7 44.2

Ours (Ltot) 88.3 42.2 79.1 7.1 0.2 24.4 16.8 16.5 80.0 - 84.3 56.2 15.0 83.5 - 27.2 - 6.3 30.7 41.1 48.2

Table 1: Numerical evaluation of the GTA5 and SYNTHIA to Cityscapes adaptation scenarios in terms of per-class and

mean IoU. Evaluations are performed on the validation set of the Cityscapes dataset. In all the experiments the DeepLab-

V2 segmentation network is employed, with VGG-16 (top) or ResNet-101 (bottom) backbones. The mIoU* results in the

last column refer to the 13-classes configuration, i.e., classes marked with ∗ are ignored. MaxSquares IW (r) denotes our

re-implementation, as original results are provided only for the ResNet-101 backbone.

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
sky person rider car truck bus train motorcycle bicycle unlabeled

Target Images Ground Truth Source Only Ours (Lcl) MaxSquare IW [7] Ours (Ltot)

Figure 3: Semantic segmentation of some sample scenes from the Cityscapes validation dataset when adaptation is performed

from the GTA5 source dataset and the DeepLab-V2 with ResNet-101 backbone is employed (best viewed in colors).
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ble 1, we observe about 9% increase over the source only

baseline, with the improvement well distributed over all the

classes. A similar behavior can be noted when switching to

the less performing VGG-16 backbone: we achieve 33.7%
mean IoU with L′

tot (i.e., without the entropy minimization

objective) and 34.2% with Ltot (i.e., with all components

enabled) starting from the 25.4% of the baseline scenario

without adaptation.

When compared with other approaches, our method per-

forms better than standard feature-level adversarial tech-

niques [22, 21, 57, 25]. For example, with the VGG-16

backbone there is a gain of 4.5% w.r.t. [21]. This proves that

a more effective class-conditional alignment has been ulti-

mately achieved in the latent space by our approach. Due

to the similar regularizing effect over feature distribution

and comparable ease of implementation, we also compare

our framework with some entropy minimization and self-

training techniques [61, 7, 75], further showing the effec-

tiveness of our adaptation strategy even if the gap here is

a bit more limited. With both backbones, our novel feature

level modules (L′
tot) perform better than MaxSquare IW [7].

Moreover, adding the entropy minimization objective from

[7] to L′
tot provides a slight but consistent improvement.

It is worth noting that our method does not rely on ad-

ditional trainable modules (e.g., adversarial discriminators

[22, 21, 57, 25]) and the whole adaptation process is end-to-

end, not requiring multiple separate steps to be re-iterated

(e.g., pseudo-labeling in self-training [75]). Moreover, be-

ing focused solely on feature level adaptation, it could be

easily integrated with other adaptation techniques working

at different network levels, such as the input (e.g., genera-

tive approaches) or output (e.g., self-training), as shown by

the addition of the output-level entropy-minimization loss.

Fig. 3 displays some qualitative results on the Cityscapes

validation set of the adaptation process when the ResNet-

101 backbone is used. We observe that the introduction of

the clustering module is beneficial to the target segmenta-

tion accuracy w.r.t. the source only case. Some small pre-

diction inaccuracies remain, that are corrected with the in-

troduction of the orthogonality, sparsity and entropy mod-

ules in the complete framework. By looking at the last two

columns, we also notice that our entire framework shows an

improvement over the individual entropy-minimization like

objective from [7], which is reflected in a better detection

accuracy both on frequent (e.g. road, vegetation) and less

frequent (e.g. traffic sign, bus) classes.

5.2. SYNTHIA → Cityscapes

To further prove the efficacy of our method, we evaluate

it on the more challenging SYNTHIA → Cityscapes bench-

mark, where a larger domain gap exists. Once more, our ap-

proach proves to be successful in performing domain align-

ment with both ResNet-101 and VGG-16 backbones, reach-

Lcl Lor Lsp Lem mIoU

37.0

X 42.3

X 43.2

X 43.7

X 44.8

X X X 45.3

X X X X 45.9

Table 2: Ablation results on the contribution of each adap-

tation module in the GTA5 to Cityscapes scenario and with

ResNet-101 as backbone.

ing state-of-the-art results for feature-level UDA in both

configurations (see Table 1). When ResNet-101 is used, the

mIoU* on the 13 classes setting is pushed up to 48.2% from

the original 40.5% of source only, while the VGG-16 sce-

nario witnesses an even more improved performance gain of

almost 11% over the no adaptation baseline till a final value

of 43.7%. Differently from the GTA5 → Cityscapes case,

here the contribution of the entropy-minimization module

varies for the two backbones. The induced benefit is ab-

sent with VGG-16, since the clustering, orthogonality and

sparsity jointly enforced already carry the whole adapta-

tion effort. Besides, even the Lem objective alone (i.e.,

MaxSquares IW (r) [7]) displays quite limited gain over

the no adaptation baseline. On the contrary, the regular-

izing effect of the entropy objective is strongly valuable in

case the ResNet-101 backbone is used. Yet, the combina-

tion of all modules together actually provides a noticeable

boost over both the entropy and feature-level modules sepa-

rately applied. As for the GTA5 scenario, our model shows

better performance than feature-level adversarial adaptation

[22, 9, 57, 25] and output-level approaches [61, 75] compa-

rable in computational ease. Qualitative results of adapta-

tion from SYNTHIA are in the Supplementary Material.

5.3. Ablation Study

To verify the robustness of the framework, we perform

an extensive ablation study on the adaptation from GTA5 to

Cityscapes with ResNet-101 as backbone. First, we exam-

ine the contribution of each loss to the final mIoU; then, we

investigate the effect of each novel loss component. Further

considerations are reported in the Supplementary Material.

The contribution of each loss to the adaptation module is

shown in Table 2. Every loss component largely improves

the final mIoU results from 37.0% of the source only sce-

nario up to a maximum of 44.8%. Combining the 3 novel

modules of this work, we achieve a mIoU of 45.3%, which

is higher than all the losses alone, but lower than our com-

plete framework with all the losses enabled (45.9%).

To investigate the effect of the clustering module (Lcl)
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Figure 4: T-SNE computed over features of a single image

of the Cityscapes validation set when adapting from GTA5

(best viewed in colors).

we show a t-SNE [32] plot of features extracted from a sam-

ple image of the Cityscapes validation set. In particular, we

provide a comparison of the discovered low-dimensional

feature distribution for two distinct training settings, i.e.

source only and adaptation with Lcl only. The results are

reported in Fig. 4, where sparse points in the source only

plot turn out more tightly clustered and spaced apart in the

Lcl approach (e.g., look at the person class).

We analyze the orthogonality constraint (Lor) via a simi-

larity score defined as an average class-wise cosine similar-

ity measure (Fig. 5). The cosine distance is first computed

for every pair of feature vectors from a single target im-

age. Then, the average values are taken over all features

from the same class to get a score for each pair of semantic

classes. The final values are computed by averaging over

all images from the Cityscapes validation set. The score

computation is performed for two different configurations,

i.e. Lcl + Lor + Lsp and Lcl + Lsp, to highlight the effect

induced by the orthogonality module. Here we report the

intra-class similarity scores, whereas the full matrix with

also the inter-class values is in the Supplementary Material.

The results in Fig. 5 show that Lor causes the similarity

score to significantly increase within almost all the classes.

To understand the efficacy of the sparsity loss (Lsp) we

compute the sparsity scores as the fraction of activations in

normalized feature vectors close to 0 or 1 (Fig. 6). Close-

ness is quantified as being distant from 0 or 1 less than

a threshold, which we set to 10−4. As for the similarity

scores, the sparsity measures for a single target image are

obtained through averaging over all feature vectors from the

same class. The final results correspond to the mean values

over the entire Cityscapes validation set. We compute the

scores for two different configurations, i.e. Lcl+Lor+Lsp

and Lcl+Lor, so that we can inspect the effect that the spar-

sity module is providing on feature distribution. From Fig. 6

we can appreciate that Lsp effectively achieves higher val-

ues of sparseness for all the classes.
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Figure 5: Similarity scores computed over images of the

Cityscapes validation set when adapting from GTA5.
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Figure 6: Sparsity scores computed over images of the

Cityscapes validation set when adapting from GTA5.

6. Conclusions

In this paper we propose a novel feature oriented UDA

framework for semantic segmentation. Our approach com-

prises 3 main objectives. First, features of same class and

separate domains are clustered together, whilst features of

different classes are spaced apart. Second, an orthogonality

requirement over the latent space discourages the overlap-

ping of active channels among feature vectors of different

classes. Third, a sparsity constraint further reduces feature-

wise the number of the active channels. All combined,

these modules allow to reach a regularized disposition of la-

tent embeddings , while providing a semantically consistent

domain alignment over the feature space. We extensively

evaluated our framework in the synthetic-to-real scenario,

achieving state-of-the-art results in feature level UDA. For

future work, we intend to explore new techniques aiming at

the refinement of the pseudo-labeling based classification of

feature vectors, and to integrate our feature space adaptation

with other approaches targeting different network levels.

Finally, we would like to investigate the regularizing ef-

fect of the proposed techniques when applied to the single-

domain standard semantic segmentation.
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