
Goal-driven Long-Term Trajectory Prediction

Hung Tran, Vuong Le, Truyen Tran

Applied AI Institute, Deakin University, Geelong, Australia

{tduy,vuong.le,truyen.tran}@deakin.edu.au

Abstract

The prediction of humans’ short-term trajectories has

advanced significantly with the use of powerful sequential

modeling and rich environment feature extraction. How-

ever, long-term prediction is still a major challenge for the

current methods as the errors could accumulate along the

way. Indeed, consistent and stable prediction far to the end

of a trajectory inherently requires deeper analysis into the

overall structure of that trajectory, which is related to the

pedestrian’s intention on the destination of the journey. In

this work, we propose to model a hypothetical process that

determines pedestrians’ goals and the impact of such pro-

cess on long-term future trajectories. We design Goal-driven

Trajectory Prediction model - a dual-channel neural network

that realizes such intuition. The two channels of the network

take their dedicated roles and collaborate to generate future

trajectories. Different than conventional goal-conditioned,

planning-based methods, the model architecture is designed

to generalize the patterns and work across different scenes

with arbitrary geometrical and semantic structures. The

model is shown to outperform the state-of-the-art in various

settings, especially in large prediction horizons. This result

is another evidence for the effectiveness of adaptive struc-

tured representation of visual and geometrical features in

human behavior analysis.

1. Introduction

The behavior of humans represented in their walking

trajectories is a complex process that provides a rich ground

for mathematical and machine modeling. There are two

fundamental types of factors that influence the behavior:

Firstly, a pedestrian keeps an intention on a destination they

want to reach; and this goal governs the long-term tendency

of their trip. Secondly, along the way to the destination, the

pedestrian needs to make short-term adjustments according

to immediate situations such as the physical terrain and other

moving agents. Understanding and characterizing this dual

process of intention and adjustment promise effective coarse-

to-fine trajectory modeling and hence improve prediction
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Figure 1: Goal-driven Trajectory Prediction model decom-

poses the movement of a pedestrian into two concurrent

sub-processes: Goal process governing the long-term inten-

tion toward a destination, and Trajectory process controlling

detail movements. This dual process is implemented as a

neural network of two-channels that collaborate with each

other to generate future trajectory. Destinations are automat-

ically identified as reachable regions at the boundary of the

scene.

performance.

Since the long-term intention is vague and difficult to

model, available studies on pedestrian trajectory prediction

biased into learning the short-term adjustment. This is usu-

ally done by exploiting the temporal consistency of the tra-

jectory under the assumption that the movement pattern

observed in the past extends to the future. Top-performing

methods utilized deep learning based sequential models such

as variations of Recurrent Neural Networks (RNNs) [8, 11].

Most recent developments in this problem focused on en-

riching the input of the sequential models by features of the
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surrounding environment [16, 18, 25, 27] and social inter-

action with other agents [1, 10, 12, 28, 31]. Although these

enhancements improved short-term prediction, the impact

fell short in long-term prediction because the pedestrian’s

goal is unaccounted for [24].

In this work, we endeavor to explicitly model the de-

pendency of pedestrians’ trajectories on their intention to-

ward possible destinations. We hypothesize that the naviga-

tion process of a pedestrian could be expressed by two sup-

processes: goal estimation and trajectory prediction. These

coupled sub-processes are modeled by a dual-channel neural

network named Goal-driven Trajectory Prediction (abbrevi-

ated GTP, see Fig. 1). The model consists of two interactive

sub-networks: the Goal channel estimates the intention of

the subject toward the auto-selected destinations and pro-

vides guidance for the Trajectory channel to predict details

future movements. The interaction between the two channels

is done by a flexible attention mechanism on the provided

guidance of the Goal channel so that we could maintain the

balance between strong far-term planning and short-term

trajectory adjustment. In fact, the whole architecture de-

sign resembles the way the human brain uses two biologi-

cal neural sub-networks to control our attention: top-down

cognitive-related network and bottom-up stimulus reaction

network [9]. Among the two, the former shares conceptual

similarities with our Goal channel, while the latter is related

to our Trajectory channel.

The destinations used in GTP are detected on-the-spot

adaptively to the semantic segmentation of the scene. The

two channels of GTP are trained to rank these flexible desti-

nations through attention and compatibility matching. This

zero-shot mechanism supports transfer learning to unseen

scenes, which resolves the weakness of traditional goal-

based methods.

In our cross-scene prediction experiments on ETH and

UCY datasets, we demonstrate the effectiveness of the Goal

channel in the overall planning, as the far-term prediction of

our model improves significantly compared to the current

state-of-the-art. In the meantime, we also showed the role

of the Trajectory channel in considering both guidance from

the Goal channel and immediate circumstances for precise

in-time adjustment.

Our method of utilizing goal information in future trajec-

tory forecasting is another step toward describing the natural

structure of human behavior. Also, the representation power

of the ranking-based system enables our model to general-

ize across unknown scenes and raise a new bar in far-term

trajectory prediction - the major challenge of the field.

2. Related Work

Pedestrian trajectory prediction recently achieved

much improvement with the deep learning approaches [24].

By treating human trajectory as time-series data, these ap-

proaches use variations of Recurrent Neural Networks [8, 11]

to learn the temporal continuity of the subjects’ locations

and movements. Beyond temporal consistency, recent ef-

forts concentrated on adding human-human interaction by

various methods for social pooling [1, 3, 6, 10, 19, 29] and

social-based refinement [2, 10, 16, 25, 28, 31]. Aside from

the dynamic social interaction, many efforts are spent on

examining the static environment surrounding the subjects

that may affect their trajectory. These environmental factors

are extracted either directly from the image [16, 25, 30, 32]

or from the semantic map of the environment [18, 19, 27].

Although passive and active entities contribute significantly

to the immediate future behavior, their effects fade out in

long term. By contrast, we investigate how changing en-

vironmental context interacts with the lasting end goal of

the trajectory, which allows reliable forecasting far into the

future.

Intention oriented trajectory prediction has been ap-

proached for robots and autonomous vehicles in the form

of planning-based navigation engines on top of a Markov

decision process (MDP) solver [13, 14, 21, 22, 23, 36]. The

plans of vehicles are laid out on a grid-based map formed

by discretizing the scene. This simplification limits the gen-

eralization capacity to scenes with different scales or con-

figurations. Hence, several methods instead used recurrent

neural networks to work with continuous representations of

scenes and goals [5, 7, 15, 26]. In these approaches, the

agent chooses one among a given set of goals and plans the

trajectory to accomplish it. The rigid plans used in these

methods are not readily applicable to pedestrian trajectories

because unlike vehicles that follow lane lines and obey traffic

rules, a pedestrian could move relatively freely on the open

space.

Recently Zheng et.al. [33] proposed to mediate such

rigidity by dynamic re-evaluating goal along the way. This

method works with discrete grid-based scene structures with

a permanent set of goals such as basketball court; hence, it

cannot generalize to unseen scenes with arbitrary arrange-

ments. Distinctively from these approaches, we select des-

tinations automatically from the visual semantic features,

and we dynamically learn from them using the ranking and

attention mechanism. By doing this, we enable our model to

be transferrable across different scenes.

3. Method

3.1. Problem Definition

We denote a person’s trajectory from time t = 1 to t =
T as Q1:T = (q1, q2, ..., qT ), where qt = (xt, yt) is the

2D coordinate of the person at time t. We also denote the

observed trajectory of a person as X = Q1:tobs , the future

trajectory (ground truth) as Y = Qtobs+1:T and the predicted

trajectory as Ŷ = Q̂tobs+1:T .
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Figure 2: Goal-driven trajectory prediction architecture. The model contains two neural channels: Goal channel (blue

blocks) and Trajectory channel (pink blocks). Goal channel matches the set of destinations D = (d1, ..., dndest
) with the

observed trajectory representation h
g
tobs

and modulates them into E = (e1, ..., endest
) using the supervision of the goal ranks

R = (r1, ..., rndest
). In Trajectory channel, the controlling signal ct is constructed at each time step by attending to the

modulated representation E (green lines). The weights of this attention mechanism are the compatibilities between E and the

current hidden state hD
t of Trajectory decoder. The signal ct+1 then directs the GRU units in Trajectory decoder to predict the

next position q̂t+1(the additional feed-back input q̂t of this GRU is not drawn for clarity.)

We hypothesize that there are some underlying processes

that govern the trajectory Q1:T ; these processes reflect how a

pedestrian intends to reach a specific goal. In a 2D scene, the

goal g of a pedestrian is defined to be the last visible point of

the trajectory that it usually lies at the border of the walkable

area of the scene. The set of all possible goals in a scene

are gathered and clustered into regions called destinations

(green numbered regions in Fig. 1), where the number of

destinations is ndest. The continous goal g can be discretized

to be one of these destinations: g ∈ {1, 2, ..., ndest}. In our

work, the destinations are automatically detected; and each

of them is represented by an attribute vector di ∈ R
6. The

detail of this representation is presented in Sec. 3.4.

3.2. Goaldriven Trajectory Prediction

In this work, we want to study the relationship between

the future trajectory Y and the goal g of a pedestrian. These

two terms are strongly correlated but their behaviors are

significantly different: while people could quickly change

their trajectories Y adapting to the surrounding, their goals

g usually remain stable throughout the course of the move-

ment. The joint distribution between them conditioned on

the observed part of the trajectory X can be written as:

P (Y, g|X) = P (Y |X, g)P (g|X). (1)

The future trajectory is obtained through marginalizing over

all possible goals:

P (Y |X) =

ndest
∑

i

P (Y |X, g = i)P (g = i|X). (2)

For this complex marginal distribution, we need to sample Y

for every possible value of g, which could be computation-

ally challenging. To increase sampling efficiency, we use a

mean-field style approximation:

P (Y |X) =

ndest
∑

i

P (Y |X, g)P (g = i|X) ≈ P (Y |X, ḡ),

(3)

where ḡ is a continuous joint representation that is reflective

of the goal probability vector P (g|X).

Building a meaningful ḡ is crucial for the approximation

to work well; hence, this is at the center of our modeling.

To this end, we propose Goal-driven Trajectory Prediction

model (abbreviated GTP) that explicitly characterizes the

dependency of pedestrians’ future trajectory on their goal.

The model consists of two channels, each of which is a sub-

network corresponding to one of the two hypothesized sub-

processes that control human trajectories. Among the two,

Goal channel matches the destinations by the observed trajec-

tory and provides the modulated destination representations

to Trajectory channel. Then, at each prediction time-step,
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Trajectory channel considers these representations to calcu-

late the adaptive goal vector ḡ and use this vector to forecast

future movement. The overall architecture is demonstrated

in Figure 2.

Goal channel The task of the Goal channel (blue block

in Fig.2) is to observe the past trajectory X = Q1:tobs and

match it with the destinations D = (d1, ..., dndest
). It starts

with using a GRU unit to encode the observed signal:

h
g
t = GRU(h

g
t−1, γ

g(qt)), (4)

where h
g
t is the hidden state of GRU at time t, γg is the

function that embeds the position qt into a fixed length vector.

In this paper, we choose γg to be a single layer MLP.

After the observation period (at tobs+1), the compatibility

between the hidden state h
g
tobs

and each destination attribute

vector di is measured through a joint representation:

d′i = MLP(di) (5)

ei = φ(
[

h
g
tobs

, d′i
]

), (6)

where d′i is the embedded representation of destination i, [., .]
is concatenation operator and φ is the modulating function

chosen to be a single layer MLP with a tanh non-linearity in

our implementation.

The output ei is the representation of destination i mod-

ulated by the past trajectory. This representation captures

the pedestrian’s perception of destination i up to the point of

complete observation.

In order to make sure the network learns the compatibil-

ity, we force ei to have the prediction power of the correct

destination. As the number of destinations varies across dif-

ferent scenes, we form a ranking problem instead of standard

classification alternatives:

ri = softmax(MLP(ei)). (7)

The ranking is learned through the goal loss:

Lg = − logP (g = i∗|X) = − log ri∗ , (8)

where g = i∗ is the ground-truth goal.

After being ensured to contain goal-related informa-

tion, the modulated representations of destinations E =
(e1, ..., endest

) are provided to aid the Trajectory channel in

predicting future trajectory Y .

Trajectory channel. The trajectory channel (pink blocks

in Fig.2) predicts future movements of the pedestrian

by considering two factors: the observed context X =
Q1:tobs and the modulated destination representations E =
(e1, ..., endest

). This channel is based on a recurrent encoder-

decoder network.

Trajectory encoder is a GRU E that takes the observed

trajectory X = Q1:tobs and return the corresponding hidden

recurrent state, similarly as in the Goal channel:

E : hE

t = GRU(hE

t−1, γ
E(qt)), (9)

where γE is an MLP with one layer.

Trajectory decoder takes the role of generating future

trajectories Ŷ . It contains a GRU D that is innitialized by

the encoder’s output hD
tobs

= hE
tobs

and recurrently rolls out

future state hD
t , t = tobs+1,...,T . This Trajectory Decoder

stands out from traditional recurrent decoders in that at each

time step, it considers the modulated destinations E provided

by the Goal channel as guidance in its prediction operations.

A straightforward solution to using E = (e1, ..., endest
)

is by considering only ei∗ , which is the feature of the most

probable goal recognized by the Goal channel at the end of

the observation period. However, similar to the planning-

based methods [14], this approach would be less flexible in

the long term, as it does not allow the choice of goals to be

adjusted up to the situation. Therefore, to maximize such

adaptibility, we propose to dynamically calculate a control-

ling signal ct at each time step by a specialized controller

sub-network abbreviated as ctr:

ct = ctr(E, hD

t−1)

Specifically, at time step t > tobs, ctr takes the current

context hD
t−1 into account and reconsiders the destinations

attributes (modulated as E = (e1, ..., endest
)) through an

attention mechanism. In detail, the attention weights αti on

destination i at time t are calculated by matching hD
t−1 with

destination modulated representation ei:

αti = softmax(γa(
[

ei, h
D

t−1

]

)), (10)

where γa is a single layer MLP with tanh activation.

Then, the controlling signal ct is computed softly from

the set of modulated representations:

ct =

ndest
∑

i=1

αtiei. (11)

Effectively, ctr builds the control signal ct by gathering

pieces of information from the options provided as destina-

tion modulated representations. This process resembles an

implementation of Random Utility Theory [4], where the

ctr block acts as a decision-maker that selects the "right"

choices from the set of alternatives, and attention weights αti

plays as utility factors. The control signal ct+1 effectively

implements the goal vector ḡ in Eq.3. It is combined with

the previous prediction q̂t to form the input st+1 for the next

step using another single layer MLP embedding (not drawn

in Fig.2 for clarity):

st = MLP([ct, q̂t−1]).
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Figure 3: Destination selection. We first divide the scene

into multiple blocks (blue grid). Then, we group border

blocks into regions using semantic feature similarities (red

rectangles). The regions with high walkable scores are then

selected as destinations for GTP (green filled regions).

The input st is then fed into Trajectory decoder’s GRU D to

roll toward the future:

D : hD

t = GRU(hD

t−1, st).

After each rolling, the predicted output q̂t is generated by

the output MLP γo:

q̂t = γo(hD

t ). (12)

The loss function in Trajectory channel is simply the

distance between the predicted trajectory Ŷ and the ground

truth Y :

Ltr =
1

T
||Y − Ŷ ||2, (13)

where T is the prediction length and Ltr is the Trajectory

loss.

3.3. Destination Selection

An important preprocessing task supporting GTP is au-

tomatically constructing a good set of destinations and ex-

tract their meaningful features D = (d1, ..., dndest
) from

the scene. These destinations must cover most possible fi-

nal points of the trajectories, and in the meantime reflect

accurately options for pedestrians’ chosen goals.

Our destination selection process includes five steps, and

it begins by extracting the static background scene B from

the video frames. An example of B is shown as background

of Fig. 3. Background B is then segmented into semantic

areas with the Cascade Segmentation Module [35] trained

on ADE20K dataset [34]:

S, F = semantic parse(B)

where S contains the scores of segmentation and F is the fea-

ture map extracted from the penultimate layer of the model.

0 x

0

-1

Y

World coordinates

agent centric
 coordinates

Figure 4: The agent-centric coordinates is defined to have the

root at the agent’s location at the prediction time and directed

toward the overall past direction. Destination features are

represented as the combination of the relative distances and

angles.

Both tensors have the same spatial size as the image; S has

the depth 150 corresponding to categories and features in F

has the length of 512.

Then, as GTP works on a small discrete set of destina-

tions, we divide a scene into N ×N blocks. Among these

blocks, we only consider those at the boundary and the ones

next to them. This set of blocks is called “border blocks”,

and it is drawn in Fig. 3.

In the third and fourth steps, we compute the semantic

feature of each border block by average pooling features F

from its pixels. We then cluster nearby border blocks into

regions based on the similarity between their features. At

the end of these steps, we have a set of connected regions

potentially be destinations for GTP.

Finally, to exclude regions that cannot be realistic des-

tinations, we further filter out the ones of “non-walkable”

categories by using score tensor S. For each region, the

maximum scores of the walkable categories (selected from

scene labels) is compared against a threshold to select the

final destination regions D. For each of these regions, its

feature di is calculated by agent-centric geometrical measure

detailed in the next section.

3.4. Agentcentric Representation

Different from other RNN based future predictors [25,

31], both of GTP’s channels rely heavily on the person-

alized perception of each pedestrian about the destinations.

Although the network could learn to adapt the geometrical re-

lationship in any reference frames, we want it to concentrate

on modeling the relative perception of goals and trajectory

rather than the absolute scale of the scenes. For that purpose,

we represent both the trajectory and the destinations’ geo-

metrical features in the personalized coordinate system with

respect to each pedestrian called the agent-centric coordinate

(see Fig. 4).
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Figure 5: Performance of compared models in ADE - left and FDE - right (the lower the better) on ranging prediction

length. GTP (red diamond) shows increasingly favorable performance over baselines while other state-of-the-art only have the

advantage in short-range prediction. Detailed numeric results are included in the supplementary materials.

These coordinates is defined to be rooted at qtobs and has

the unit vector −→u = (−1, 0) transformed from −−−−→qtobsq1. All

parts of the trajectory including observed X and predicted

Y are transformed to this system before being used in GTP.

Under the agent-centric coordinate, the destination fea-

tures di includes the relative distance and direction of the

destination in the perspective of the pedestrian:

di = (xmini
, ymini

, xmaxi
, ymaxi

, θmini
, θmaxi

),

where the first four elements are the coordinate of the desti-

nation regions and the last two represent angle ranges from

pedestrian’s point of view.

Experimental results showing the effective of this repre-

sentation is detailed in the ablation study (Sec. 4.5)

3.5. Training GTP

When training the model, we need to attain the balance

and collaboration between optimizing the Goal channel loss

Lg and the Trajectory channel loss Ltr. To this end, we

use a three-stage training process. At the first stage, we fix

the Trajectory channel and only train Goal channel with Lg

to ensure that the modulated destinations E capture goal-

related information. Then, in the second stage, we freeze

the Goal channel, keeping the modulated representations E

unchanged, and train Trajectory channel with Ltr. Finally,

in the last stage, we refine the whole model using Ltr.

4. Experiments

4.1. Experiment Settings

Dataset We use the two most prominent benchmark

datasets for trajectory predictions which are ETH [20] and

UCY [17]. These datasets contain real-world annotated tra-

jectories in five different scenes: ETH, HOTEL (from ETH

dataset), ZARA1, ZARA2, UNIV (from UCY dataset). Sim-

ilar to previous works [1, 10, 18, 31], we preprocess the

trajectories to convert from camera coordinates to world

coordinates using provided homography parameters.

Baselines We compare our method against four state-of-

the-art methods Social LSTM [1], Social GAN [10], SR-

LSTM [31] and Next [18]. We also use a baseline GRU

Encoder-Decoder, which is the base architecture that all of

these works developed on top of.1

Evaluation protocols and metrics The common setting

used in the state-of-the-arts is observing 8 time steps (3.2

seconds) and predict the near-term future trajectories in the

next 12 time steps (4.8 seconds). With the objective of long-

term prediction, we extend this setting into maximal future

distance possible supported by the dataset. This results in

the settings of observing 8 and predicting 12, 16, 20, 24, 28

time steps. For all of the methods, a model for each of these

settings is trained separately.

As with other methods, we use the leave-one-out cross-

validation approach, training on 4 scenes, and testing on the

remaining unseen scene. The performance is measured using

two error metrics: Average displacement error (ADE) and

Final displacement error (FDE).

1Several methods use LSTM units instead of GRU in the encoder-

decoder architecture. The two units are fundamentally similar and our

experiments showed that they achieve identical results, therefore we only

use GRU units in the baseline for the sake of concision.
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Figure 6: Qualitative analysis of GTP. (a) GRU predicts the pedestrian to follow the upward trend in the observed trajectory,

while GTP estimates the destination to be Goal 5 and generates trajectory toward that destination. (b) Similarly, the correct

estimated goal (Goal 7) enable GTP to perform better than simple GRU. We provide more cases in supplementary materials.

In reporting results, we cite the results reported in the

baseline papers when possible. In the new settings of far-

term prediction, we retrain these models using the standard

published implementation.

4.2. Quantitative Performances

The performance of GTP and other methods are graphed

in Figure 5. It showed that some of the state-of-the-art meth-

ods, namely SR-LSTM [31] and Next [18] have advantages

over baseline GRU only in the short-term 12 time-step predic-

tion. However, all of these methods have fast deteriorating

performances along with prediction distances.

By contrast, GTP’s performances are much more stable in

the far-term prediction. Although the model is slightly worse

than SR-LSTM in 12 time steps prediction, it outperforms

all of the baselines in other prediction settings. Also, the

farther the prediction is, the gap between GTP and other

methods getting more and more widened.

The strong performance of GTP in far-term prediction

could be attributed to the collaborative interaction between

the two channels. By considering the modulated representa-

tions E = (e1, ..., endest
) provided by Goal Channel, Trajec-

tory Channel has access to the possible goals of the pedes-

trian; therefore, the model could generate consistent future

locations toward the correct destination. By contrast, base-

line models are unaware of the goal concept and only use

the immediate continuity of the trajectory. Without the long-

term guidance, the recurrent predictors accumulate the errors

in each step, leading to plummeted performance.

4.3. Qualitative Analysis

We further investigate the dependence of future trajecto-

ries on goals by visualizing the results generated from GTP

and GRU baseline. As shown in Figure 6, GRU could only

predict future trajectories based on the dynamic of the ob-

served trajectory, and hence it will fail when the moving

pattern is complex. Certainly, in Figure 6a, GRU predicts

the pedestrian to follow his upward trend, while the true

trajectory is to move forward. By contrast, GTP predicts

that the pedestrian will reach Goal 5 and generate future

positions toward that destination. Similarly, in Figure 6b,

the estimated goal enable GTP to predict accurate trajectory,

which could not be achieved in simple GRU.

4.4. Model Behavior Analysis

To have a better view of how the Trajectory channel uses

the modulated destinations E, we visualize the attention

weights αti in ctr block in several cases (see Figure 7).

In the first example (Fig. 7a), the ctr block initially paid

the most attention to destination 3 and 6 and gave uniform

weights to the rest. As the prediction progressed, it gradually

concentrated more on destination 2 and 9 as they became

potential goal choices.

In the second example (Fig. 7b), at the early stage, ctr

considered destination 2 the most. However, at the later

stage, as the trajectory progressed from right to left, destina-

tion 2 is no longer the most potential candidate, it switched to

considering the information contained in the potential goals
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# obs8 - pred12 obs8 - pred16 obs8 - pred20 obs8 - pred24 obs8 - pred28

0 Full GTP model 0.51 / 1.07 0.59 / 1.20 0.76 / 1.53 0.84 / 1.74 0.92 / 1.93

1 W/o destination modulation 0.52 / 1.09 0.65 / 1.37 0.86 / 1.82 1.23 / 2.67 1.24 / 2.77

2 W/o goal loss 0.50 / 1.06 0.60 / 1.24 0.78 / 1.61 0.92 / 1.94 1.07 / 2.30

3 W/o flexible attention weights 0.51 / 1.07 0.62 / 1.3 0.76 / 1.57 0.88 / 1.84 0.99 / 2.09

4 W/o agent-centric coordinates 0.6 / 1.28 0.68 / 1.46 0.81 / 1.76 0.96 / 2.05 1.01 / 2.12

5 W/o any goal-driven features 0.58 / 1.24 0.69 / 1.51 0.82 / 1.78 0.95 / 2.0 1.08 / 2.32

Table 1: Ablation experiments for trajectory prediction in ADE/FDE. The lower the numbers, the better the model.

(a)

(b)

Figure 7: Patterns of attention weights used in ctr block

as trajectory prediction progresses. The farther toward the

end, the sharper attention was put on narrowed down choices

among the destinations.

in destinations 1, 4, 5, and 7. The attention weights of these

short-listed destinations got sharper and sharper attention as

the probable goal choices narrowed.

4.5. Ablation Study

We provide more insight about the roles of GTP compo-

nents and choices by turning off each of the key proposed

components. The results of the study are reported in Table 1.

1. Without destination modulation. We investigate the

contribution of modulated representations by ablating

them from the model. Specifically, in the third row of

Table 1, we use the raw destination representations D,

instead of the modulated representations E, to compute

the controlling signal in Eq. 10, 11. The results show

that using raw destination features is better than not us-

ing them at all (row 1 vs row 5). However, modulating

those features by the Goal channel helps GTP reaches

its maximum advantages (row 0).

2. Without goal loss. Without using the goal loss, there

is no guarantee that the modulated representations con-

tain goal-related information. Consequently, the per-

formances of GTP in long-term prediction (20 to 28

time-steps) decrease significantly.

3. Without flexible attention weights. In this experi-

ment, we test the straightforward alternative of directly

using the ranking scores ri of the Goal channel (Eq.

7) in place of αti to compute the controlling signal ct
in Eq. 11; by doing this, we bypass the computation

of attention weights αti at every time step. Although

saving some computation, this rigid option does not

allow attention to adapt to the evolving situation; hence,

it leads to a reduction in performance, especially in

far-terms.

4. Without agent centric coordinates. Using the raw

world coordinates hurts the performance of GTP signif-

icantly. This indicates that agent-centric coordinate

plays an important role in estimating and utilizing

agent’s goal information.

5. Without any goal-driven features. This model is

equivalent to a vanilla GRU encoder-decoder baseline.

It is clear that most of the proposed features make im-

provements over this baseline; and combination of these

features in the full GTP model leads to the best result.

5. Conclusion

In this work, we study the problem of forecasting hu-

man trajectory into the far future. We propose GTP: a dual-

channel network for jointly modeling the goals and trajec-

tory of pedestrians. Through experiments, we have verified

that GTP effectively takes advantage of the imposed goal

structures and provides strong consistency in long-term pre-

diction, and reduces the progressive accumulation of error.

This work opens room for future investigations on consid-

ering long-term goals together with the short-term social and

environmental context. Static environmental factors can be

incorporated easily into the input at each step. Social inter-

action can be introduced through message passing between

trajectory channels and shared goal modeling.
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