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Abstract

Semantic segmentation models based on convolutional

neural networks have recently displayed remarkable perfor-

mance for a multitude of applications. However, these mod-

els typically do not generalize well when applied on new

domains, especially when going from synthetic to real data.

In this paper we address the problem of unsupervised do-

main adaptation (UDA), which attempts to train on labelled

data from one domain (source domain), and simultaneously

learn from unlabelled data in the domain of interest (target

domain). Existing methods have seen success by training on

pseudo-labels for these unlabelled images. Multiple tech-

niques have been proposed to mitigate low-quality pseudo-

labels arising from the domain shift, with varying degrees of

success. We propose DACS: Domain Adaptation via Cross-

domain mixed Sampling, which mixes images from the two

domains along with the corresponding labels and pseudo-

labels. These mixed samples are then trained on, in addi-

tion to the labelled data itself. We demonstrate the effective-

ness of our solution by achieving state-of-the-art results for

GTA5 to Cityscapes, a common synthetic-to-real semantic

segmentation benchmark for UDA.

1. Introduction

Deep neural networks have significantly advanced the

state of the art for the task of semantic segmentation

[23, 4, 54], displaying remarkable generalization abilities.

Results have in large been presented for datasets where

training and test domains are similar or identical in distri-

bution. In real-world scenarios, however, a domain shift

may occur, where the training data (source domain) is sig-

nificantly different to the data encountered in inference (tar-

get domain) for the intended application. A common prac-

tice when dealing with domain shift is to annotate some

data from the domain of interest and re-train (fine-tune) the

network on this new data. Additionally, Semi-Supervised

∗Equal contribution.

Learning (SSL) methods for semantic segmentation have

been proposed [16, 28, 11, 10, 6, 29], effectively training

on a small amount of labelled data by relying on comple-

mentary learning from unlabelled data. These approaches

are not always feasible as sometimes no annotations at all

are accessible in the target domain.

Unsupervised Domain Adaptation (UDA) deals with the

problem where labelled data is available for a source do-

main, but only unlabelled data is available for the target do-

main. The field has generated a lot of interest due to its

potential for effectively utilizing synthetic data in training

deep neural networks. Semantic segmentation in particular

has been explored in recent research [35, 24, 25, 46, 36, 37,

53, 60, 61, 21, 45, 55, 56] due to its potential benefits in

applications such as autonomous driving, where the associ-

ated annotation cost is high and we may prefer to generate

cheap synthetic data.

A technique originally proposed for SSL is pseudo-

labelling [19] (or self-training); training on artificial tar-

gets based on the class predictions of the network. Pseudo-

labelling was later adapted to UDA [60, 61, 56], where cer-

tain modifications were introduced to compensate for the

domain shift. One of the earlier works on pseudo-labelling

for UDA [60] pointed out that pseudo-labelling naively ap-

plied to UDA tends to bias the predictions of the network to

easy-to-predict classes, causing difficult classes to stop be-

ing predicted during training. To combat this collapse, they

propose class-balanced sampling of the pseudo-labels. Ad-

ditional difficulties of erroneous pseudo-labels, owing to the

domain shift, have prompted later research to add modules

for uncertainty estimation [61, 56]. We note that in existing

methods for correcting erroneous pseudo-labels, certain im-

ages in the target domain are over-sampled, and low confi-

dence pixels within images filtered out. Many pixels of low

confidence are aligned with predictions at semantic bound-

aries [20, 59, 29], thus leading to a diminished training sig-

nal there. Circumventing these issues offers an opportunity

to better leverage available data in the target domain.

In this paper we propose Domain Adaptation via Cross-

domain mixed Sampling, or DACS for short. The key idea
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here is that we form new, augmented samples by mixing

pairs of images from different domains. In particular, we

use the ground-truth semantic map to extract a few classes

from a source domain image and paste them onto an un-

labelled target domain image. To construct pseudo-labels

for the new image, we mix the source domain labels with

pseudo-labels created from the target domain image. Mix-

ing across domains this way leads to parts of the pseudo-

labels being replaced by parts of the ground-truth semantic

maps, ensuring that over the course of training all classes

will border pixels from the other domain.

Our method is inspired by recently proposed methods

of using mixed samples for SSL [11, 17, 29], and we show

that applying the naive implementation of these methods di-

rectly to UDA causes classes to become conflated, i.e., cer-

tain classes are confused with others, similarly to the previ-

ously mentioned findings in [60] for naive pseudo-labelling.

This problem is effectively solved by the cross-domain mix-

ing in DACS. In contrast to existing methods for correcting

erroneous pseudo-labels, we do not get rid of training data

from over-sampling by class or confidence, and are able to

efficiently learn from the entire unlabelled target domain

dataset during the course of training. We demonstrate the

effectiveness of our method by applying it on two synthetic-

to-real unsupervised domain adaptation benchmarks, GTA5

→ Cityscapes and SYNTHIA→ Cityscapes.

In summary, our main contributions are: (1) We intro-

duce an algorithm that mixes images from the target do-

main with images from the source domain, creating new,

highly perturbed samples and use these for training. (2) We

show that mixing of images across domains to a high degree

solves the problem of conflating classes. (3) We present im-

provements over the state of the art in UDA for the GTA5

→ Cityscapes benchmark.

2. Related Work

For semantic segmentation, predominant methods for

UDA include adversarial-based [36], self-training [60, 61,

56] and consistency-based approaches [7, 57]. This section

reviews these related UDA methods in more detail, as well

as some of their counterparts in SSL, as the two tasks are

closely related. For a more extensive review of UDA in se-

mantic segmentation, see [34].

Domain alignment. A lot of existing research in UDA

has focused on various aspects of adversarial learning in

order to bridge the gap existing between source and tar-

get domains, minimizing differences between the distri-

butions. This can be targeted at different levels such

as at the pixel level [3, 14, 42, 44], feature map level

[48, 24, 51, 15, 58, 39, 52] or semantic level [36, 38]. In par-

ticular, alignment on the semantic level has been explored

with similar methods for both UDA [36] and SSL [16]. The

key idea is viewing the segmentation network as a genera-

tor in a generative adversarial network setup, to encourage

realistic semantic maps to be predicted. This approach is

viable for UDA because even though the source and target

domain images are quite different, it is often reasonable to

assume that the corresponding semantic maps are similar

in terms of spatial layout and local context. Our proposed

method should also benefit from this similarity in output

space, since mixing images across domains will then lead

to semantic classes being placed in contexts with more sim-

ilar semantics.

Other approaches to aligning the source and target do-

mains include channel-wise alignment of feature maps [41],

done differently for ”stuff” classes and ”things” classes in

[39], transfer of texture from target to source [18], and

transfer of the low-frequency part of the spectrum in Fourier

space from the target domain to the source domain [47].

Pseudo-labelling. In contrast, methods based on pseudo-

labelling [19], or self-training, directly train on the target

domain data by the use of pseudo-labels, which are artifi-

cial targets for training, created from class predictions of the

network. However, UDA problems characteristically suf-

fer from large domain gaps, i.e., considerable differences in

data distributions, which give rise to faulty pseudo-labels.

One of the problems is a bias in the target domain to-

wards initially easy-to-transfer classes [60, 61], where some

classes are merged, meaning certain classes are never pre-

dicted. A similar phenomenon has been observed in UDA

for classification [40], where trivial predictions for the tar-

get domain were identified to occur when applying entropy

regularization. For semantic segmentation, entropy regu-

larization methods have observed a bias towards easy-to-

transfer classes [37] as well.

The close connection between entropy regularization and

pseudo-labelling was pointed out in the original proposal of

pseudo-labelling [19]. As pseudo-labelling and entropy reg-

ularization strive to minimize entropy in the predictions of

unlabelled data, and since predictions with conflated, i.e.,

merged, classes have lower entropy, entropy minimization

is a reasonable explanation for why conflation of classes

can occur for large enough domain shifts. To combat the

problem of faulty pseudo-labels for UDA in semantic seg-

mentation, existing works have suggested careful selection

and adjustment procedures, accounting for the domain gap.

Variants include specialised sampling [60, 27] and handling

of uncertainty [61, 56].

Our proposed solution also makes use of pseudo-

labelling, while cross-domain mixing of samples offers a

simple solution to the class conflation problem by inject-

ing reliable entropy from the source domain ground-truth

labels into the pseudo-labels of the target domain. Even

though we make use of pseudo-labels generated from unper-
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turbed images from the target domain, they are only used for

training after images and labels are mixed across domains.

Therefore, we categorize our approach along another line of

methods, namely consistency regularization, which is con-

sistent with related SSL methods.

Consistency Regularization. The key idea behind consis-

tency regularization is that predictions on unlabelled sam-

ples should be invariant to perturbations. In SSL the per-

turbations have typically been based on image augmenta-

tions [11, 29, 2, 43, 32, 17]. For UDA this technique has

instead been used to complement minimization of distri-

bution discrepancies on an image level, with consistency

based around image-to-image translations [7, 57].

Mixing. The kind of augmentation technique known as

mixing has successfully been used for both classification

and semantic segmentation [50, 49, 2, 11, 12, 17, 29, 33].

The idea is to combine pixels from two training images,

thereby creating a new, highly perturbed, sample. This can

be done by interpolating between the pixel values of the two

images, as suggested by Zhang et al. in their mixup algo-

rithm [50]. It can also be done by having one set of pixels

coming from one image and another set coming from a sec-

ond image. In the latter method, the selection of pixels can

be quantified by a binary mask, where the mask is one for

the pixels selected from the first image and zero for pixels

selected from the second image. For the case of seman-

tic segmentation, the same mixing is also performed on the

segmentation maps.

Mixing has proven to be successful in SSL for semantic

segmentation, where the strong augmentations are used on

unlabelled images for consistency regularization. Kim et al.

[17] and French et al. [11] use the binary mixing method

CutMix, proposed by Yun et al. [49], where a rectangular

region is cut from one image and pasted on top of another.

This technique was further developed in the ClassMix algo-

rithm [29], where the mask used for mixing is instead cre-

ated dynamically based on the predictions of the network.

Specifically, the algorithm selects half of the classes pre-

dicted for a given image, and the corresponding pixels are

pasted onto a second image, forming a strongly perturbed

image, in which the semantic borders of objects are still be-

ing followed to a high degree.

Our proposed method, DACS, adapts this technique to

mix images across domains. This differs from existing

consistency-based approaches for UDA in that we do not at-

tempt to combine consistency regularization with alignment

of image distributions, instead, we enforce consistency be-

tween predictions of images in the target domain and im-

ages mixed across domains.

3. Method

This section details our proposed approach for unsuper-

vised domain adaptation: Domain Adaptation via Cross-

domain mixed Sampling, or DACS for short. We start in

Section 3.1 by discussing the pitfalls of applying mixing-

based consistency regularization as used for SSL directly

to UDA, that is, mixing images only within the unlabelled

dataset. In Section 3.2 we then describe our solution DACS

and explain how it solves these problems. We then conclude

with a description of the loss function and the training pro-

cedure used.

3.1. Naive Mixing to UDA

As stated previously, in the original formulation of con-

sistency regularization based on mixing for SSL [11, 17,

29], samples are mixed within the unlabelled dataset to gen-

erate augmented images. In UDA, the unlabelled samples

are the ones from the target dataset, so a natural adaptation

to this context would be to mix target-domain images. This

approach, henceforth referred to as “Naive Mixing”, mixes

target-domain samples to generate augmented images and

corresponding pseudo-labels and then trains the network us-

ing both the augmented images and the source-domain im-

ages, as illustrated in Figure 1.

However, this intuitive adaptation performs poorly in

practice, as shown in the experiments in Section 4. The re-

sulting segmentation network conflates some of the classes

when predicting the semantics of target-domain images.

For instance, classes with fewer occurrences like ’sidewalk’

are confused with more frequent and semantically similar

classes, like ’road’. Similarly, the ’rider’ class is misclassi-

fied as ’person’, and ’terrain’ as ’vegetation’, among other

classes. This seems to be a consistent pattern across dif-

ferent seeds of training, and impacts performance consider-

ably. The problem occurs exclusively for the target domain

images, not for the images in the source domain.

This problem, which we refer to as class conflation, is

similar to one identified in early works applying pseudo-

labelling to UDA for semantic segmentation tasks [60],

where they point out a bias towards easy-to-transfer classes

when applying pseudo-labelling naively to UDA. Using

pseudo-labelling in a consistency regularization setting

combined with mixing, as used for SSL in [29], inherits

the same underlying issues. While existing works have

proposed other improvements for how to correct erroneous

pseudo-label generation arising due to the domain shift

[60, 61, 56], we instead propose a change in the augmen-

tation procedure, detailed in the next subsection.

3.2. DACS

Our proposed solution builds on the idea of mixing im-

ages across domains. New, augmented samples are created
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Figure 1: Diagram showing Naive Mixing of images. Images XT1

and XT2
from the target dataset DT are mixed, generating the

augmented image XM and its pseudo-label YM . The segmentation

network is trained on batches of augmented images and batches of

images from the source dataset XS (for which ground-truth labels,

YS , are available).

by having one set of pixels coming from a source domain

image, and one set of pixels coming from a target domain

image. These new samples are then used to train the net-

work. By default we are using the mixing strategy ClassMix

[29], but any mixing method based on binary masks would

be valid. In our adaptation of ClassMix, half of the classes

in a source domain image are selected, and the correspond-

ing pixels are cut out and pasted onto an image from the

target domain. To construct the corresponding image with

pseudo-labels, the target domain image is also run through

the network before the mixing in order to produce a pseudo-

label for it. This pseudo-label is then mixed in the same way

as the image, together with the corresponding ground-truth

label from the source domain image. A diagram explain-

ing the mixing procedure is shown in Figure 2. An example

of the input images and the resulting augmentation is illus-

trated in Figure 3. Note that the resulting mixed images

are not necessarily realistic. However, complete realism of

the augmentations is not required for the functioning of our

method, as shown by the results in Section 4.

The proposed cross-domain mixing greatly improves

performance compared to Naive Mixing. Before introduc-

ing cross-domain mixing, we have two types of data: 1)

source domain data with ground-truth labels, and 2) tar-

get domain data with potentially conflated pseudo-labels,

where the gap between the domains may be large. Due to

this potentially large gap, a network may implicitly learn to

discern between the domains in order to perform better in

the task, and (incorrectly) learn that the class distributions

are very different in the two domains. With cross-domain

mixing, we introduce new data, and considering that the

labels for these new images partly come from the source

domain, they will not be conflated for entire images. Fur-

thermore, the pixels that are pseudo-labelled (target-domain

labels) and the pixels that have ground-truth labels (source-

domain labels) may now be neighbors in an image, making

the implicit discerning between domains unlikely, since it

would have to be done at a pixel level. Both of these as-

Figure 2: Diagram showing DACS. The images XS and XT are

mixed together, using YS for the labels of XS , instead of a pre-

dicted semantic map to determine the binary mask. The segmenta-

tion network is then trained on both batches of augmented images

and images from the source dataset.

Figure 3: Example augmentation used in DACS: an image from

the source domain (in this case synthetic data from GTA5) is

mixed with an image from the target domain (Cityscapes), result-

ing in an augmented image which contains parts from both do-

mains.

pects help the network to better deal with the domain gap,

and effectively solve the class conflation problem, as shown

in Section 4, resulting in considerably better performance.

The overall UDA algorithm that trains on source-domain

images and cross-domain augmentations is what we refer to

as DACS.

The implementation of DACS is presented as pseu-

docode in Algorithm 1, where the source-domain and

target-domain datasets are referred to as DS and DT , re-

spectively. A batch of images and labels, XS and YS , is

sampled from DS , and a batch of images, XT , from DT .

The images in XT are then fed to the network fθ, which

outputs their predicted semantic maps ŶT . Then, the aug-

mented images XM are created by mixing XS and XT , and

the pseudo-labels YM by mixing the corresponding maps

in YS and ŶT . From this point forward, the algorithm re-

sembles a supervised learning approach: compute predic-

tions, compare them with the labels (in our case using the

cross-entropy loss), perform backprogragation, and perform

a step of gradient descent. This process is then repeated for

a predetermined amount of iterations N .

3.3. Loss Function

In DACS, the network parameters θ are trained by mini-

mizing the following loss:

L(θ) = E

[

H
(

fθ(XS), YS

)

+ λH
(

fθ(XM ), YM

)]

.

(1)
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Algorithm 1 DACS algorithm

Require: Source-domain and target-domain datasets DS

and DT , segmentation network fθ.

1: Initialize network parameters θ randomly.

2: for i = 1 to N do

3: XS , YS ∼ DS

4: XT ∼ DT

5: ŶT ← fθ(XT )
6: XM , YM ← Augmentation and pseudo-label from

mixing XS , YS , XT and ŶT .

7: ŶS ← fθ(XS), ŶM ← fθ(XM ) ⊲ Compute

predictions.

8: ℓ← L(ŶS , YS , ŶM , YM ) ⊲ Compute loss for the

batch.

9: Compute ∇θℓ by backpropagation (treating YM as

constant.)

10: Perform one step of stochastic gradient descent on

θ.

11: end for

12: return fθ

where the expectation is over batches of random variables;

XS , YS , XM , and YM . Images in XS are sampled uni-

formly from the source domain distribution, and YS is the

corresponding labels. Further, XM and YM are the mixed

images and pseudo-labels, created by performing cross-

domain mixing between the images sampled uniformly at

random from the source domain and those from the target

domain, as explained above. Lastly, H is the cross-entropy

between the predicted semantic maps and the corresponding

labels (ground-truth or pseudo) averaged over all images

and pixels, and λ is a hyper-parameter that decides how

much the unsupervised part of the loss affects the overall

training. In line with [11, 29], we use an adaptive schedule

for λ, where it is the proportion of pixels, for each image,

where the predictions of fθ on that image have a confidence

above a certain threshold. Training is performed by stochas-

tic gradient descent on the loss using batches with the same

number of source-domain images and augmented images.

4. Experiments

In order to validate the proposed DACS algorithm, we

evaluate it in two popular datasets for UDA and compare

to the state of the art for these tasks. We also describe ad-

ditional experiments related to the source of the class con-

flation problem, as well as the effect of the choice of mix-

ing strategy. This section details the experimental setup and

provides the qualitative and quantitative results found.

Implementation Details. For all the experiments in this

paper, we adopt the widely used [35, 24, 25, 46, 36, 37, 53,

Cityscapes GTA5 SYNTHIA

Figure 4: Images from the Cityscapes, GTA5, and SYNTHIA

datasets along with their corresponding semantic maps.

60, 61, 21, 45, 55, 56, 47, 39, 26, 27, 44, 18, 52] DeepLab-

v2 framework [5] with a ResNet101 backbone [13] as our

model. The backbone is pretrained on ImageNet [9] and

on MSCOCO [22]. Most hyper-parameters are identical to

those used in [35]. We use Stochastic Gradient Descent

with Nesterov acceleration, and an initial learning rate of

2.5×10−4, which is then decreased using polynomial de-

cay with exponent 0.9 as in [5]. Weight decay is set to

5×10−4 and momentum to 0.9. Source images are rescaled

to 760× 1280 and target images to 512× 1024, after which

random crops of size 512 × 512 are extracted. For our

main results we use ClassMix unless otherwise stated and

in addition we also apply Color jittering and Gaussian blur-

ring on the mixed images. We train using batches with

2 source images and 2 mixed images for 250k iterations.

The code is implemented using PyTorch, and is available

at https://github.com/vikolss/DACS. Experi-

ments were performed using a GTX 1080 Ti GPU with 12

GB memory.

Datasets. We present results for two synthetic-to-real

benchmarks common for UDA for semantic segmentation.

Namely GTA5→Cityscapes and SYNTHIA→Cityscapes.

The target dataset Cityscapes has 2,975 training images

taken from a car in urban environments and is labelled with

19 classes [8]. The source datasets GTA5 [30] and SYN-

THIA [31] contain 24,966 and 9,400 synthetic training im-

ages respectively. Example images of all three datasets

are shown in Figure 4 together with ground-truth seman-

tic maps. The GTA5 images are labelled with the same

19 classes as Cityscapes whereas the SYNTHIA data is la-

belled with 16 of the 19 classes. All results are reported

with the Intersection over Union (IoU) metric per class and

the mean Intersection over Union (mIoU) over all classes,

the standard performance metric for semantic segmentation.

4.1. GTA5→ Cityscapes Results

We present our results for GTA5→ Cityscapes in Table

1, alongside the results from several existing works on the

same task. All of our comparisons have results for the same

DeepLab-v2 network, but for completeness we choose to in-

clude their best presented performance, regardless of back-
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Table 1: GTA5 to Cityscapes, our results are averages from three runs, and shown as per-class IoU and mIoU. We also compare to several

previous works. We present results for DACS, as well as for training only on data from the source domain.

Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU

AdaptSegNet [35] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

SIBAN [24] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

CLAN [25] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

APODA [46] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

PatchAlign [36] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

AdvEnt [37] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

FCAN [53] - - - - - - - - - - - - - - - - - - - 46.6

CBST [60] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

MRKLD-SP [61] 90.8 46.0 79.9 27.4 23.3 42.3 46.2 40.9 83.5 19.2 59.1 63.5 30.8 83.5 36.8 52.0 28.0 36.8 46.4 49.2

BDL [21] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

CADASS [45] 91.3 46.0 84.5 34.4 29.7 32.6 35.8 36.4 84.5 43.2 83.0 60.0 32.2 83.2 35.0 46.7 0.0 33.7 42.2 49.2

MRNet [55] 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5

R-MRNet [56] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3

PIT [26] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6

SIM [39] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

FDA [47] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.45

Yang et al. [44] 90.8 41.4 84.7 35.1 27.5 31.2 38.0 32.8 85.6 42.1 84.9 59.6 34.4 85.0 42.8 52.7 3.4 30.9 38.1 49.5

Kim et al. [18] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2

CAG-UDA [52] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2

IAST [27] 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5

Source 63.31 15.65 59.39 8.56 15.17 18.31 26.94 15.00 80.46 15.25 72.97 51.04 17.67 59.68 28.19 33.07 3.53 23.21 16.73 32.85

DACS 89.90 39.66 87.87 30.71 39.52 38.52 46.43 52.79 87.98 43.96 88.76 67.20 35.78 84.45 45.73 50.19 0.00 27.25 33.96 52.14

bone. In the table, “Source” refers to a model only trained

on the source data and then evaluated on the target data,

and serves as our baseline, and DACS refers to the results

from our proposed method, which achieves the strongest re-

sults for seven of the individual classes, as well as an overall

mIoU of 52.14%, higher than all previous methods, effec-

tively pushing the state of the art for this task.

Additionally, we also provide qualitative results for

GTA5 → Cityscapes. Figure 5 illustrates predictions on

a few Cityscapes frames, made by DACS as well as by

a source model (a model trained only supervised on the

source domain). In the same figure, predictions made by

a model trained using the Naive mixing described in Sec-

tion 3.1 are also presented. We can see that Naive Mixing

performs better than the baseline, and DACS in turn out-

performs Naive Mixing. This is also evident in Table 3 in

Section 4.5, where results from Naive Mixing are shown.

There, it is clear that some classes are conflated, for in-

stance the ’sidewalk’ class which obtains an IoU of almost

0%, since it’s almost always confused with ’road’, which is

also visible in Figure 5.

4.2. SYNTHIA→ Cityscapes Results

For the SYNTHIA dataset, we also compare with the

best reported performance of existing methods, regardless

of network. Additionally, the SYNTHIA dataset only con-

tains 16 of the 19 classes of Cityscapes, and some authors

present results for these 16 classes while other present for

only 13 of them. Because of these differences in bench-

marking, we present results for both 13 and 16 classes for

the DACS method. The results for the SYNTHIA dataset,

computed with the same metrics (per-class IoU and mIoU)

as the former dataset, are shown in Table 2, alongside re-

sults from several other existing works.

When evaluating on all the 16 classes, DACS obtainis

an mIoU of 48.34%, while also achieving the strongest per-

class results for 4 out of the 16 classes. For the 13 class

formulation, DACS obtains an mIoU of 54.81%.

4.3. Evaluation Conditions

Many existing methods in Tables 1 and 2, report their

results from when using early stopping based on the same

validation set that is used for the final evaluation (there is

no publicly available test set for Cityscapes). We believe

that this is not a fair evaluation, as a high performance on

the validation set does not necessarily mean high perfor-

mance on all data, but could just mean that the model is

performing well on those exact images. Using early stop-

ping in our case would increase the results substantially:

for GTA5 it would increase to 35.68% for the baseline just

trained on the source data and to 53.84% for the DACS re-

sults. For SYNTHIA, the source baseline would increase

to 32.85%, and the results for 13 classes would increase to

55.98% and for 16 classes to 49.10%. The reason for the

considerable performance increase from early stopping is

that performance on the validation set fluctuates a lot over

the course of training, rather than that the model is overfit-

ting the training data.

Similarly, many existing methods in UDA report final

results based on the top-performing model from sensitive

hyper-parameter tuning on the aforementioned validation

set. Reporting performance obtained after hyper-parameter

tuning would skew results in the same way as reporting

the highest among multiple experiments rather than aver-

ages, as one would then exploit the variance between hyper-

parameters. DACS was evaluated as an average of three

runs, with a top performing model of 54.09% for GTA5,

55.21% for Synthia with 13 classes, and 49.07% for Syn-
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Image Ground-truth Source Naive Mixing DACS

Figure 5: Qualitative results of validation images from Cityscapes, when training models on the GTA5 dataset. The Naive Mixing model

is consistently conflating some classes, sidewalks, for instance, are classified as road for all images. This issue is not shared with DACS.

Table 2: SYNTHIA to Cityscapes, our results are averages from three runs, and shown as per-class IoU and mIoU for 13 and 16 classes.

We also compare to several previous works.

Method Road SW Build Wall1 Fence1 Pole1 TL TS Veg Sky Person Rider Car Bus MC Bike mIoU mIoU

AdaptSegNet [35] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 -

SIBAN [24] 82.5 24.0 79.4 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3 -

CLAN [25] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 -

APODA [46] 86.4 41.3 79.3 - - - 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 53.1 -

PatchAlign [36] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5 40.0

AdvEnt [37] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0 41.2

CBST [60] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 48.9 42.6

MRKLD [61] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 50.1 43.8

CADASS [45] 82.5 42.2 81.3 - - - 18.3 15.9 80.6 83.5 61.4 33.2 72.9 39.3 26.6 43.9 52.4 -

MRNet [55] 82.0 36.5 80.4 4.2 0.4 33.7 18.0 13.4 81.1 80.8 61.3 21.7 84.4 32.4 14.8 45.7 50.2 43.2

R-MRNet [56] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 54.9 47.9

PIT [26] 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 78.8 64.2 27.6 79.6 31.2 31.0 31.3 51.8 44.0

SIM [39] 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1 -

FDA [47] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5 -

Yang et al. [44] 85.1 44.5 81.0 - - - 16.4 15.2 80.1 84.8 59.4 31.9 73.2 41.0 32.6 44.7 53.1 -

Kim et al. [18] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 49.3 -

CAG-UDA [52] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 - 44.5

IAST [27] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 57.0 49.8

Source 36.30 14.64 68.78 9.17 0.20 24.39 5.59 9.05 68.96 79.38 52.45 11.34 49.77 9.53 11.03 20.66 33.65 29.45

DACS 80.56 25.12 81.90 21.46 2.85 37.20 22.67 23.99 83.69 90.77 67.61 38.33 82.92 38.90 28.49 47.58 54.81 48.34

thia with 16 classes.

4.4. Similarity Between Source and Target

We note that our results increase more in relation to

previous works for GTA5 → Cityscapes than it does for

SYNTHIA → Cityscapes. We hypothesise that this de-

pends on the similarity between the source and target data,

namely that GTA5 images are more similar to Cityscapes

than SYNTHIA images are. This is clearly helpful in UDA

and particularly so when mixing images between domains,

since the mixed images will be more sensible if objects end

1Excluded when calculating mIoU for 13 classes.

up in locations that are reasonable. This can be quantified

by the spatial distribution of classes: where in the images

certain classes appear. Cityscapes and GTA5 are very simi-

lar in that road is always down, sky is always up and cars are

always vertically near the center of the images. This is less

the case for SYNTHIA, however, as the images are taken

from different perspectives, including from the ground and

from above. Hence, when pasting objects from SYNTHIA

to Cityscapes, it is likely that the resulting images will be

nonsensical, which we believe is detrimental for training.

This means that the performance of DACS might not be as

high for tasks with larger domain shifts. We leave the inves-

tigation of this for future work.
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Table 3: Results from experiments when using Naive Mixing, only using pseudo-labelling and when applying CutMix or CowMix instead

of the default ClassMix. All experiments are performed on GTA5 → Cityscapes. For comparison our results from Table 1 are also included.

Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU

Source 63.31 15.65 59.39 8.56 15.17 18.31 26.94 15.00 80.46 15.25 72.97 51.04 17.67 59.68 28.19 33.07 3.53 23.21 16.73 32.85

Naive Mixing 84.78 0.00 82.81 0.34 0.05 10.56 47.96 58.86 86.87 8.08 90.99 56.09 0.00 86.92 40.45 11.38 0.00 0.45 0.00 35.08

Pseudo-labelling 85.14 0.03 75.84 0.35 0.03 0.23 3.19 1.30 78.05 36.53 65.78 4.89 0.01 79.17 4.24 1.30 0.00 0.26 0.02 22.97

DACS + CutMix 86.29 36.92 85.47 32.63 31.95 27.86 44.17 30.19 80.34 25.28 85.79 65.03 34.99 90.08 46.69 50.40 3.48 36.90 30.62 48.69

DACS + CowMix 90.34 33.93 84.12 27.37 36.33 31.47 44.15 28.03 85.56 38.94 87.94 63.82 24.77 89.48 47.41 49.54 0.16 36.78 17.66 48.30

Distribution alignment 85.05 28.88 86.79 16.92 36.89 30.38 49.73 53.91 85.61 32.20 92.78 66.61 23.53 84.00 34.81 27.70 0.20 16.65 60.08 48.04

DACS 89.90 39.66 87.87 30.71 39.52 38.52 46.43 52.79 87.98 43.96 88.76 67.20 35.78 84.45 45.73 50.19 0.00 27.25 33.96 52.14

4.5. Additional Experiments

In order to further evaluate DACS, and to better under-

stand the source of the class conflation problem, additional

experiments are performed and presented in Table 3. Re-

sults are shown for the Naive Mixing explained in Section

3.1 as well as for using only pseudo-labelling without any

mixing and for using different mixing strategies.

As can be seen in Table 3, the performance is signifi-

cantly stronger for DACS than it is for Naive Mixing. As

stated in Section 3.1, the most important reason for this is

that Naive Mixing conflates several of the classes, which

impacts the overall performance considerably. This is clear

from the per-class IoUs in the table, where seven of the

classes have scores below 1% for Naive Mixing. In Figure

5, we can clearly see an illustration of the class conflation

problem, where for example the ’sidewalk’ class is not pre-

dicted by Naive Mixing in any of the frames, instead being

classified as road. In contrast, DACS is able to correctly

discern between these classes in all frames.

Since Naive Mixing is mixing images based on predic-

tions, we investigate if the problem of class conflation could

be related to, or made worse by, the mixing component.

We observe that when just using pseudo-labelling (that is

removing the mixing component), even more classes stop

being predicted by the network, with overall performance

becoming worse than the source baseline. Therefore, it is

reasonable to assume that it is the pseudo-labelling compo-

nent, and not the mixing, that cause class conflation, sim-

ilar to the conclusion made in [60]. It is possible that in-

corporating existing techniques for pseudo-labelling would

solve this issue. Though as previously stated, our proposed

method of mixing images across domains offers a simple

correction purely by changing the nature of the augmenta-

tion technique.

A different way to solve the problem of conflating

classes would be to impose a prior class distribution on the

pseudo-labels. This has been done previously for the same

task in the context of entropy regularization [37]. It is there-

fore insightful to investigate if a similar solution can correct

pseudo-labels in Naive Mixing. To this end we use Distri-

bution Alignment, as used in [1], meaning that a distribution

of classes is forced upon the predictions. This is a different

way of injecting entropy into the pseudo-labels, meaning

that it could also help the network avoid class conflation.

We perform experiments where the ground-truth distribu-

tion p of the target dataset is used to guide the training. This

is done for each sample by transforming the output predic-

tion q for each pixel into q̃ = Normalize(q × p/p̃), where

p̃ is a running average of all predictions made by the net-

work on the target data. The setup is otherwise identical to

when using Naive Mixing. The results from this are shown

in Table 3. In our case, this is not a legitimate method, as

the ground-truth class distribution would not be known for

an unlabelled dataset in a realistic setting. However, it is

interesting to see that this approach also solves the issue of

conflating classes, as all classes are represented in the re-

sults. This further strengthens our hypothesis that artificial

injection of entropy in training can help the network avoid

class conflation.

When replacing ClassMix [29] with other mixing tech-

niques such as CutMix [49], or CowMix [12], performance

drops slightly but the class conflation issue remains solved

independent of mixing strategy, as can be seen in Table 3.

This both illustrates the general applicability of cross do-

main mixing, and that the choice of mixing strategy is rele-

vant for performance. Incorporating other mixing strategies

with DACS has the potential for even stronger performance,

and presents an interesting direction for future research.

5. Conclusion

We have proposed DACS, Domain Adaptation via Cross-

domain mixed Sampling, a novel algorithm for unsuper-

vised domain adaptation in semantic segmentation. We

show how a naive adaptation of mixing-based consistency

regularization as used in SSL to UDA results in system-

atic problems in the predictions, and detail the changes per-

formed in order to correct these issues. Furthermore, we

perform an evaluation of DACS for two popular domain

adaptation benchmarks, GTA5→ Cityscapes, where it out-

performs existing methods and pushes the state of the art,

and SYNTHIA→ Cityscapes.
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