
Interpretable and Trustworthy Deepfake Detection via Dynamic Prototypes

Loc Trinh, Michael Tsang, Sirisha Rambhatla, Yan Liu

University of Southern California

Los Angeles, CA 90089

{loctrinh, tsangm, sirishar, yanliu.cs}@usc.edu

Abstract

In this paper we propose a novel human-centered ap-

proach for detecting forgery in face images, using dynamic

prototypes as a form of visual explanations. Currently, most

state-of-the-art deepfake detections are based on black-box

models that process videos frame-by-frame for inference,

and few closely examine their temporal inconsistencies.

However, the existence of such temporal artifacts within

deepfake videos is key in detecting and explaining deep-

fakes to a supervising human. To this end, we propose

Dynamic Prototype Network (DPNet) – an interpretable

and effective solution that utilizes dynamic representations

(i.e., prototypes) to explain deepfake temporal artifacts.

Extensive experimental results show that DPNet achieves

competitive predictive performance, even on unseen test-

ing datasets such as Google’s DeepFakeDetection, Deep-

erForensics, and Celeb-DF, while providing easy referential

explanations of deepfake dynamics. On top of DPNet’s pro-

totypical framework, we further formulate temporal logic

specifications based on these dynamics to check our model’s

compliance to desired temporal behaviors, hence providing

trustworthiness for such critical detection systems.

1. Introduction

While artificial intelligence (AI) plays a major role in

revolutionizing many industries, it has also been used to

generate and spread malicious misinformation. In this con-

text, Deepfake videos – which can be utilized to alter the

identity of a person in a video – have emerged as perhaps the

most sinister form of misinformation, posing a significant

threat to communities around the world [63, 26, 60, 62],

especially with election interference or nonconsensual fake

pornography [9, 24]. Therefore, as deepfakes become more

pervasive, it is critical that there exists algorithms that can

ascertaining the trustworthiness of online videos.

To address this challenge, a series of excellent works has

been conducted on detecting deepfakes [61, 41, 1, 49, 33].

While these work have achieved good progress towards the

prediction task to a certain extent, there is still significant

room for improvement. First, even though existing work fo-

cus on the detection problem, very few of them address the

interpretability and trustworthiness aspects. Currently, most

existing solutions draw bounding boxes around a face and

label it with fakeness probabilities. Rather, it might be more

fruitful to explain why a model predicts a certain face as real

or fake, such as which parts of the face the model believes

are forged, and where is it looking to yield this prediction.

This is crucial for a human to understand and trust the con-

tent verification systems. Second, it is known that humans

can instantaneously detect deepfake videos after observing

certain unnatural dynamics, due to the distortions induced

by deepfake generative models, which are generally harder

to hide [31, 47, 75]. This too would also be a viable expla-

nation for a system to return as humans can quickly see and

understand abnormal movements (Figure 1). Yet most state-

of-the-art deepfake detection techniques only analyze a po-

tential video frame-by-frame, and few have explored these

temporal inconsistencies [50, 48, 40]. As a result, there is

a need for an interpretable deepfake detection method that

both considers temporal dynamics and at the same time pro-

vides human-accessible explanations and insights into the

inconsistencies within deepfake videos.

To this end, we propose DPNet – an interpretable

prototype-based neural network that captures dynamic fea-

tures, such as unnatural movements and temporal artifacts,

and leverages them to explain why a particular prediction

was made. Specifically, DPNet works by first learning the

prototypical representations of the temporal inconsistencies

within the latent space, by grouping the patch-wise repre-

sentation of real video closer together while pushing those

of fake videos farther away. Then, it makes predictions

based on the similarities between the dynamics of a test

video and a small set of learned dynamic prototypes. Lastly,

the prototypes are then intermittently projected to the clos-

est representative video patch from the training dataset,

which yields an immediate human-understandable interpre-

tation of the learned dynamic prototypes.

The primary advantages of DPNet are as follows:

• Faithful explanations via case-based reasoning:

DPNet follows a case-based reasoning approach that
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Figure 1. Examples of static vs. dynamic explanations for deepfake videos. Qualitatively, seeing temporal artifacts allow a human to

quickly determine whether a video is real or fake. Red circles indicate regions of interest. Best view as GIFs (See Appendix C).

utilizes previously learned dynamics - as a piece of ev-

idence (i.e cases) - to tackle an unseen testing video.

This also allows the model to explain why a certain

prediction was made, in a way that is reflective of the

network’s underlying computational process.

• Visual dynamic explanations: DPNet provides ex-

planations in the form of visual dynamics (video clips)

via the learned dynamic prototypes, each of which

points to a temporal artifact that is accessible and easy

for humans to understand.

• Temporal logic specifications: Lastly, the dynamic

prototypes learned by the network can additionally

be used to formulate temporal logic specifications.

This allows auditors to check the robustness of the

model and verify whether certain temporal behaviors

are obeyed throughout the lengths of the videos.

2. Related Work

2.1. Face forgery detection

Early face forensic work focus on hand-crafting facial

features, such as eye color and missing reflections [41],

3D head poses [70], and facial movements [2, 6]. How-

ever, these approaches do not scale well to larger and

more sophisticated deepfakes. To address this problem, re-

searchers leverage recent advances in deep learning to au-

tomatically extract discriminative features for forgery de-

tection [49, 45, 44, 67]. Previous work achieved state-

of-the-arts by fine-tuning ImageNet-based model, such as

Xception [49]. Other work examine spatial pyramid pool-

ing module to detect resolution-inconsistent facial artifacts

DSP-FWA [35], low-level features and convolutional ar-

tifacts [1, 11], or blending artifacts via Face X-ray [33].

FakeSpotter [67] uses layer-wise neuron behaviors as fea-

tures instead of final-layer neuron output to train a classifier.

Most forgery detection methods process deepfake videos

frame-by-frame, and few explore multi-modal and tempo-

ral dynamics [74, 4]. Recent work using multi-frame inputs

[50, 40] and video architecture [48] have shown the compet-

itive potential of leveraging temporal information. Our ap-

proach builds on this and examines temporal artifacts both

to predict and explain deepfakes to human decision makers.

With more advanced deepfake creations, recent works

[13, 29, 15] have shown that the performance of current

methods drops drastically on new types of facial manip-

ulations. In particular, ForensicTransfer [13] proposes an

autoencoder-based neural network to transfer knowledge

between different but related manipulations. Face X-ray

[33] created a blending dataset to help networks general-

ize across various manipulations, and [40] creates a novel

loss to reshape the latent space, pulling real representations

closer and repelling fake representations farther away, both

of which have demonstrated valuable generalizability.

2.2. Interpretable neural networks

One prominent approach to explaining deep neural net-

works is posthoc analysis via gradient [54, 52, 56, 5, 53]

and perturbation-based methods [19, 51, 71, 43]; however,

it is known that these methods do not modify the complex

underlying architecture of the network. Instead, another

line of research tries to build networks that are interpretable

by design, with a built-in way to self-explain [3, 34]. The

advantage of this approach is that interpretability is repre-

sented as units of explanation - general concepts and not

necessarily raw inputs. This can be seen in the work of Al-

varez et. al [3] for basis concept learning and Kim et. al

[30, 42] for case-based reasoning and prototype learning.

Recently, Chen et al. [12] proposed learning prototypes for

fine-grained image classification to make predictions based

on similarity to class-specific image patches via ProtoPNet.

On the other hand, although complex deep learning-

based video classification models have been developed for

video understanding, such as 3D CNN, TSN, TRN, and

more [73, 38, 73, 66, 18], there is much to be desired in

terms of interpretability, especially when compared to in-

trinsically interpretable models. In contrast, our proposed

approach extends fine-grain classification [12] and captures

fake temporal artifacts as dynamic prototypes, which can be

directly visualize to explain predictions to a human being,

which is crucial important for face forgery detection.
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Figure 2. DPNet video-based face manipulation detection architecture. Spatial and temporal information are processed via the HRNet

feature encoding backbone. The networks learn m prototypes, each is used to represent some prototypical activation pattern in a patch

of the convolutional feature maps, which in turn corresponds to some prototypical dynamic patch in the original spatial/temporal space.

Traces from videos along with prototypical activations are then verified via the temporal logic module post-training.

2.3. Safety verification

The importance of safety verification, especially in crit-

ical domains such as healthcare or autonomous driving,

was highlighted when the discovery of adversarial attacks

[57, 22] prompted many lines of work in robust verifica-

tion in ML [32, 28, 23, 25, 68, 10, 39]. To further reason

about safety and robustness in time, temporal logic has been

broadly in previous work [8, 46, 55, 17], and recent work

in using temporal logic to verify time-series and NN-based

perception system have shown promises [64, 14, 69]. More-

over, the difficulty in building neuro-symbolic system is the

question of how to integrate the output representations of

deep networks in a propositional form [7]. In contrast, the

dynamic prototypes from our interpretable models provide

a convenient vehicle for us to specify atomic propositions

and formulate temporal logic specifications for videos. This

allows users verify the model’s compliance to desired tem-

poral behaviors and establish trust within critical detection

systems when deployed in a real-world scenario.

3. Dynamic Prototype Network (DPNet)

In this section, we introduce our Dynamical Prototype

Network (DPNet), the loss function, and the training pro-

cedure, and the logic syntax. In addition, we highlight the

steps that our network took to predict a new video, and how

those steps can be interpreted in a human-friendly way.

3.1. DPNet architecture

The proposed architecture is shown in Figure 2. As

shown, DPNet consists of four components: the feature

encoder f , the prototype layer p, the fully-connected layer

w, and the temporal logic verifier. Formally, let V =
{(vi, yi)}

N
i=1 be the video dataset, where vi be a deepfake

video sequence of length Tvi
, and yi 2 {0, 1} is the label

for fake/real. Clips are sampled as inputs to the network.

Feature encoder f(·): The feature encoder f encodes a

processed video input xi 2 R
256⇥256⇥S into a hidden repre-

sentation z 2 R
H⇥W⇥C . We used HRNet here as the back-

bone encoder, initialized with ImageNet pretrained weights.

The input xi to the encoder f is formed by stacking one

RGB frame with precomputed optical flow fields between

several consecutive frames, yielding S channels (Figure 2a).

We let the input to the DPNet be a fixed-length T < Tvi
,

and randomly selected the initial starting frame for xi. This

allows us to explicitly describe the motion of facial features

between video frames, while simultaneously presenting the

RGB pixel information to the network. Furthermore, since

the optical flow fields can also be viewed as image chan-

nels, they are well suited for image-based convolutional net-

works. The feature encoder f outputs a convolutional tensor

z = f(xi) that is forwarded to the prototype layer.

Prototype layer p(·): The network learns m prototype vec-

tors p1,p2, . . . ,pm of shape (1, 1, C) in the latent space,

each will be used to represent some dynamical proto-

typical activation pattern within the convolutional feature

maps. The prototype layer p computes the squared `2 dis-

tance between each the prototype vectors pj and each spa-

tial/temporal patch (of shape (1, 1, C)) within the input fea-

ture maps z. It then inverts the distance to score their sim-

ilarity. This generates m similarity maps for each dynamic

prototype, and max-pooling yields the most similar activa-

tion patch. The shape of the prototype vectors is chosen to

represent the smallest facial dynamic patch within z. Fur-

ther patch projection in section 3.2.2 attributes each proto-

type to a corresponding prototypical video patch in the orig-

inal pixel/flow space. Formally, in Figure 2b, the prototype

layer p computes m similarity scores:

p(z) = [ p1(z), p2(z), . . . , pm(z) ]> (1)

where, the similarity score between a prototype pj and z,

denoted as pj(·) is given by

pj(z) = max
z02patches(z)

1

1 + kz0 � pjk22
(2)

Fully-connected layer w(·): This layer computes weighted
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sums of similarity scores, a = W p(z), where W 2 R
K⇥m

are the weights, and K denotes the number of classes (K =
2 for DPNet). We then use a softmax layer to compute the

predicted probability as follows, ŷi = exp(ai)P
K
j=1

exp(aj)
. Note

that, we allocate mk prototypes for each class k 2 {0, 1}
s.t.

P

k mk = m. In other words, every class is represented

by mk prototypes in the final model.

3.2. Learning objective

We aim to learn meaningful forgery representation which

ensures that the dynamic prototype vectors a) are close to

the input video patches (Fidelity), b) between fake and real

artifacts are well-separated (Separability), and c) are in-

terpretable by humans (Grounded). We adopt two widely

used loss functions in prototype learning to enforce fidelity

and separability. Furthermore, we also introduce a diver-

sity loss term to ensure that intra-class prototypes are non-

overlapping. We jointly optimize the feature encoder f

along with the prototype vectors p1, p2, . . . , pm in the pro-

totype layer p to minimize the the cross-entropy loss on

training set, while also regularizing for the desiderata.

3.2.1 Loss function

Let D = {(xi, yi)}
N
i=1 be our training dataset, where xi is

our stacked input extracted from video vi.

For hyperparameters �c,�s, and�d the overall objective

function that we wish to minimize is given by:

L(D; ✓) = CE(D; ✓) + �cRclus(D; ✓)

+ �sRsep(D; ✓) + �dRdiv(✓)
(3)

where CE(·), Rclus(·), Rsep(·), Rdiv(·) are the cross-

entropy, clustering, separation, and diversity loss, respec-

tively. Here, ✓ are the trainable parameters for the feature

encoder f and the prototype layer p. The cross-entropy loss

here imposes prediction accuracy and is given by

CE(D; ✓) =
1

N

N
X

i=1

K
X

k=1

�
⇥

yi = k
⇤

log(ŷk) (4)

The clustering loss Rclus minimizes the squared `2 distance

between some latent patch within a training video and its

closest prototype vector from that class, and is given by

Rclus(·) =
1

N

N
X

i=1

min
pj2Pyi

min
z2patches(xi)

kz� pjk
2
2 (5)

where Pyi
is the set of prototype vectors allocated to the

class yi. The separation loss Rsep encourages every patch

of a manipulated training video to stay away from the real

dynamic prototypes (vice versa), and is given by

Rsep(·) = �
1

N

N
X

i=1

min
pj 62Pyi

min
z2patches(xi)

kz� pjk
2
2 (6)

These loss functions have also been commonly used in pre-

vious prototypical-based frameworks [12, 42].

Diversity loss. Due to intra-class prototypes overlapping,

we propose a cosine similarity-based regularization term

which penalizes prototype vectors of the same class for

overlapping with each other, given by

Rdiv(·) =

K
X

k=1

X

i 6=j
pi,pj2Pk

max(0, cos(pi,pj)� smax

�

(7)

where smax is a hyperparameter for the maximum simi-

larity allowed. This cosine similarity-based loss considers

the angle between the prototype vectors regardless of their

length. It allows us to penalize the similarity between the

prototypes up to a threshold, leading to more diverse and

expressive dynamic representations.

3.2.2 Prototype projection and grounding

To achieve grounding, while training we intersperse the fol-

lowing projection step after every few epochs. Specifically,

we project the prototype vectors to actual video patches

from training videos that contain those dynamics as follows,

pj  argminz02patches(f(xi))
kz0 � pjk

2
2 8i s.t. yi = k (8)

for all prototype vectors of class k, i.e. pj 2 Pk. This step

projects each prototype vector of a given class to the closest

latent representation of a manipulated / genuine video patch

that is also from that same class. As a result, the predic-

tion of a test video is made based on the similarities it has

with the learned dynamic prototypes. Consequently, the test

predictions are grounded on the training videos.

3.3. Temporal logic verification via prototypes

Our DPNet architecture allows for the usage of formal

methods to verify the compliance of our model. Given the

direct computational path from f to p to w, we can check

whether the learned prototypes satisfy some desired tem-

poral behaviors. Here, we used Timed Quality Temporal

Logic (TQTL) similar to [14], but instead, we consider each

video as a data stream with each frame as a time-step. We

hereby give a brief summary of the TQTL language, and the

specifications we used to verify our model.

The set of Timed Quality Temporal Logic (TQTL) formu-

las � over a finite set of Boolean-value predicates Q over at-

tributes of prototypes, a finite set of time variables (Vt), and

a finite set of prototype indexes (Vp) is inductively defined

according to the following grammar:

� ::=true |⇡ | ¬� |�1 _ �2 |�1 U�2 |

x  y + n |x.� | 9pi@x,�
(9)

where ⇡ 2 Q, and �1 and �2 are valid TQTL formulas. ⇡

has the functional form ⇡ ⌘ Fπ(t1...n, p1...m) ⇠ C, where
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⇠ is a comparison operator, i.e. ⇠2 {<,, >,�,=, 6=},

and C 2 R. For example, the predicate for “the similarity

of prototype p1 to an input at time step 2 is greater than

0.9” is F (t2, p1) > 0.9. We hereby use S(·) to denote the

prototype similarity score.

In the grammar above, x, y 2 Vt, n 2 N, pi 2 Vp, and

U is the “until” operator. The time constraints of TQTL are

represented in the form of x  y + n. The freeze time

quantifier x.� assigns the current time to a variable x be-

fore processing the subformula �. The quantifiers 9 and 8
respectively existentially and universally quantify over the

prototypes in a given frame. In addition, we use three addi-

tional operators: ( Implies �)  ! � ⌘ ¬ _ �, (Even-

tually  ) ⌃ ⌘ trueU , and (Always  ) ⇤ ⌘ ¬⌃¬ .

The semantics of TQTL can be find in the Appendix B.

From the dynamic prototypes, we define specifications

to check the robustness of our model. We verify that if our

model predicts fake for a testing video V , throughout the

video, there exists a clip starting at time t where a prototype

pi 2 Pfake is most similar to it compared to all prototypes

of the real class pk 2 Preal for all time t0 s.t. 0  t0  TV .

This verifies that there exists of a key region of the video

that our prototypes ‘see’ fake strongly. The formula �1
denotes this key-frame specification, F = fake, R = real:

�1 = ⌃(t.9pk@t, Class(V ) = F(R) ^ pk 2 PF(R)

! ⇤(t0.((0 < t0 ^ t0 < TV )

! 8pj@t0, pj 2 PR(F) ^ S(t, pk) > S(t0, pj) )))

Moreover, we can specify that if a prototype is non-relevant,

its similarity to a frame should be consistently low through-

out. An example of this safety specification is that a pro-

totype representing a fake temporal artifact should not be

highly activated in a real video at any time. We specify

this notion below, where numerical values are user-specified

thresholds that control the strictness of the specification.

The formula �2 denotes this non-relevance specification:

�2 = ⇤(t.8pi@t, Class(V ) = F(R) ^ pi 2 PR(F)

! S(t, pi) < 0.4 ^⇤(t0.(t  t0 ^ t0  t+ 5)

! |S(t0, pi)� S(t, pi)| < 0.1))

4. Experiments

4.1. Experimental settings

Training datasets. For training our networks, we use the

FaceForensics++ (FF++) [49] dataset, which consisted of

1000 original video sequences that have been manipulated

with four face manipulation methods: DeepFakes (DF)

[20], Face2Face (F2F) [59], FaceSwap (FS) [21], and Neu-

ralTextures (NT) [58]. FF++ provides ground truth manip-

ulation masks showing which part of the face was manipu-

lated. We preprocess the videos by dumping the frames and

crops out facial areas based on facial landmarks [72].

Table 1. Basic information of training and testing datasets. [36]

Dataset
Real Fake

Video Frame Video Frame

FaceForensics++ (FF++) [49] 1000 509.9k 4000 2039.6k

DeepFakeDetection (DFD) [16] 363 315.4k 3068 2242.7k

DeeperForensics-1.0 [27] 0 0.0k 11000 5608.9k

Celeb-DF [37] 590 225.4k 5639 2116.8k

Testing datasets. To evaluate the cross-dataset general-

izability of our aprpoach, we use the following datasets:

1) FaceForensics++ [49] (FF++); 2) DeepfakeDetection

(DFD) [16] including 363 real and 3068 deepfake videos

released by Google in order to support developing deep-

fake detection methods; 3) DeeperForensics-1.0 [27] - a

large scale dataset consisting of 11, 000 deepfake videos

generated with high-quality collected data vary in identi-

ties, poses, expressions, emotions, lighting conditions, and

3DMM blendshapes; 4) Celeb-DF [37], a new DeepFake

dataset of celebrities with 408 real videos and 795 synthe-

sized video with reduced visual artifacts. (Table 1).

Implementation details. During DPNet training phases,

the input is formed by stacking 1 RGB frame followed by

10 pre-computed optical flow fields that are uniformly sep-

arated. DPNet uses a pre-trained HRNet as a backbone

network, warm started with ImageNet pre-trained weights.

Since our input contains temporal frames, we also per-

form cross-modality pre-training to average and increase

the number of channels in the first conv. layer. The encoder

f and prototypes p were trained with learning rates of 2e�4

and 1e�3 respectively. From cross-validation, �c,�s,�d are

set to (0.2, �0.2, 0.1), smax = 0.3, mk = 50, and proto-

type vectors are randomly initialized. Further details of the

experimental settings are provided in Appendix A.

Evaluation metrics. In addition to the area under the re-

ceiver operating curve (AUC), we further use global metrics

at a low false alarm rate, similar to [40]. These metrics re-

quire critical detectors to operate at a very low false alarm

rate, especially in the practical use case of automatic screen-

ing for fakes on social media. We used the standardized par-

tial AUC or pAUC in addition to the True Acceptane Rate

at low False Acceptance Rate. Lastly, we also inspect the

Equal Error Rate, similar to [44].

4.2. Evaluations on Different Quality Settings

In Table 2, we present a thorough comparison of DPNet

on FF++ [49], as well as baselines that do not have inter-

pretable interpretations or temporal aspects. We train and

test with four manipulations types (Deepfakes, FaceSwap,

Face2Face, and NeuralTextures) along with the real faces

for both High Quality (c23) and Low Quality (c40) com-

pressions. We look at different evaluation metrics such

as AUC, pAUC10%, TAR10%, and EER. In general, our

approach has superior performance compared to Xception

and Two-branch. In particular, we improved AUC from

92% to 99% on HQ (c23) compression, and similarly, AUC
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Figure 3. The reasoning process of the DPNet. The prediction for video clip is based on the similarity comparison between the latent

input representations against the learned prototypes. The network tries to find evidence for manipulated/genuine by looking at which spa-

tial/temporal patch that was mostly activated by the dynamic prototypes. Similarity scores between class-specific prototypes are summed.

Table 2. Comparison on FF++ for different quality settings.

Quantitative results reported for medium compression (c23) and

high compression (c40) on FF++ comparing our method with other

non-interpretable, interpretable, and temporal methods. Results

are reported on four manipulations.

Model
Compression FF++

Quality AUC pAUC10% TAR10% EER

DSP-FWA [35]

HQ (c23)

56.89 51.33 14.60 -

Xception [49] 92.30 87.71 81.21 -

Two-branch [40] 98.70 97.43 97.95 -

ProtoPNet [12] 97.95 93.26 94.82 6.00

DPNet (Ours) 99.20 98.21 98.04 3.41

DSP-FWA [35]

LQ (c40)

59.15 52.04 8.82 -

Xception [49] 83.93 74.78 63.25 -

Two-branch [40] 86.59 69.71 62.48 -

ProtoPNet [12] 77.19 61.41 40.18 30.00

DPNet (Ours) 90.91 81.46 79.46 13.35

from 83% to 91% on LQ (c40). The result is also consis-

tent for other low false alarm metrics. Note that Xception

and Two-branch does not offer any form of intrinsic inter-

pretability. The table also reports the result of an image-

based interpretable method ProtoPNet and a self-supervised

method DSP-FWA. Our approach scores the highest AUC

across manipulations for both the compression levels, and

the usage of temporal information gives DPNet an advan-

tage generalizing to more complex and unseen deepfake

datasets, seen in the next section.

4.3. Evaluations on Unseen Datasets

Table 3 shows the benchmark results of our frame-

work on the detection of popular unseen deepfake datasets.

We evaluate our model’s transferability to Google’s Deep-

fakeDetection, DeeperForensics-1.0, and Celeb-DF, given

that it is trained only on FaceForensics++ and zero external

self-supervised data [33]. For fair comparisons, we trained

the model on FF++ with all four manipulation types and

real faces, and additionally trained an HRNet-only baseline

for binary classification. Table 3 reports a clear net im-

provement over the state-of-the-art, 1-4% in AUC across the

board, even for manipulations with real-world perturbations

(DeeperForensics) and low visual artifacts (Celeb-DF). Ta-

ble 4 additionally reports the classic evaluation performance

in terms of AUC between our dynamic prototype approach

and a wider range of very recent methods on Celeb-DF.

The effect of temporal information. Our network makes

predictions about face forgery by exploiting temporal arti-

facts, which are harder to hide and can generalize across dif-

ferent manipulations in the RGB pixel space. Table 2 indi-

cates general improvement over not only Xception, but also

the image-based interpretable ProtoPNet, where the gap is

much wider as visual quality degrades. Patch-based com-

parison in `2-space looks at the visual patch (enforced by

the loss), and significant changes to the video visuals can

impact interpretability. This can be further seen in Table 3,

where both ProtoPNet and DPNet performs comparably on

Celeb-DF, but differ significantly for DeeprForensics. This

is not surprising as DeeperForensics features a wider range

of distortions, using compressions, color saturations, con-

trast changes, white gaussian noises, and local block-wise
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Table 3. Generalization ability evaluation on unseen datasets. Our network trained only on FF++ (c23) performs competitively to

state-of-the-art baselines while also providing meaningful interpretations. Temporal artifacts learned by our approach can generalize well

to datasets with a wider range of visual distortions such as DeeperForensics (Fig. 5).

Model Train Set
Unseen Test Set

DFD DeeperForensics Celeb-DF

AUC pAUC10% TAR10% EER AUC pAUC10% TAR10% EER AUC pAUC10% TAR10% EER

Xception [49]

FF++

91.27 81.25 78.97 16.61 87.89 77.84 65.42 19.90 63.93 55.00 21.47 39.89

HRNet [65] 89.35 79.73 71.35 18.34 83.57 74.75 62.92 22.64 61.22 54.68 19.27 45.88

ProtoPNet [12] 84.46 77.58 66.42 23.81 61.59 52.26 14.65 38.81 69.33 56.06 29.12 36.52

DPNet (Ours) 92.44 81.30 76.21 16.21 90.80 79.66 75.67 17.30 68.20 55.02 25.88 37.08

Figure 4. Visualization of learned dynamic prototypes. Left column depicts the different classes of temporal artifacts and unnatural

movements found by DPNet. Right column shows the effect of diversity regularization (7) on prototype similarities across test videos.

distortions [27] (Figure 5). And since the number of pro-

totypes are fixed, high performance requires generalizable

prototypes. Table 5 further investigates the impact of vary-

ing the number of flow frames.

Qualitative visualization of learned dynamic prototypes.

Figure 4 presents classes of temporal artifacts captured by

the learned dynamic prototypes. We take the gradient attri-

bution with respect to each prototype similarity score. Dur-

ing the training steps, while projecting, we kept track of the

latent patch within the original training clip that is closest to

each prototype. Hence, during testing, we can visualize the

prototypes that are most similar to the testing videos. Some

artifacts features heavy discoloration (Fig. 4a), which is al-

ready interpretable as images, but changes in discoloration

over time offer more interpretability. In fact, other artifacts

such as subtle discolorations or movements (Fig. 4b,c) are

much harder to interpret with just one image, especially the

facial jitterings and unnatural oscillations (Fig. 4d).

4.4. Temporal specifications over prototypes

Table 6 reports the robustness of DPNet and inter-

pretable baselines against desired temporal specifications

specified in Section 3.3. Overall, both approaches satisfy

the �1,key frame specification up to high-percentage, with

DPNet performing better, especially with the fake traces.

This indicates that with high-probability, we can find a key-

frame within the video that is most relevant in explaining

Table 4. Best competing methods on

Celeb-DF are reported. Results for

other methods are from [37]

Model FF++ Celeb-DF

MesoInception4 [1] 83.0 53.6

Two-stream [74] 70.1 53.8

HeadPose [70] 47.3 54.6

VA-MLP [41] 66.4 55.0

VA-LogReg 78.0 55.1

Xception-raw [49] 99.7 48.2

Xception-c23 99.7 65.3

Xception-c40 95.5 65.5

Multi-task [44] 76.3 54.3

Capsule [45] 96.6 57.5

DSP-FWA [35] 93.0 64.6

ProtoPNet [12] 98.0 69.3

DPNet (Ours) - c23 99.2 68.2

DPNet (Ours) - c40 90.91 71.76

Figure 5. Visual distor-

tions in DeeperForen-

sics [27]. Not in FF++.

why a video is a deepfake, via a dynamic prototypes in the

fake class. On the other hand, the models perform poorly

with the stringent specification �2,non relevance, which re-

quires non-relevant prototypes to both stay low and not

change at all over time. Since DPNet utilized temporal in-

formation via optical flows, this is a stricter specification

to enforce as flows can change drastically across consecu-

tive frames, hence the lower percentage of satisfying traces.

We experiment by relaxing the consecutive “next 5 frames”

non-changing constraint, �3,relaxed, which now only en-

force non-relevant prototype similarities to be low. The flex-
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Table 5. Ablation study on FF++. (a) Testing metrics obtained by training varying the number of prototypes mk under (c23) com-

pression, testing on unseen DFD. (b) Ablation experiments showing the impact of length of the input flow segments, testing on unseen

DeeperForensics (c) Ablation experiments on (c23) compression without diversity regularization.

(a)
FF++ - DFD - varying num prototypes

AUC pAUC10% TAR10% EER

mk = 10 86.19 74.09 56.13 21.93

mk = 25 90.79 77.36 71.38 17.46

mk = 50 92.44 81.30 76.21 16.21

mk = 100 91.88 79.94 77.70 17.1

(b)
FF++ - DeeperForensics - wo/ flow frames

AUC pAUC10% TAR10% Time per Batch

- flows 61.59 52.26 14.65 0.68 ± 0.13s

frame = 5 88.03 77.76 69.38 1.11 ± 0.13s

frame = 10 90.80 79.66 75.67 2.22 ± 0.44s

frame = 15 84.85 75.22 66.98 4.39 ± 0.34s

(c)
FF++ c23 - wo/ Diversity

AUC pAUC10% TAR10%

- diversity 97.81 96.17 95.76

DPNet 99.20 98.21 98.04

Table 6. Percentage of traces satisfying temporal specifications.

Rows in each block represent the percentage over positive, nega-

tive, and all traces.

�1,key frame �2,non relevance �3,relaxed

ProtoPNet

(+) 95.23 49.73 70.89

(-) 89.09 42.18 58.76

92.00 45.75 64.50

DPNet

(Ours)

(+) 93.65 28.04 74.07

(-) 91.46 16.11 56.39

92.50 21.75 64.75

ibility of temporal logic along with interpretable model al-

lows end-users to specify and enforce certain desiderata in

their detection framework. This further increases trustwor-

thiness and interpretability of these detection frameworks.

4.5. Ablation study

Choosing the number of prototypes mk. Table 5a shows

the ablation experiments when choosing the number of pro-

totypes. We further investigate the generalization impact

of this decision on unseen deepfakes (DFD). Using the

same hyperparameter configuration, the parameter is set

mk = {10, 25, 50, 100}. As shown in Table 5a , the AUC

first improves dramatically as mk increases, but continu-

ing to do so yields diminishing returns. Thus, there is an

inherent trade-off between predictive performance and in-

terpretability. In practice, since increasing k after a certain

threshold only brings marginal improvement to the perfor-

mance, we would suggest to gradually increase mk, until a

desired low false alarm threshold is achieved.

Ablation study on the number of flow frames. Table

5b further reports the generalization performance to Deep-

erForensics when varying the number of flow frames uti-

lized by the network. Here we test the generalization of

the dynamic prototypes and how the length of the time seg-

ment given to the network impacts its performances. As

shown in Figure 5, visual elements of deepfakes can change

drastically across domains and manipulations. However,

temporal information can be key in pinpointing artifacts

shared by all manipulations. Using the same configuration

as previous, the number of flow frames is set frame =
{0, 5, 10, 15}, where zero frames do not use flows, similar

to the ProtoPNet baseline. In general, Table 5b reports a

significant net improvement on the unseen dataset Deeper-

Forensics, where there are a larger number of visual distor-

tions. In addition, we observe that using a small number of

Figure 6. The t-SNE embedding visualization of the DPNet

trained for binary classification on FF++ (c23). Red X’s are real

videos, others represent data generated by different manipulations.

flow frame can already yield a better performance, and that

using a longer sequence can negatively impact prediction as

the inputs become noisier. Moreover, the trade-off between

predictive performance and training time will also have to

be considered since using more frames significantly impact

each batch loading and processing time.

The effect of diversity regularization �d. To study the

effect of the diversity regularization term, we removed the

term by setting �d = 0 measure the AUC drop on FF++.

Results are shown in Table 6c. We further examine the im-

pact of �d by plotting the similarity scores between the pro-

totypes and test videos as heatmaps (Figure 4-right). With-

out the diversity regularization, most of the rows have sim-

ilar patterns, indicating that the prototypes are duplicating

and are less diverse, yielding lower test AUC on FF++.

5. Conclusion

There is a growing need to use automatic deepfake detec-

tion models to detect and combat deepfakes. However, a re-

liance on deepfake detectors places enormous trust on these

models. This work aims to help justify this trust by improv-

ing the interpretability of deepfake detection. In addition

to model interpretability, this work offers insights into what

parts of deepfake videos can be used to discern deepfakes,

which may inform people how to detect deepfakes them-

selves. Model interpretations strengthen the accountability

of deepfake detectors and our work encourages future re-

search in explaining deepfake detectors.
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