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Abstract

The face reenactment is a popular facial animation

method where the person’s identity is taken from the source

image and the facial motion from the driving image. Recent

works have demonstrated high quality results by combin-

ing the facial landmark based motion representations with

the generative adversarial networks. These models per-

form best if the source and driving images depict the same

person or if the facial structures are otherwise very simi-

lar. However, if the identity differs, the driving facial struc-

tures leak to the output distorting the reenactment result.

We propose a novel Facial Attribute Controllable rEenact-

ment GAN (FACEGAN), which transfers the facial motion

from the driving face via the Action Unit (AU) represen-

tation. Unlike facial landmarks, the AUs are independent

of the facial structure preventing the identity leak. More-

over, AUs provide a human interpretable way to control the

reenactment. FACEGAN processes background and face re-

gions separately for optimized output quality. The extensive

quantitative and qualitative comparisons show a clear im-

provement over the state-of-the-art in a single source reen-

actment task. The results are best illustrated in the reen-

actment video provided in the supplementary material. The

source code will be made available upon publication of the

paper.

1. Introduction

Face-reenactment is a process of animating a source face

according to the motion (pose and expression) of a driving

face. In general, the process involves three major steps: 1)

creating a representation of the source face identity, 2) ex-

tracting and encoding the motion of the driving face, and 3)

combining the identity and motion representations to pro-

duce a modified source face. Each part has a significant

impact on the output quality.

Number of algorithms, including traditional 3D face

models [3, 4], data driven Neural-Networks [5, 6, 7, 1, 8,

9, 10, 11, 12], and their combinations [13] have been pre-

sented for creating photorealistic face animations. In 3D

SourceDriving Contemporary Models Proposed

FSGAN[1] FOM[2]

Figure 1. Examples of the face-reenactment results using the pro-

posed FACEGAN and recent baseline works FSGAN [1] and First-

Order-motion-Model (FOM) [2]. FACEGAN is able to preserve

the source identity faithfully while imposing the driving pose and

expression. The baselines suffer particularly in preserving the fa-

cial shape of the source.

face-model based approach [3] , the identity and motion

features are encoded with 3D model parameters. The reen-

acted face is then rendered using the identity parameters of

the source and motion parameters of the driving face. Al-

though this approach results in high quality outputs, they

require substantial efforts in obtaining the faithful 3D rep-

resentations of the faces. Therefore, such approaches are

often limited to a few source identities.

In recent years, the data driven deep neural networks

have gained popularity in generating and manipulating im-

ages. In particular, the models using adversarial loss func-

tions [14] have obtained highly realistic image synthesis re-

sults [15, 16]. Similar models are also applied for the face

reenactment as demonstrated in [5, 1, 12, 11, 6, 17, 10, 2,

18]. In most of these works, the first step is to represent the

source and driving faces with deep networks. These repre-

sentations can be either latent codes or human interpretable
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Figure 2. An illustration of the facial structure leaking problem in

the landmark based reenactment approach. The facial structure of

the generated output clearly follows the shape of the driving face

instead of source face as intended.

representations like facial landmarks. Subsequently, the fa-

cial feature representations are combined by a generator

network to produce the final output. Although these models

generalise well to multiple identities, they have numerous

challenges discussed in the following.

Landmark based motion representation Most recent

works [5, 1] use facial landmark points as the representation

of the facial motion (pose and expression). Although land-

marks can provide strong supervision of the driving motion,

they also contain the overall structure of the driving face in

the form of facial contours. If the driving landmarks are

directly used to animate the source face, the difference be-

tween the facial contours may lead to dramatic distortions

in the output result. Therefore, the gap in the facial shapes

usually leads to either losing the source identity or low pho-

torealism. Figure 2 illustrates a practical example of such

distortions. For this reason, many works search for driving

and source pairs with highly similar face structures. How-

ever, this greatly limits the applicability of such methods.

Learning based representation Instead of landmarks,

some works [11, 5, 18] use unsupervisedly learned latent

features to represent the facial identity and motion. These

representations are often not disentangled with respect to

identity, structure and motion. Hence, the driving mo-

tion features may contain the driving identity information,

which ends up to the final reenacted output. This identity

leakage problem is illustrated in figures 5,1 in the case of

X2face [11] and FOM [2].

Generalization and inference time training In some

works, the entire reenactment model is trained for a par-

ticular source identity [12] or the model is fine tuned using

a few shot approach at the inference time [5]. Although

such a strategy may improve the output quality, it requires

resources and time to adapt to a new identity.

Selective editing It is often desirable to selectively edit

the reenactment result, for example, add an extra smile or

open the eyes. This type of editing would be easier by

directly manipulating the motion representation instead of

searching or producing an alternative driving image. To this

end, the representation of the driving motion should be in-

terpretable for the human editor. Although landmark points

can be easily moved for editing, one needs sophisticated

tools to preserve the structure of the source face while ad-

justing the landmarks. An alternative approach based on

Action Units (AUs) is presented in [10], which allows edit-

ing without distorting the identity. However, the model was

not able to produce high fidelity reenactment results.

In this paper, we propose a Facial Attribute Control-

lable rEenactment GAN (FACEGAN), which produces high

quality source reenactment from various driving pairs even

with significant facial structure differences between them.

Our model manipulates the source face-landmarks with

driving facial attributes to generate a new set of landmarks

representing the desired motion with the source identity

and structure. This mitigates the identity leakage problem

present in many recent works. Furthermore, by representing

the motion cues using the action units, we provide a selec-

tive editing interface to the reenactment process. The pro-

posed method combines the benefits of the action units (sub-

ject agnostic and interpretable) and facial landmarks (strong

supervision for image generation) into a single reenactment

system. To the best of our knowledge, this is the first work

that proposes such a combination for the face reenactment.

In addition, FACEGAN decouples and handles facial region

and background in two separate branches that help in gener-

ating the source background realistically in the final output

unlike other models in the literature. Finally, we provide a

detailed comparison of our method against the recent state-

of-the-art works in a single source image reenactment. The

proposed FACEGAN model results in superior performance

both in quantitative and qualitative measures.

2. Related work

Face-reenactment has been actively studied over the

years, and several different approaches have been presented.

The proposed methods can be roughly grouped into the fol-

lowing three categories.

Morphable 3-D face models Parametric 3D face mod-

els are popular tools for face animation and several works

[3, 19] have adopted them to face reenactment. These meth-

ods start by fitting a 3D morphable face model to source and

driving faces. Afterward, the motion and pose parameters

of the driving model are transferred to the source model,

and the output face with the source identity and the driving

motion is rendered. The motion parameters can also be con-

trolled using other modalities such as audio [20]. Although

these methods can provide high output quality, they are not

easily scaled to a large number of identities.

Deep generative models Variational Auto Encoder

(VAE) [21] is a popular model for image generation and

manipulation. VAE encodes the input image into a latent
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representation vector that is subsequently decoded back to

the original input image. The VAE models can be utilised

for face animation, by manipulating the latent representa-

tion of the source face according to the representation of the

driving face [22]. If the latent representation is disentangled

with respect to the identity and motion, the facial move-

ments can be controlled by manipulating the corresponding

vector elements of the encoded source face [23]. However,

the disentangled representation is very difficult to obtain,

which often leads to compromises in the output quality.

An alternative encoder-decoder based approach was pre-

sented in [11]. In this work, an encoder-decoder model is

applied to warp the input face into an embedding image.

Another encoder-decoder network converts the driving im-

age into a warping field that maps the embedding image to

the output face. This approach provides better quality com-

pared to the VAE based models, but the driving identity can

still easily leak to the reenacted output. This phenomenon

is further emphasized if the source and driving faces have

large structural or pose differences.

Recently, another warping based reenactment approach

was proposed in [2]. The method learns a warping field us-

ing a set of keypoints from the source and driving images.

This approach obtains higher output quality compared to

[11], but it suffers from similar identity leakage problems.

To this end, the authors of [2] proposed an alternative setup

where the method is provided by an additional driving im-

age with similar pose and expression as the source. This ad-

ditional driving image was utilised to obtain better approx-

imation of the identity independent motion of the driving

face. Unfortunately, such a driving image would be chal-

lenging to obtain.

Deep Generative Adversarial Networks The Genera-

tive Adversarial Networks (GANs) are popular models for

high quality image generation [15, 16] and manipulation

[24, 25]. In [5, 1], a progressively growing GAN archi-

tecture was trained to animate a source face based on the

landmarks of the driving face. As landmarks preserve the

facial structure and, up to some extent, the identity, these

models suffer from quality degradation if the driving and

source faces are not similar. However, this approach is well

suited for applications like telepresence where the driving

and source identities are the same.

Landmark transfer models were proposed in [12] and

[6] to remove the identity features from the driving land-

marks. In [12], the landmark transformer was trained sepa-

rately for each identity pair, which limited the scalability of

the method. A principal component analysis (PCA) based

model was used in [6] to separate expression and shape

parameters from the landmarks. They utilised shape pa-

rameters from the source and expression parameters from

the driving face to reconstruct the transferred landmarks.

Although the method generalizes better compared to [12],

the proposed linear models are not sufficient to differentiate

complex expressions from the shape information.

An action units (AUs) based face representation is used

in [7] to manipulate facial expressions (not pose). More

recently, in [10], the authors proposed a model that used

AUs for the full face reenactment (expression and pose).

The AUs represent complex facial expressions by modeling

the specific muscle activities [26]. These activations are in-

dependent of the facial structure, which makes the action

units a potential representation to disentangle driving mo-

tion from the identity. Unfortunately, the model presented

in [10] was not able to produce similar output quality as the

facial landmark based alternatives.

In this paper, we combine the disentanglement proper-

ties of the action units with strong supervision from the fa-

cial landmarks to produce a high quality reenactment results

without significant identity leakage problems.

3. Method

Given an image, Id with a driving face Fd and an im-

age Is with a source face Fs, the FACEGAN model aims

to transfer the motion (pose and expression) from Fd to Fs

while maintaining the identity of Fs. To do so, the model

takes the landmarks of Fs and manipulates them to include

the motion of Fd. The motion information is extracted from

Fd in terms of action units (AUs), which correspond to var-

ious face muscle activations [27] and head pose angles. The

overall shape features of the source landmarks are not al-

tered during the transformation, which helps to preserve the

source identity. The transformed landmarks are passed to

reenactment and background mapper modules, which to-

gether generate a face image depicting the source identity

and background, but with driving facial motion.

The overall architecture of FACEGAN contains three

main components, which are illustrated in figure 3. The

first component, called landmark-transformer, consisting of

a fully connected network LT . It takes the landmarks ls
from Fs and the action units AUd of Fd as inputs and gen-

erates the transformed landmarks Lt as an output. Lt has

pose and expression from Fd, whereas the facial structure

from Fs (as the input landmarks are from Fs).

The transformed landmarks Lt are converted to a gray

scale image Ht, as shown in Figure 3, and provided to

the next component called as face-reenactor. The face-

reenactor takes Is and Ht as inputs for the generator Gr

and produces the reenacted face Ifr as an output. Gr con-

tains also a segmentation unit Grs, which provides a face,

hair and background segmentation maps of Ifr.

By removing the background from Ifr and the face from

Is, we obtain two images called If and Ib. These images

are provided to the third module called background mixer.

If contains the reenacted face information whereas Ib con-

tains the source background. Unlike other contemporary
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Figure 3. The overall architecture of the proposed FACEGAN contains three major blocks, namely 1. Landmark transformer, 2. Face

reenactor, and 3. Background Mixer. The Landmark transformer modifies the source landmarks to include the driving face’s expression

and pose, which are represented in terms of action units (AUs). The modified landmarks and the source image are provided to the Face

reenactor module for producing the reenacted face. Finally, the reenacted face and the source background are combined into the output by

the Background mixer module. In the training phase, we use the source and driving images from the same face track, which allows us to

use the driving image as a pixel-wise ground truth of the output. However, during the inference, the source and driving may have different

identities.

approaches, our model processes the background separately

from the face area. In this way, different components will

specialize to face reenactment and background manipula-

tion, leading to improved output quality. The background

mixer contains a generator Gb producing Ir, which has fa-

cial identity and background from Is but facial pose and

expression from Id.

The training process of our model requires image frames

extracted from talking head videos. In the following, we as-

sume that the facial landmarks of the source faces, and the

head poses and the action units (AUs) of the driving faces,

are already extracted and stored. This can be achieved us-

ing publicly available landmark [28] and Pose-AU detectors

[29, 30]. For simplicity, we denote the AU and pose combi-

nation as AUs throughout the text unless mentioned other-

wise. In each step of the training procedure, we extract two

frames Is and Id from the same video track as described in

[11, 10, 5]. In this way, the exact ground truth of our reen-

acted source is available in terms of Id. The detailed training

steps and loss functions are discussed in the following sec-

tions.

3.1. Landmark Transformer

The landmark transformer LT modifies the source land-

marks according to the driving motion, while maintaining

the facial shape and identity of the source face. First, 2D

facial landmarks are extracted from the source image Is
∈ R

3×H×W and these are subsequently reshaped to ls ∈
R

136×1. The facial motion of Id ∈ R
3×H×W is extracted

in terms of the action units (∈R
17×1) and the head pose an-

gles (∈ R
3×1). These two parameters are concatenated in

to a single vector AUd ∈R
20×1 that describes the complete

motion of Fd. The landmark transformer LT takes the con-

catenated ls and AUd as an input and predicts the landmark

movements δls. Finally, the transformed source landmarks

are obtained as lt = ls + δls.

The landmark transformer is trained using various loss

functions. The most straightforward loss is calculated be-

tween lt and the landmarks of Id denoted as ld. Since during

training, Is and Id are from the same video track, the land-

marks ld form the ground truth for lt. To smooth the pre-

dictions δls a l2-weighted penalty regularization is added

along with the reconstruction loss. The objective function

can be written as,

Llr = ||lt − ld||1 + λlr||δs||2. (1)

Although Llr encourage the proper pose variations in lt,

they fail to capture the subtle movements due to the expres-

sion variations. In order to focus on expression, another

fully connected network La is introduced to regress the AU

parameters from the landmarks. La is trained simultane-

1332



ously with lt using the following loss function

Llau = ||La(lt)−AUd||1 + ||La(ld)−AUd||1. (2)

In order to preserve the facial shape in landmark domain,

we include a connectivity loss. The loss preserves the dis-

tances between the neighbouring landmark points in ls and

lt. The loss function is mathematically expressed as,

Llc = ||Dt −Dd||1, (3)

where Dt ∈ R
d×1 and Dd ∈ R

d×1 are vectors containing

the differences between the connected landmark positions

of lt and ld. Here d is the number of connected landmarks

included in the loss function calculation. Finally, the full

loss function for the landmark transformer is formed by a

linear combination of equations (1), (2), and (3) as

Ll = λl1Llr + λl2Llau + λl3Llc, (4)

where λl1, λl2, and λl3 are weighting constants.

3.2. Face Reenactor

The transformed landmarks lt are mapped to single chan-

nel image Ht ∈ R
1×H×W by placing a 2D Gaussian func-

tion at each keypoint location as shown in figure 3. Ht is

channel-wise concatenated with the source image Is to form

the input for the face reenactor network Gr. Gr produces

a reenacted RGB image Ifr ∈ R
3×H×W and a segmen-

tation map Sfr R
3×H×W with face, hair and background

classes. The segmentation maps are obtained using a CNN

head added to the second last layer of the Gr. For train-

ing, the pixel wise reconstruction loss, VGG perceptual loss

[25], and adversarial loss are applied as given in equations

(5), (6), and (7). The segmentation branch is trained with

standard cross entropy loss. The full loss function for Gr is

provided in Equation (8).

Lrr = ||I
′

fr − Fd||1 (5)

Lrp =
∑

i

1

CiHiWi

||Vi(I
′

fr)− Vi(Fd)||1 (6)

Lradv = min
Gr

max
Dr1,Dr2,Dr3

3
∑

r=1

EFd
[logDr(Fd)]

+ ELS

[

log(1−Dr(I
′

fr))
]

(7)

Lr = λr1Lrr + λr2Lrp + λr3Lradv + λr4Lce. (8)

I
′

fr and Fd are Ifr and Id with background removed.

Each Dr in equation (7) stands for discriminator, used for

multiple resolution of images as described in [25]. Lce is a

standard cross entropy loss for Sfr. In order to obtain the

ground truth for Lce, a pretrained face-segmentation net-

work Gs is utilized as explained in [8].

3.3. Background Mixer

The input to the background mixer network Gb is a

channel-wise concatenation of I
′

fr and Ib, where Ib is Is
with face and hair removed. Gb generates an RGB image

Ic and a single channel mask M ∈ R
HXW . Finally, the

reenacted output image Ir is obtained using Ic, Ib, and M

as

Ir = M ∗ Ic + (1−M) ∗ Ib. (9)

In this way, Gb is encouraged to focus on producing the

compatible background while directly copying as much in-

formation form Ib as possible. Gb is trained using pixel

loss and adversarial loss on Ir, and an additional regular-

ization for M . The regularization is obtained by imposing

a l2 weight penalty, smoothing the mixing process in equa-

tion 10, and applying a total variation regularization. The

full loss on M can be written as,

Lbm = λb1

H,W
∑

x,y

[(Mx+1,y −Mx,y)2 + (Mx,y+1 −Mx,y)2]

+ λb2||M ||2
(10)

Finally, the complete loss function for the background

transformer with the regularization parameters can be writ-

ten as,

Lb = Lbm + λb3Lbp + λb4Lbadv + λb5Lbr, (11)

where Lbp,Lbr are perceptual loss and reconstruction loss

between Ir and Id, respectively. Lbadv is the adversarial

loss of the Equation (7) for the discriminator Db and Gb.

4. Training Details

We train FACEGAN using a dataset created from IJB-C

videos [31]. Most of these videos contain celebrities talk-

ing in an unconstrained setup. The faces are first detected

using a landmark detector and then tracked using a centroid

tracker over the video frames. Around the centroids, a fixed

image crop is used to extract the faces in a way that the mid-

dle position between the eyes will always be in a fixed po-

sition. Small faces are rejected based on landmarks height

and width. In total 400k good quality face images are ob-

tained. In addition, we used 400 videos from the Foren-

sic++ dataset [32] to evaluate the performance of our sys-

tem. Forensic++ was pre-processed in same way as IJB-C,

resulting in total 200k face images.

The networks Gr and Gb have U-Net like structures and

are trained progressively as given in [25]. We first trained

the networks to generate images of resolution 128×128 and

then increased to the final resolution of 256×256. The land-

mark transformer LT is a fully connected network predict-

ing landmark locations in normalized coordinates. These
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can be converted to a single channel image of any resolu-

tion. All networks are trained separately for a few epochs

and then together in and end-to-end manner. For LT and for

other generator networks, the learning rate is kept at 0.0002

whereas the batch-size is 32 for the former and 1 for the

latter.

5. Experiments

We assess the proposed approach in a series of experi-

ments and compare the results against the recent state-of-

the-art works [11, 1, 2, 10] in quantitative and qualitative

terms. We start by evaluating our landmark transformer in

isolation and then continue with the full face reenactment

comparisons. All experiments are performed using the 200k
face images obtained from the FaceForensic++ dataset [32]

as described in Section 4. We also note that none of the

tested models, including ours, are trained with FaceForen-

sic++, which emphasizes the generalization properties of

the models. In all cases, we use one source image per iden-

tity and the final output resolution is 256× 256.

We compare our approach with four recent works,

namely X2face [11], FSGAN [1], First-Order-motion-

Model(FOM) [2] and ICface [10]. These state-of-the-art

models are representatives from a broader set of reenact-

ment frameworks. For instance, FSGAN and ICface [10]

utilise similar ideas of interpretable facial attributes like

landmarks and AUs in reenactment. In contrast, X2face

[11] and First-order-motion-model [2] represent works that

learn motion and identity representation in an unsupervised

(or self-supervised) setups. By comparing FACEGAN with

these representatives from both categories, we obtain better

understanding of the drawback in the existing works and the

contributions of FACEGAN. We used the original source

codes for all comparison methods. We did not consider

the few-shot learning models [5] and [6] since they require

inference time training and the corresponding implementa-

tions are not available.

5.1. Landmark Transformer

In order to evaluate the importance of the land-

mark transformer (LT ) in our model, we performed self-

reenactment and cross-reenactment with and without LT .

The self-reenactment refers to a case where the source and

driving images are from the same identity whereas in cross-

reenactment these identities are different. In the former

case, we take the source and driving images from the same

face track, which allows us to use the driving image as a

pixel-wise ground truth of the reenacted output. Here we

evaluate the result using a pixel-wise with Mean Square eu-

clidean Loss (MSE). In the cross-reenactment case, we do

not have access to the ground truth image and cannot use

the MSE loss. Instead, inspired by [6, 5, 33], we calculate

the following three measures

Figure 4. Qualitative comparison of FACEGAN outputs with and

without the landmark transformer. The facial shape and identity

are clearly distorted if the landmark transformer is not applied.

1. Cosine Similarity between IMage embeddings

(CSIM): uses a pre-trained face recognition network [34]

to obtain embeddings from the source and driving images.

Higher score indicates that the source identity is better pre-

served in the reenactment process. 2. Pose Cosine Similar-

ity between IMage (PSIM): is calculated between the head

pose angles, estimated using Openface [29], of the driving

and the reenacted faces. PSIM measures the ability of the

model to retain the driving head poses in the final output. 3.

Expression difference (ED): is the Euclidean distance be-

tween the action units, calculated with Openface [29], of

driving and reenacted images. It measures the ability of the

model to retain the driving expressions in the final image.

The results of the landmark transformer experiments are

presented in Table 1. In the self-reenactment case, the best

performance is obtained without using the landmark trans-

former. The result is expected, since in the self-reenactment

setup, the driving landmarks represent the optimal output of

the landmark transformer. Nevertheless, the MSE score is

only slightly lower if the landmark transformer is applied,

which indicates that the expression and pose are faithfully

transferred from the driving face.

In the cross-reenactment case, we observe a significant

difference in the CSIM score while the PSIM and ED scores

are similar. High CSIM score indicates that the source

identity is well preserved in the reenactment output. The

large difference in terms of CSIM shows that the landmark

transformer clearly improves the reenactment quality and

reduces the identity leakage problem. The PSIM and ED

scores measure pose and expression similarity between the

output and the driving face. These measures do not depend
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Driving Source FSGAN[1] FOM[2] ICFace[10] X2Face[11] FACEGAN

Figure 5. Qualitative comparison of FACEGAN and four recent baseline methods: FSGAN [1], First-Order-motion-Model(FOM) [2],

ICface [10], and X2face [11]. FACEGAN is clearly able to retain the source face shape and identity better compared to the baselines.

Moreover, the driving motion is faithfully reproduced.

Self-

Reenactment

Cross-

Reenactment

Model MSE↓ CSIM↑PSIM↑ED↓
FACEGAN w LT 0.018 0.747 0.811 0.012

FACEGAN w/o LT 0.015 0.623 0.885 0.014
Table 1. Quantitative evaluation of the impact of the Landmark

transformer(LT ). High CSIM and PSIM scores indicate the ability

to preserve the source identity and driving head pose, respectively.

Low ED score reflects the ability to reproduce the driving expres-

sion. The MSE score measures the pixel-wise differences in the

self-reenactment case.

on the face identity and the driving landmarks directly pro-

vide strong supervision in these terms. However, the land-

mark transformer results in similar or better scores also ac-

cording to these measures, which indicates that the pose and

expression are faithfully transferred despite substantial im-

provement in preserving the source identity. Figure 4 shows

a few examples of the cross-reenactment results for FACE-

GAN with and without the landmark transformer. These

illustrate in particular how the face structure is preserved

better by using the landmark transformer.

5.2. Qualitative Reenactment Results

In this section, we assess the reenactment performance of

the proposed model in qualitative terms and compare it with

X2face [11], FSGAN [1], First-Order-motion-Model(FOM)

[2] and ICface [10]. The results for versatile driving-source

pairs are illustrated in figures 5 and 1. The source iden-

tity is well preserved in the FACEGAN results, and there is

considerably less visible structure leakage compared to the

baseline methods. The difference is particularly due to the

landmark transformer, which helps to preserve the shape of

the source face.

In addition, most models like X2Face [11], FSGAN [1],

and ICFace [10] operate only on a tight crop around the

face area. Such approach completely ignores the untrivial

integration of face, background, and other body parts such

as hair. These limitations greatly hamper the practical us-

ability of the methods. In contrast, FACEGAN has a ded-

icated background mixer model that generates the context

for the reenacted face by hallucinating high quality back-

ground pixels along with the ears and the upper body parts

as shown in figures 4 and 6 (Note that the background is

cropped out from FACEGAN results in figures 5 and 1 to

facilitate comparison). The background mixer enables the

reenactment network to focus on the face and hair regions

improving the reenactment quality of these parts. In con-

clusion, our model produces sharper and better reenactment

results from a single source and driving images of different

identity in comparison to the state-of-the-art models.

5.3. Quantitative Reenactment Results

In this section, we compare the FACEGAN results with

the baseline models in quantitative terms. We use similar

self and cross-reenactment setups as in Section 5.1 and re-

port the results using MSE, CSIM, PSIM and ED scores

in Table 2. In the self-reenactment case, all methods ex-
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cept ICFace obtain similar MSE scores. Comparison to IC-

Face demonstrates the benefits of using the facial landmark

representation instead of pure action units. In the cross-

reenactment setup, FACEGAN obtains the highest perfor-

mance in terms of the CSIM score with a clear margin.

This result further illustrates the ability of FACEGAN to

preserve the source identity faithfully. In terms of PSIM,

the direct landmark based FSGAN model results in the best

pose retention capability. However, FACEGAN and FOM

are not far behind the FSGAN. ICFace has the lowest PSIM

score, which further illustrates the difficulty of producing

faithful pose using purely action unit based supervision. In

terms of ED metrics, FACEGAN obtains the best results,

followed by ICFace.

While the CSIM score reflects the overall ability to pre-

serve the identity, it may be inadequate to reflect small scale

structural differences. The difficulty, however, would be

to obtain a sufficient ground truth for measuring such de-

tails. For this purpose, we propose a new measure called

landmark similarity score (LSIM). To calculate the mea-

sure, we first randomly choose two source images from a

single identity. Then we search the test database for a driv-

ing image with different identity but as similar action units

as possible to the second source image. Finally, we use the

motion information (AUs, landmarks, warping parameters)

from the discovered driving image to reenact the face in the

first source image. The output is compared with the sec-

ond source image that acts as a pseudo ground truth for the

output. To accommodate for a small differences, we calcu-

late LSIM as a mean square error between the correspond-

ing landmark locations instead of pixel level MSE. If the

reenactment process preserves the facial shape and motions

accurately then it should result in low LSIM score. Table

2 contains the obtained results. The proposed FACEGAN

model achieves clearly the highest performance among the

compared approaches.

Self-

Reenactment

Cross-

Reenactment

Model MSE↓ CSIM↑PSIM↑ED↓ LSIM↓
X2Face [11] 0.018 0.564 0.659 0.025 0.040

FSGAN [1] 0.016 0.631 0.887 0.016 0.035

ICFace [10] 0.106 0.655 0.699 0.013 0.039

FOM [2] 0.012 0.676 0.825 0.015 0.035

FACEGAN 0.018 0.747 0.811 0.012 0.021
Table 2. Quantitative comparison of our model with the state-of-

the-arts works. High CSIM scores indicate better ability to pre-

serve the source identity, while low LSIM signifies better land-

mark shape retention ability. The PSIM and ED measure the head

pose and expression reproduction, respectively. FACEGAN ob-

tains clearly the best CSIM and LSIM scores, while obtaining sim-

ilar PSIM and ED scores. This indicates that our method is capable

of preserving the source identity while faithfully reproducing the

driving motion.

AU2 AU4 AU12 AU25 AU45 P0 P1 P2

Background ManipulationSource Manipulated

Figure 6. Demonstration of the selective editing capabilities of

FACEGAN. The first three rows images are generated by increas-

ing the source AUs directly from minimum to maximum value.

The last column illustrate the capability of combining the reen-

acted face with a non-source background (zoom in to observe the

quality better).

5.4. Controllable face reenactment

FACEGAN utilises 20 human interpretable action units

(AUs) to represent the pose and expression of the desired

output face. The AUs can be obtained from a driving face,

but this is not the only option. For instance, one can take the

AUs from the source face, manipulate them, and feed them

as driving information to the model. In this way, one can

selectively edit the source image by, for example, changing

the pose or adding an extra smile. Figure 6 contains a few

examples of such selective editing procudure.

Moreover, the background mixer can combine face and

background from two different sources. This results in a

mixed reenactment result, where the face identity is from

one source and the background from another. Figure 6 il-

lustrates a few examples of this kind of edits. Such feature

would be very useful for relocating the source person into a

desired environment. The proposed selective editing prop-

erties provide complete freedom and control to generate the

desired reenactment video.

6. Conclusion

We proposed a facial animator called FACEGAN that is

capable of performing high quality reenactment from a sin-

gle source image. Unlike many previous works, our model

does not pose any restriction on the compatibility of the

source and driving pairs. The model combines the best

properties of the action unit and facial landmark motion rep-

resentations for reducing the identity leakage problem and

to optimise the reenactment quality. Furthermore, FACE-

GAN handles the face and the background separately which

improves the output quality and gives additional control of

choosing the desired background. We have compared our

method with the state-of-the-art approaches and obtained

superior results both quantitatively and qualitatively.
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