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Abstract

Point cloud semantic segmentation plays an essential

role in autonomous driving, providing vital information

about drivable surfaces and nearby objects that can aid

higher level tasks such as path planning and collision

avoidance. While current 3D semantic segmentation net-

works focus on convolutional architectures that perform

great for well represented classes, they show a signifi-

cant drop in performance for underrepresented classes that

share similar geometric features. We propose a novel De-

tection Aware 3D Semantic Segmentation (DASS) frame-

work that explicitly leverages localization features from an

auxiliary 3D object detection task. By utilizing multitask

training, the shared feature representation of the network is

guided to be aware of per class detection features that aid

tackling the differentiation of geometrically similar classes.

We additionally provide a pipeline that uses DASS to gen-

erate high recall proposals for existing 2-stage detectors

and demonstrate that the added supervisory signal can be

used to improve 3D orientation estimation capabilities. Ex-

tensive experiments on both the SemanticKITTI and KITTI

object datasets show that DASS can improve 3D semantic

segmentation results of geometrically similar classes up to

37.8% IoU in image FOV while maintaining high precision

bird’s-eye view (BEV) detection results.

1. Introduction

The goal of a truly autonomous vehicle is to provide a

safer option of travel by removing the human element from

the equation. However, this is not trivially accomplished as

the vehicle needs to go beyond following a list of rules of

the road and complete high level tasks such as path plan-

ning and collision avoidance in real time, which not only

benefit from knowing the semantics of its immediate sur-

rounding scene including drivable spaces but also the loca-

tions of nearby objects. It is therefore crucial for an estab-

lished 3D semantic segmentation network to correctly iden-

tify and segment foreground object classes such as vehicles

with high accuracy.

Point cloud semantic segmentation still remains to be

a challenging and computationally expensive task. Inves-

tigating the current literature we draw the following ob-

servations: (1) While 3D semantic segmentation networks

perform well for highly represented classes, they show a

rapid decrease in performance for underrepresented classes

that share similar geometric features. A common example

for such a pairing is the car-truck categories, where due to

the similarity in their geometric properties, truck segmen-

tation often underperforms because of extensive false nega-

tive rates. (2) 3D object detection frameworks perform well

for generating high precision 3D bounding boxes while also

being capable of differentiation between the common fore-

ground objects. For example in 3D vehicle detection, often

the car and truck classes are treated as separate categories in

commonly used datasets [10, 14, 3, 4], thus networks must

extract class specific features to correctly classify the ob-

jects.

We therefore argue that 3D object detection as an aux-

iliary task can help improve 3D semantic segmentation re-

sults for foreground classes that are underrepresented. Here

we will demonstrate, utilizing a car detection auxiliary task

can have great benefits when segmenting classes such as

trucks or other vehicles. However, in order to utilize both

tasks in a unified system in terms of joint supervised train-

ing, a dataset is required that contains both supervisory sig-

nals. While almost all datasets for 3D object detection lack

3D semantic labels [10, 14, 4, 7], those that contain both an-

notations lack a preestablished benchmark for performance

comparison [11, 28, 3].

To this end we propose a novel network that we call De-

tection Aware 3D Semantic Segmentation (DASS), a frame-

work for 3D semantic segmentation that utilizes 3D object

detection as an auxiliary task to improve its segmentation

performance. Our proposed framework directly consumes
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irregular point clouds via a PointNet++ [27] feature extrac-

tor to predict semantic labels for points that fall on the front

view camera field-of-view (image FOV) while also gener-

ating high recall object proposals. DASS is trained using

supervisory signals from two partial datasets [10, 2] that

only contain a set of annotations for a single task and shows

improvements of incredible margins for categories geomet-

rically related to the detection class.

Our key contributions can be summaries as follows: (1)

We introduce DASS, a framework for joint point cloud

semantic segmentation and 3D object proposal generation

from partial datasets. (2) We show that the 3D object detec-

tion auxiliary task can improve the generalizability of the

shared feature space, enabling vast improvements in 3D se-

mantic segmentation with results up by 37.8% intersection-

over-union (IoU) for categories that share geometric fea-

tures with the detected class. (3) We introduce no addi-

tional memory or computational cost compared to a base-

line PointNet++ 3D semantic segmentation network [27],

as the auxiliary head can be detached during inference. (4)

We demonstrate that our proposed network can be used to

generate high recall proposals for existing 2-stage 3D object

detectors. Overcoming the capacity limitations of multitask

training through a novel semantic feature fusion (SFF) con-

nection, our proposed framework shows comparable birds-

eye-view (BEV) detection and improved 3D orientation re-

sults when used with the second stage of PointRCNN [30].

Furthermore, the resulting network maintains real time in-

ference at a 11Hz rate with only an added 0.15% memory

cost, while simultaneously generating accurate 19-class 3D

semantic masks.

2. Related Work

In this section, we consider the current approaches for

3D semantic segmentation and 3D object detection. Fur-

thermore we briefly investigate existing multitask learning

methods.

3D Semantic Segmentation: Point cloud semantic seg-

mentation remains to be a challenging and computationally

expensive task in literature. Current benchmarks are domi-

nated mainly by convolutional architectures that project the

point cloud onto various representations including spheri-

cal representations [33, 34], range images [21], BEV [6]

and learned 2D representations [1].

DASS does not utilize a convolutional architecture but

is built on a PointNet++ backbone [27]. PointNet [26, 27]

proposed a framework that directly consumes point clouds

as opposed to parsing to a highly sparse voxel space.

[19, 31, 18] extend regular grid CNNs to irregular point con-

figurations by utilizing novel point convolutions to extract

local and global features without the loss of information in-

herent in the process of voxelization. While PointNet based

methods tend to underperform [2], this enables DASS to

establish encoder level interactions with existing PointNet

based 3D object detection frameworks, enabling it to out-

perform existing convolutional benchmarks.

3D Object Detection: State-of-the-art 3D object detectors

utilize various strategies to deal with the irregular format

of point clouds in order to regress the 7 degrees of free-

dom of a 3D bounding box. Some methods utilize a single

stage design, where the final bounding boxes are directly

regressed [36, 12, 37, 24], while others prefer a two stage

design, where the first stage generates coarse predictions us-

ing a region-proposal-network (RPN) and the second stage

refines the proposals for the final predictions [30, 25, 5, 29].

DASS utilizes an auxiliary task of 3D object proposal

generation. Trained with 3D semantic segmentation, the

proposed network provides high recall proposals and thus

can be used as a replacement RPN for the currently exist-

ing 2-stage architectures like PointRCNN [30] to simulta-

neously generate 3D detection results with semantic labels.

Compared to the first stage of PointRCNN [30], DASS

completes semantic segmentation of 19 classes while over-

coming performance drops in detection that originate from

multitask learning. Compared to PointRCNN [30] that pre-

dicts binary masks for foreground points which provide ex-

plicit information to aid localization, DASS also exploits

the unexplored semantic information within the surround-

ing scene to add additional constraints on the distribution of

the bounding boxes, which help further improve orientation

estimation.

Multitask Learning: Multitask learning (MTL) aims to

leverage the supervisory signals of multiple tasks to im-

prove the generalization capabilities of a model. It achieves

this by utilizing encoder-level interactions to generate a

shared representation [22, 9, 17], by using decoder-level in-

teractions to improve single task results from multi-modal

distillation [35, 38], or a set combination of both.

[32] shows that in an MTL setting, performance strongly

varies depending on a wide range of parameters (e.g task

type, label source) and thus architecture and optimization

strategies must be selected on a per case basis. In general it

is observed that encoder level interactions perform well for

multiple classification problems while decoder level inter-

actions have an advantage in dense prediction tasks.

While MTL has been tackled before in various task

types [13, 16, 8, 20], DASS explores the yet unexplored set-

ting of MTL with point cloud semantic segmentation and

3D object detection from two sources of point cloud data

that are partially annotated. Through encoder-level inter-

actions, DASS maintains the required inference time and

memory for point cloud semantic segmentation. Exploiting

decoder level interactions via an SFF layer allows DASS to

overcome the performance limitations of encoder-focused

MTL and maintain high precision regression for 3D detec-

tion.
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Figure 1. Network overview. The network is trained on two partial datasets: (1) with pointwise semantic labels [2] and (2) with 3D object

annotations [10]. Since the detection datasets provides annotations for just the image FOV, the segmentation dataset is cropped to avoid

introducing further domain shifts. A PointNet++ feature extractor is trained on both supervisory signals followed by the individual task

heads for the 3D semantic segmentation task and the auxiliary 3D proposal generation task. Best viewed in color.

3. DASS: Detection Aware 3D Semantic Seg-

mentation

In this section we present DASS, a 3D semantic segmen-

tation network with auxiliary 3D object proposal genera-

tion, and its training procedure from partial datasets. The

overall network pipeline is shown on Fig. 1.

3.1. Utilizing a Shared Feature Space from Partial
Datasets

We start by defining the tasks of 3D semantic segmenta-

tion and 3D object proposal generation.

3D Semantic Segmentation: Point cloud semantic seg-

mentation is the function φseg that assigns a set of se-

mantic labels L 2 Z
n, for each point in a given point

cloud P 2 R
(n⇥d) with n points of d dimensions, i.e.

φseg : P 7! L.

3D Object Proposal Generation: A bounding box for

object o is represented by its 7 degrees of freedom

(xo, yo, zo, ho, wo, lo, ro) 2 R
7, where (xo, yo, zo) define

the box center, (ho, wo, lo) define the box height, width,

and length respectively, and ro defines the object rotation

around the y-axis in the camera coordinate system. In most

autonomous driving cases, the pitch and roll are assumed to

be zero. In essence, 3D object proposal generation is the

function φdet that generates k number of bounding boxes

within a scene, i.e. returns the set of object bounding boxes

B 2 R
(k⇥7) for a given point cloud P , and proposal count

k with φdet : P 7! B.

MTL from Partial Datasets: The goal of multitask train-

ing with 3D semantic segmentation and 3D object pro-

posal generation is to find a function φMT that returns

both per point semantic labels and 3D bounding boxes, i.e.

φMT : P 7! (φseg(P ),φdet(P )).
To learn the mapping of a point cloud P onto a target

tuple (B,L) via supervised learning, a dataset is required

that contains both ground truth semantic labels L and object

bounding boxes B. However, amongst the datasets with an-

notated ground truth bounding boxes, most do not contain

per point semantic labels [10, 7, 14, 4], while those that

do lack an established benchmark for performance compar-

ison [11, 28, 3]. Thus we are bound to two datasets, each

with partial supervisory signals [10, 2].

DASS utilizes a shared feature extractor to project

the point clouds onto a shared representation F . The

functions φseg and φdet can then be individually trained

with the input and target tuples (F (Pseg), yseg) and

(F (Pdet), ydet) respectively, with P the input point cloud

and y the target labels, yielding an overall mapping of

φMT : P 7! ((φseg � F )(P ), (φdet � F )(P )).

In other words, DASS exploits the commonality of 3D

semantic segmentation and 3D object detection by utilizing

their supervisory signals in parallel. As seen in Fig. 1, a

PointNet++ [27] feature extractor is forced to share weights

between the primary and auxiliary task, with optimizer

steps during training taken from a joint multitask loss. The

benefits of such encoder-level interactions when multitask

training from partial datasets are three fold: (1) The effec-

tive size of the dataset is increased; (2) The training sig-

nals of each task act as an inductive bias for the other, im-

proving the generalization capabilities of the model. The

feature vector for each point is forced to contain valuable

information about its semantic context as well as the de-

tected object class, enhancing segmentation capabilities by

allowing better differentiation between geometrically simi-

lar classes; (3) By having the bulk of the network parame-

ters reside in the shared feature extractor, the computational

overhead and memory requirement of incorporating an ad-

ditional task is drastically reduced during training. It is also

important to note that during inference, the proposal gener-
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ation head can be detached thus adding no additional cost.

DASS can therefore maintain high inference rates while

producing accurate semantic masks and 3D object propos-

als.

3.2. Joint Proposal Generation and Point Cloud Se-
mantic Segmentation

As seen in Fig. 1, following the shared encoder-decoder,

a proposal generation head φdet and a semanic segmenta-

tion head φseg are appended to generate 3D semantic la-

bels with coarse detection results. Every batch consists of

two mini batches, each with the data from a single par-

tial dataset. After iterative forward passes, a single back-

ward pass is done from the accumulated gradients. In other

words, the shared feature extractor is trained from both par-

tial datasets, while the individual heads are trained from a

single partial dataset. The shared feature extractor is trained

using a multitask loss function given by the weighted sum

of the individual task losses of each head, i.e. the first stage

total loss is computed as:

L =wseg Lseg((φseg � F )(Pseg), yseg)

+ wdet Ldet((φdet � F )(Pdet), ydet)
(1)

with wseg , Lseg denoting the 3D semantic segmentation

weight and loss and wdet, Ldet denoting the 3D object de-

tection weight and loss.

Segmentation Loss: The 3D semantic segmentation head

seen in Fig. 1 generates pointwise semantic labels. The head

is trained using the cross-entropy loss with a weight vector

wclasses to deal with the class imbalance. The segmentation

loss is given by

Lseg = LCE(L, L̂;wclasses) (2)

with LCE denoting the cross entropy loss, L and L̂ denoting

the sets of estimated semantic labels and their correspond-

ing ground truths respectively.

Detection Loss: For the auxiliary 3D proposal genera-

tion task, we use a per-point bin based loss function fol-

lowing PointRCNN [30]. The surrounding area of each

point is discretized into a set number of bins. This al-

lows us to restate the problem of the bounding box cen-

ter localization on the transverse plane (x, z) as a classi-

fication problem which are shown to be better fitted for

encoder-focused architectures [32]. To achieve finer de-

tails, we allow a residual to be regressed for each bin. For

a bin size of δ in a surrounding area of radius S, we de-

fine k = δ (kbin + 1/2) + kres � S for k 2 {x, z}. Here

kbin 2 [b�S/δc, ...,�1, 0, 1, ..., bS/δc] defines the bin in

which the target is located, and kres 2 (�δ/2, δ/2) defines

the residual within that bin. Similarly, the rotation estima-

tion is also restated as a classification problem where the

transverse plane is divided into a set number of angles α

3D Proposal
Generation

Head

PointNet++
Feature

Extractor

3D Semantic
Segmentation

Head

SFF

DASS

ROI Pooling

Canonical 3D 

Box Refinement

PointRCNN

Stage-2

Figure 2. Network extension overview. DASS is used as the RPN

of PointRCNN [30]. To further improve proposal generation re-

sults semantic feature fusion (SFF) is applied before the proposal

generation.

where again we define k = α kbin + kres for k 2 {r} with

kbin 2 [0, 1, ..., b2π/αc] and kres 2 (�α/2,α/2).

As all objects within a driving scene are ground bound

and have similar sizes per class, the elevations y and size

residuals (h,w, l) of bounding boxes follow very narrow

distributions, allowing these values to be regressed directly.

The resulting loss function is given by:

Ldet =
X

k∈{x,z,r}

⇣

LCE(kbin, k̂bin) + LsL1(kres, k̂res)
⌘

+
X

j∈{y,h,w,l}

LsL1(j, ĵ)

(3)

where hat denotes the ground truth and LsL1 denotes the

smooth L1 loss.

All points that lie outside of ground truth bounding boxes

do not contribute to the detection loss.

3.3. DASS in a 2-stage 3D Object Detection Pipeline

We make the following observation: Each semantic

mask can act as a constraint on a bounding boxes distribu-

tion. For example cars are likely to leave substantial space

between themselves and surrounding buildings; cars, cy-

clists and pedestrians are more likely to be rotated along

the direction of the road or sidewalks respectively and away

from paths of direct collision [23]. We therefore argue that,

not only does the 3D semantic segmentation task benefit

from the auxiliary 3D proposal generation, but the oppo-

site also holds especially for BEV detection and 3D ori-

entation. The 3D proposal generator can therefore benefit

highly from knowing the semantic masks of specific back-

ground classes, thus DASS can be used to generate high

recall proposals for existing 2-stage detectors.

In Fig. 2, we illustrate a pipeline for PointRCNN [30]

that utilizes DASS as the primary proposal generator. The

proposals are initially expanded to form regions of interests

2953



which are then pooled with the shared features to gener-

ate the input of the second stage. The second stage applies

canonical box refinement on the generated proposals to pre-

dict the final 3D detection results [30].

With the proposed extension, DASS becomes the first

pipeline to generate 19-class point cloud semantic segmen-

tation results with 3D object bounding boxes in real time at

an operating frequency of 11Hz (Nvidia Titan Xp 12G GPU

2.2GHz) with a minimal added memory cost of just 0.15%.

This can be highly beneficial when dealing with real world

problems of navigation in complex scenes that involves on-

the-go path planning and collision avoidance.

Semantic Feature Fusion: In MTL, the problem of invari-

ance vs. sensitivity is always apparent [32]. The network

may never converge to a state where it extracts a vital fea-

ture for one task because it contradicts with the objective

of the other. With DASS, we tackle a currently unexplored

area of MTL and consider two tasks that directly consume

point clouds with 3D object detection and 3D semantic seg-

mentation from partial datasets. While 3D semantic seg-

mentation performs well under the limited capacity of the

feature extractor, we observe a severe reduction in perfor-

mance for high precision localization.

To overcome this issue, we introduce semantic feature

fusion (SFF) as a decoder level interaction as seen in Fig. 1.

During training, with gradient accumulation set to zero, we

do a forward pass of the detection mini-batch through the

shared feature extractor and the segmentation head to in-

fer the per point semantic label likelihoods. SFF learns to

summarize this high dimensional likelihood vector through

1D convolutional operations and provides the 3D proposal

generation head a compact representation of the scene se-

mantics. These are concatenated back with the shared fea-

tures to be input to the 3D proposal generation head. By di-

rectly utilizing such compacted information, we minimize

adding redundant information and further complexity to the

system, while still allowing the detection head to directly

extract inter class dependencies. With SFF, DASS achieves

higher 3D detection recall across all thresholds, which is

the goal of the first stage detector as precise localization is

carried out in the second stage.

4. Experiments

In this section we look into the architecture specifica-

tions and training scheme of DASS from partial datasets.

We report the results of our network and provide ablation

studies on the training procedure and individual compo-

nents.

4.1. Network Architecture

For the PointNet++ [27] encoder-decoder, 4 set-

abstraction layers with multi-scale grouping are used with

group sizes of 4096, 1024, 256, 64 points of increasing

radii. Every group & sampling operations of the set ab-

straction layers are followed by a block of 3 linear layers for

each of the two scales. The set abstraction layers feed into

4 feature propagation layers with skip connections to ob-

tain per point feature vectors that are rich in both semantic

and class-specific information. While using 2-scale group-

ing allows us to introduce scale invariance into our network,

the hierarchical structure of the PointNet++ feature extrac-

tor captures better local properties which benefit both tasks.

Both the first stage 3D semantic segmentation and the

3D object proposal generation heads consist of a single 1D

convolutional layer of size 128. Batch norm and ReLU ac-

tivation is applied after every layer. The learning rate is set

to 0.002. Adam optimizer is used with a one-cycle learning

rate scheme. The weight decay is set to 0.001 with momen-

tum of 0.9.

4.2. Training Scheme

Dataset: Due to a lack of unified dataset that contains both

ground truths, two partial datasets are utilized for training a

weight-sharing PointNet++ encoder-decoder structure [27],

such that the resulting pointwise feature vectors include

both object-class and semantic information. In specific, the

3D semantic segmentation pipeline is trained on the Se-

manticKITTI train set [2] while the 3D object proposal net-

work is trained on the KITTI train set [10] with the car cat-

egory.

Point Cloud Preprocessing and Augmentation: As

KITTI [10] does not provide ground truth 3D bounding box

annotations for the full 360� view, we crop the 3D point

clouds such that all points lie within the image FOV. Ap-

plying the same transformations to both partial datasets is

crucial as this avoids added domain shifts within the train-

ing process and thus prevents overfitting to domain specific

features. This in turn means that our semantic segmenta-

tion network operates exclusively on image FOV despite

the provided 360� labels from SemanticKITTI [2]. Each

cropped region is then randomly subsampled to contain a

16384 points. If a scene contains less points after the crop-

ping it is zero-padded until the fixed value is reached. The

reflectance intensity values of all points within the point

cloud are normalized by subtracting 0.5.

It is important to note that given a dataset that contains

360� annotations for both tasks, our method can easily be

reapplied to provide 360� semantic labels and will again

show the same benefits of adding no memory or computa-

tional cost during inference.

Two data augmentation schemes are implemented. (1)

For both datasets, each scene is randomly rotated by an

angle sampled from [�10�, 10�], scaled by a scale factor

sampled from [0.95, 1.05] and flipped randomly with 0.5

probability. (2) For the object detection dataset only, fol-

lowing [36, 30] ground truth bounding box augmentation
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Parameters Inference 3D Semantic 3D Object

Method [Million] Time [s] Segmentation Detection

SqueezeSeg[33] 1 0.015 360� -

SqueezeSegV2[34] 1 0.02 360� -

DarkNet21[21] 25 0.055 360� -

DarkNet52[21] 50 0.01 360� -

PointRCNN 3.90 0.09 - 3

Semantic Baseline 3.04 0.015 Image FOV -

DASS 3.04 0.015 Image FOV Proposal

DASS+RCNN 3.91 0.09 Image FOV 3

Table 1. Approach summaries.

is applied, where ground truth boxes and their respective

points are taken from various scenes to be implanted in an-

other. The new box and its points are placed within the point

cloud at the same location assuming that there is no existing

overlapping box. The box with its points are then translated

such that it lies on the ground plane. Furthermore, points

above and below the box are removed from the point cloud.

Training: A mini-batch size of 8 is used for both tasks

which yields cleaner gradients compared to an unbalanced

grouping strategy. Due to the size differences of the two

datasets, we define an epoch for the first stage as a single

iteration over the SemanticKITTI [2] dataset with multiple

shuffled cycles over the KITTI object dataset [10]. The two

tasks are weighed by (1.5, 1) for 3D semantic segmentation

and 3D object detection respectively following the inverse

of their converged individual losses. The network is trained

for 75 epochs.

For the training of the stage-1 regression head, only the

points that lie inside a bounding box are considered in the

loss function.

Following [15], all car objects that lie outside of the

range x, y, z [[-40, 40], [-1, 3], [0, 70.4]] meters are filtered

out. The mean car bounding box is set to have a height,

width and length of (1.5, 1.6, 3.9) meters and the size of

each object (h,w, l) is regressed as the difference from the

mean anchor. The search scope is set to 3.0m resulting in

a bin size of δ = 0.5m with 6 equal length bins, and the

rotation range is set to 2π with 12 discrete heads. Vans are

also considered within the car category.

To deal with the class imbalance apparent in the Se-

manticKITTI [2] dataset, weighted cross entropy is used

with a 19 class weight vector wclasses given by the inverse

of a class’ frequency within the entire set of point clouds.

4.3. Results

We report 3D semantic segmentation results from the

SemanticKITTI [2] val set on image FOV and the re-

call for 3D object detection at varying thresholds from the

KITTI [10] val set. We demonstrate on the KITTI [10] test

set that our network can be used in conjunction with ex-

isting 2-stage detectors to generate comparable BEV detec-

tion results, improved 3D orientation estimation, to main-

tain minimal memory cost, to operate in real time at 11Hz

frequency, all while simultaneously generating 3D seman-

tic masks. Further statistics on evaluated approaches can be

found on Tab. 1. Example results can be seen in Fig. 4.

4.3.1 3D Semantic Segmentation Results

As DASS operates on image FOV, the performance cannot

be evaluated on the SemanticKITTI [2] test set which re-

quires full 360� annotations. Thus we opt to use the Se-

manticKITTI [2] val set on image FOV, where all results

are evaluated using the official metric of per class mean

intersection-over-union (mIoU).

The results can be seen on Tab. 2 where DASS is com-

pared against the benchmark networks provided by Se-

manticKITTI [2]. The per point label predictions of various

SemanticKITTI benchmark networks including Squeeze-

Seg [33], SqueezeSegV2 [34] and DarkNet [21, 2] have

been released. Here, we reevaluate these published results

on image FOV. Our proposed network shows an overall

better classification performance than the benchmarks with

a mIoU improvement of 0.8%, with emphasis drawn on

classes that share geometric features with the car category.

As observed, in the car, truck, and other vehicle categories,

DASS outperforms all benchmark networks with incredible

margins of 4.5%, 32.7%, 16.6% respectively. Due to the

added supervisory signals of the 3D object detection task,

the task specific head can utilize the shared features to bet-

ter distinguish classes of similar characteristics.

In Fig. 3 we demonstrate this differentiation capability

of DASS amongst geometrically similar vehicle classes and

compare it to existing benchmark segmentation networks

[21, 34]. We additionally overlay the predicted bounding

boxes of DASS+RCNN to illustrate the detection awareness

of DASS. Here it is shown that DASS can better separate

the truck (purple) and other vehicle (blue) classes from the

overrepresented car (light blue) class thanks to its auxiliary

detection task.

4.3.2 3D Object Detection Results

Here we provide results for the commonly reported car

category. Following PointRCNN [30], we initially gen-

erate 9000 proposals which are then reduced to 100 us-

ing distance based sampling and non-maximum suppression

(NMS) with a threshold of 0.8.

The first stage recall values are seen in Tab. 3. Here we

observe both the benefits and detriments of multitask train-

ing. The increased generalization capabilities of the shared

feature extractor allows the object proposal to generate

higher recall proposals for lower thresholds of 0.1, 0.3 and

0.5 with recall values seeing an increase of 0.52%, 0.74%,

and 0.75% respectively. However, the localization perfor-

mance suffers at higher thresholds as the two tasks compete
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Ground Truth DASS DarkNet53 SqueezeSegV2

a)

b)

c)

Car Other-vehicleTruck

Figure 3. Point cloud semantic segmentation results on the SemanticKITTI [2] val set. DASS is compared against the ground truth

labels [2], DarkNet53 [21] and SqueezeSegV2 [34]. To illustrate the detection awareness of DASS, we overlay the predicted bounding

boxes from the DASS+RCNN network. Here we draw an emphasis on the differentiation capabilities of DASS for the vehicle classes, with

corresponding colors and class tags given below the figure. Best viewed in color.
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SqueezeSeg [33] 32.1 75.9 12.8 11.5 3.3 4.0 22.0 34.4 0.1 91.7 16.2 62.7 0.4 57.2 18.8 67.1 27.7 65.6 23.3 14.5

SqueezeSeg-CRF [33] 33.4 75.1 13.6 15.4 3.9 10.6 27.7 39.9 0.2 90.8 16.4 62.2 0.6 61.8 22.7 66.5 26.7 65.9 13.7 21.1

SqueezeSegV2 [34] 41.3 84.1 15.1 24.8 25.1 27.9 23.4 44.7 0.0 94.4 36.9 74.3 0.1 71.3 37.7 74.5 36.2 69.8 21.8 22.0

SqueezeSegV2-CRF [34] 42.6 85.5 18.5 39.3 23.2 31.4 33.7 54.6 0.0 94.3 32.3 73.4 0.2 69.3 39.4 71.6 37.5 69.2 14.8 20.9

DarkNet21 [21] 49.0 86.5 27.6 39.6 35.5 23.4 43.2 50.1 0.0 95.9 40.9 79.8 0.0 77.3 50.7 81.4 53.7 72.0 42.2 31.9

Darknet52-512 [21] 34.9 79.8 14.9 17.0 3.9 14.6 11.2 26.9 0.0 93.3 21.2 70.9 0.1 59.2 30.9 70.6 36.6 65.7 23.8 23.4

DarkNet53-1024 [21] 39.2 83.9 17.5 3.5 24.1 8.3 10.9 43.3 0.0 94.2 15.3 74.1 0.0 70.6 47.7 78.0 38.5 70.0 34.8 30.0

DarkNet53 [21] 51.0 86.9 26.6 47.5 34.0 27.2 51.6 62.7 0.0 95.9 39.7 80.0 0.0 77.8 51.1 81.3 53.6 71.9 46.7 33.8

Semantic Baseline 48.0 89.8 33.7 29.9 28.9 28.9 35.5 62.8 0.0 94.6 32.1 75.7 0.4 82.1 42.6 83.3 53.0 73.6 38.2 26.3

DASS 51.8 91.4 25.8 31.0 66.7 43.8 47.7 70.8 0.0 92.8 31.7 71.0 0.0 82.1 39.1 83.5 56.6 69.6 45.5 35.1

Table 2. 3D semantic segmentation results. All networks are evaluated on image FOV using the SemanticKITTI [2] validation set. Semantic

Baseline denotes DASS trained without the auxiliary task.

for capacity. A feature that is highly beneficial for localiza-

tion may be a nuisance for the 3D semantic segmentation

task. Thus at higher thresholds of 0.7, 0.9, DASS underper-

forms by 1.9%, 0.45% compared to the stage-1 of PointR-

CNN.

We use DASS as the stage-1 object proposal genera-

tor and append the stage-2 refinement network of PointR-

CNN to generate BEV and 3D orientation results, as we ex-

pect DASS to provide additional auxiliary information that

can benefit such tasks (see Sec. 3.3). We call this network

DASS+RCNN. In Tab. 4 the KITTI [10] test set results are

given, however it should be noted that while DASS+RCNN

is trained on the official train/val split (50/50), the re-

ported PointRCNN results are obtained with a (80/20) split.

Nonetheless our 3D semantic segmentation network still

performs at a comparable level with PointRCNN [30]. In

the BEV category DASS+RCNN falls just shy on every dif-

ficulty by 0.39%, 1.54%, 1.75% but achieves better results

in 3D orientation by 0.3%, 0.48%, 0.34% while simultane-

ously generating 3D semantic masks ranging 19 classes and

only causing an additional 0.15% memory requirement.

4.4. Ablation Studies

In this section we provide extensive ablation studies to

analyze both the effectiveness of the added components.

All components are evaluated on the KITTI [10] and Se-

manticKITTI val splits [2] for 3D object detection and 3D

semantic segmentation respectively.
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Figure 4. Example results from the KITTI [10] val set. Shown are (top) pointwise semantic labels and predicted bounding boxes in green

overlayed onto the camera 2 image; (bottom) BEV results with ground truth boxes in red and predicted boxes in green. The multitask

results are generated using DASS as the RPN for PointRCNN [30]. Best viewed in color.

Recall at IoU [%]

Method 0.1 0.3 0.5 0.7 0.9

PointRCNN[30] 96.84 95.71 93.49 73.37 1.10

DASS 96.90 96.19 93.80 68.95 0.40

DASS+SFF 97.36 96.45 94.24 71.47 0.65

Table 3. Recall results for 3D detection at varying

IoU thresholds for the car class. All networks are

evaluated on the KITTI [10] val set.

BEV [%] Orientation [%]

Method Easy Moderate Hard Easy Moderate Hard

PointRCNN[30] 92.13 87.39 82.72 95.90 91.77 86.92

DASS+RCNN 91.74 85.85 80.97 96.20 92.25 87.26
Table 4. Evaluation of BEV and 3D orientation on the KITTI [10] test set

for the car class. As seen DASS can be used as a RPN for PointRCNN [30]

(DASS+RCNN) to achieve comparable BEV and 3D orientation results while

generating 3D semantic masks ranging 19 classes.

Auxiliary 3D Object Proposal Generation: In Tab. 2 we

provide a comparison of our proposed network trained with-

out the aid of the auxiliary task, which we call Semantic

Baseline. Similar to the comparison drawn in Sec. 4.3.1, we

observe an overall increase in mIoU by 3.8%, with the per-

formance boost mainly coming from the car, truck and other

vehicle classes with mIoU increases of 1.6%, 37.8%, 14.9%
respectively.

However it should also be noted that some classes show

inferior results when multitask training. As stated before,

the shared feature space may never converge to a state

where a crucial information for 3D semantic segmentation

exists, if that feature contradicts with the objectives of the

auxiliary detection task. An example can be observed by

the drop in performance for the road and parking classes by

up to 1.8% and 0.4% respectively. While drivable surfaces

provide information regarding the boundaries of the vehi-

cles (e.g. the elevation of the bounding box as it must lie

on a drivable surface), the distinction between drivable sur-

faces (e.g. road vs. parking) does not provide any further

information in that regard which results in misidentified re-

gion boundaries.

Semantic Feature Fusion: We evaluate the effectiveness of

SFF by drawing comparisons to the baseline DASS. With

its increased generalization capabilities, DASS matches or

exceeds PointRCNN [30] RPN’s 3D recall at lower IoU

thresholds. However, as the two tasks compete for capacity,

the network fails to extract the much needed task-specific

features that aid high precision localization.

As seen in Tab. 3, providing the 3D object proposal head

with summarized semantic context via an SFF layer im-

proves its recall for all thresholds. In specific, the detec-

tion head mostly benefits from the semantically rich fea-

ture at higher IoU thresholds of 0.7 and 0.9 with recall in-

creases of 2.52% and 0.25% respectively. This enables the

network to achieve better localization by extracting further

class-specific and inter-class dependencies.

5. Conclusion

In this work we proposed a Detection Aware 3D Se-

mantic Segmentation (DASS) network to tackle limitations

of current architectures. Our proposed network utilizes an

auxiliary 3D object detection task to guide the shared fea-

ture representation into extracting localization features that

allow better differentiation between geometrically similar

foreground classes. Experiments on the SemanticKITTI

dataset show that this significantly improves 3D semantic

segmentation in image FOV without any additional mem-

ory requirement or computational overhead, as the auxiliary

task head can be detached during inference. We further in-

vestigate the yet unexplored problem of multitask learning

of 3D semantic segmentation and 3D object detection from

point clouds. We showcase a 2-stage 3D object detection

pipeline that utilizes DASS as a RPN with preexisting ar-

chitectures and overcome the capacity limitations of multi-

task learning through semantic feature fusion. Experiments

on the KITTI dataset show that DASS can improve 3D ori-

entation estimation while preserving BEV detection results,

operating in real time, costing negligible memory, and pro-

ducing highly accurate 3D semantic masks.
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