
Let’s Get Dirty: GAN Based Data Augmentation for

Camera Lens Soiling Detection in Autonomous Driving
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Abstract

Wide-angle fisheye cameras are commonly used in auto-

mated driving for parking and low-speed navigation tasks.

Four of such cameras form a surround-view system that pro-

vides a complete and detailed view of the vehicle. These

cameras are directly exposed to harsh environmental set-

tings and can get soiled very easily by mud, dust, water,

frost. Soiling on the camera lens can severely degrade the

visual perception algorithms, and a camera cleaning system

triggered by a soiling detection algorithm is increasingly

being deployed. While adverse weather conditions, such

as rain, are getting attention recently, there is only limited

work on general soiling. The main reason is the difficulty in

collecting a diverse dataset as it is a relatively rare event.

We propose a novel GAN based algorithm for gener-

ating unseen patterns of soiled images. Additionally, the

proposed method automatically provides the correspond-

ing soiling masks eliminating the manual annotation cost.

Augmentation of the generated soiled images for training

improves the accuracy of soiling detection tasks signifi-

cantly by 18% demonstrating its usefulness. The manually

annotated soiling dataset and the generated augmentation

dataset will be made public. We demonstrate the general-

ization of our fisheye trained GAN model on the Cityscapes

dataset. We provide an empirical evaluation of the degrada-

tion of the semantic segmentation algorithm with the soiled

data.

1. Introduction

Level 5 autonomous driving ([10]) stands out as a chal-

lenging goal of a large part of the computer vision and ma-

chine learning community. Due to this problem’s difficulty,

a combination of various sensors is necessary to build a

safe and robust system. Even just considering cameras, a

∗Most of this work was done while Michal Uřičář and Pavel Křı́žek

were employed by Valeo.

Figure 1: The example of a semi-transparent soiling in form

of a water drop on the camera lens. The detection of the bus

behind the water drop works still well, while the road seg-

mentation (green) is highly degraded in the soiled region. In

this scenario, a soiling detection algorithm is used to trigger

a camera cleaning system which restores the lens hardware.

combination of a narrow field of view (FOV) long-range

sensing and wide FOV short-range sensing is necessary.

The latter is achieved by fisheye cameras, which provide

complete near-field sensing, up to 10m around the vehicle.

One use-case where it is necessary is the fish-bone park-

ing [9], where ultrasonic sensors and narrow FOV cameras

are not sufficient. Without exaggeration, these fisheye cam-

eras are becoming de facto standard in low-speed maneu-

vering applications, like parking and traffic jams assist [16].

Enormous progress can be noticed in typical image pro-

cessing tasks, such as semantic segmentation or object de-

tection [23, 24, 25], which is mainly attributed to the pre-

vailing success of deep learning. However, there are other

less “popular” problems slowly getting into attention, which

have to be solved as well for the ultimate goal of the full

Level 5 autonomy.

One of these problems is the reliability of the sensory

signal, which in the case of surround-view cameras means,

inter alia, the ability to detect soiling on the camera lens.

Failure to recognize severe weather conditions leading to

a deterioration of the image quality to such a level that

any further image processing is unreliable. Figure 2 shows
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Figure 2: Automotive surround view cameras are exposed to harsh environmental setup. Left: camera lens covered by mud.

Middle: image produced by the soiled camera from the left picture. Right: camera lens soiled during heavy rain.

how the surround-view camera can get soiled and the cor-

responding image output, as well as an example of images

taken during a heavy rain. It usually happens when the tire

is splashing mud or water from the road or due to wind de-

positing dust on the lens. Figure 1 shows an example of the

strong impact of a significant water drop on the camera lens

for object detection and semantic segmentation tasks.

In this work, we focus on soiling caused by a variety of

unwanted particles reposing on the camera lens. The source

of these particles is mostly mud, dirt, water, or foam created

by a detergent. Based on the state of aggregation, such soil-

ing can be either static (e.g., highly viscous mud tends to dry

up very quickly, so it does not change its position on the out-

put image over time) or dynamic (mostly water, and foam).

Because of that, the acquisition of suitable data for train-

ing machine learning models or merely testing the effect

on existing classification models is quite tedious. Human

annotation is very time demanding, costly, and not very re-

liable since the precise labeling of soiling on a single image

can sometimes be very challenging, e.g., due to the unclear

boundary. We want to emphasize that the soiling detection

task is necessary for an autonomous driving system as it is

used to trigger a camera cleaning system that restores the

lens [29]. It is complementary to building segmentation or

object detection models robust to soiling without an explicit

soiling detection step. Our contributions include:

• A proposition of a baseline pipeline for an opaque soil-

ing generation, based on CycleGAN [34] and soiling

segmentation learned from weak labels.

• A novel DirtyGAN network, which is an end-to-end

generalization of the baseline pipeline.

• Public release of an artificial soiling dataset as

a companion to the recently published WoodScape

Dataset [33], coined Dirty WoodScape Dataset, to en-

courage further research in this area.

• An empirical evaluation of the degradation of semantic

segmentation algorithms on soiled images.

The rest of the paper is organized as follows. Section 2

covers the related work and contrasts the soiling scenarios

with adverse weather conditions. In Section 3, we give a

detailed description of the proposed algorithms. Section 4

provides an evaluation of the quality of the generated im-

ages and quantifies the improvement of the soiling detection

algorithm by adding generated images to training. Also,

it describes the empirical evaluation of the degradation of

semantic segmentation in the presence of soiling. Finally,

Section 5 concludes the paper.

2. Related Work

As the visual perception modules for autonomous driv-

ing are becoming more mature, there is much recent effort

to make them more robust to adverse weather conditions. It

can be seen by the popular CVPR workshop “Vision for all

seasons”1, which focuses on the performance of computer

vision algorithms during adverse weather conditions for au-

tonomous driving. However, there is very little work on the

related but different lens soiling problem. The two prob-

lems are similar in how they degrade image quality and can

severely affect visual perception performance. Yet there are

substantial differences.

The first significant difference is that soiling on the lens

can be removed by a camera cleaning system that either

sprays water or uses a more sophisticated ultrasonic hard-

ware [29]. Secondly, there is temporal consistency for soil-

ing where mud or water droplets remain static typically or

sometimes have low-frequency dynamics of moving water

droplets in contrast to higher variability in adverse weather

scenes. Thus this temporal structure can be exploited fur-

ther for soiling scenarios. Finally, soiling can cause more

severe degradation as opaque mud soiling can completely

block the camera.

We focus on the generic soiling detection task in this pa-

per. Even disregarding camera cleaning, soiling detection

is still needed to increase the uncertainty of vision algo-

rithms in the degraded areas. The task of soiling detection

on camera lenses in autonomous driving is shortly described

in [27]. The authors present a sort of a proof of concept idea

on how Generative Adversarial Networks (GANs) [7] could

1https://vision4allseasons.net/
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be applied for dealing with the insufficient data problem in

terms of an advanced data augmentation. In the same paper,

the authors also outline another potential usage of GANs in

the autonomous driving area. A more formal introduction to

the soling detection and categorization is provided in [29].

The problem is formalized as a multilabel classification task

and also discusses the applications of soiling detection, in-

cluding the camera cleaning. Uřičář et al. [28] provided a

desoiling dataset benchmark.

The rest of this section provides an overview of the com-

monly used GAN based image-to-image translation frame-

work, which we use in the proposed method. Due to the

limited work on soiling, we also review the closely related

area of adverse weather scenarios.

2.1. GAN based ImagetoImage Translation

In recent years, the task of artificial image generation is

dominated by GANs [7], showing a great ability to synthe-

size realistic-looking images in [18]. The Image-to-Image

translation is a part of graphics and computer vision that

aims to learn a mapping between a source domain X and

a target domain Y with the use of paired data. In [11], the

authors present a method using GANs to tackle the problem

of image-to-image translation using paired data. However,

obtaining such paired data can be difficult and sometimes

even impossible. Therefore, an unsupervised version, with-

out any examples of corresponding pairs, is even more crit-

ical and challenging.

This problem is tackled by CycleGAN [34] with the use

of two mappings G : X → Y and F : Y → X . Since these

mappings are highly under-constrained, they propose to use

a cycle consistency loss to enforce F (G (X)) ≈ X . Even

though it is not emphasized that much in the CycleGAN

paper, the authors in their implementation use also identity

losses, G(Y ) ≈ Y and F (X) ≈ X , which improve the

results significantly.

2.2. Rainy Scenes

Rainy scenes are slightly related to water soiling situa-

tion. Because this degradation is semi-transparent and some

background information is still visible, it is common to use

an image restoration algorithm that improves the image’s

quality. The work of [15] provides a comprehensive anal-

ysis of this topic. The authors of [32] address the problem

of rain removal from videos by a two-stage recurrent net-

work. The rain-free image is estimated from the single rain

frame at the first stage. This initial estimate serves as guid-

ance along with previously recovered clean frames to help

to obtain a more accurate, clean frame at the second stage.

In [21], the authors propose a progressive recurrent de-

raining network by repeatedly unfolding a shallow ResNet

with a recurrent layer. In [30], a dataset of ≈ 29.5k

rain/rain-free image pairs are constructed, and a SPatial

Attentive Network (SPANet) is proposed to remove rain

streaks in a local-to-global manner. Porav et al. [19] pre-

sented a method that improves the segmentation tasks on

images affected by rain. They also introduced a dataset of

clear-soiled image pairs, which is used to train a denois-

ing generator that removes the effect of real water drops.

Li et al. [14] proposed a two stage algorithm incorporating

depth-guided GAN for heavy rain image restoration. Quan

et al. [20] use double attention mechanism CNN for rain-

drop removal.

2.3. Dehazing

Another type of image quality degradation is caused by

the presence of aerosols (e.g., mist, fog, fumes, dust, . . . )

in the environment surrounding the car. Due to the light

scattering caused by these aerosol particles, the resulting

image tends to have faint colors and looks hazy, which can

inherently also impact the further image processing.

Fattal presents in [6] a method for single image dehaz-

ing, based on a refined image synthesis model and a depth

estimation. Berman et al. [2], on the other hand, propose

a solution, which is not based on local priors and builds on

the assumption that a dehazed image can be approximated

by a few hundred distinct colors which form tight clusters in

the RGB color space. Ki et al. [12] propose fully end-to-end

learning-based boundary equilibrium GANs to perform an

ultra-high-resolution single image dehazing. Yan et al. [31]

propose a semi-supervised learning using a mixture of real

data without ground truth and synthetic data.

3. Artificial Soiling Generation

The task of single image soiling annotation on the fish-

eye cameras is quite tedious. We make use of polygonal

annotation, which is a compromise of annotation speed and

quality. However, even this kind of polygonal annotation is

sometimes tough to interpret even by human annotators. It

is particularly true for the soiling boundary, which is usually

very fuzzy.

However, an even bigger problem is how to obtain the

soiling data. In our setup, we apply a random pattern of

soiling on the camera lens using a particular soiling source.

Then drivers ride the car for a while and repeat the process

several times. It has many limitations: Firstly, it is very

inconvenient to record data for all probable scenarios (e.g.,

driving through the city, rural area, highway). Secondly, it

is not possible to measure the real impact of soiling on the

images, because we need a clean version of the same images

for a fair comparison.

All these limitations motivate us to use the synthetic soil-

ing data. In the following sections, the proposed soiling

generation algorithms are described.
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Figure 3: Several examples from the WoodScape Dataset. Top: RGB images from the fisheye camera. Bottom: corresponding

human made annotations. White polygons represent soiling masks, while the background is marked by black color.

Figure 4: A few examples of the segmentation network results. In the left column are original soiled images, in the middle

are the coarse annotations, and on the right column are the masks obtained by the segmentation network. The clean area is

marked in dark gray, the opaque area is white, and the semi-transparent region light gray.

3.1. Soiling Generation Baseline Pipeline

The core of our baseline pipeline is formed by a Cycle-

GAN [34] network, which we train to perform the image-

to-image translation from clean images to their soiled coun-

terparts. The main problem of the CycleGAN method is

that it modifies the whole image. For our desired applica-

tion, this can lead to undesired artifacts in the generated im-

ages. Besides that, the generated synthetic soiling patterns

are often relatively realistic. Note that due to GPU memory

requirements and time constraints, our CycleGAN training

uses rescaled images ( 1
4

of both width and height).

Next, we train a soiling semantic segmentation network,

M, using the weak polygonal annotation of soiling (see

Figure 3 for several examples). Even though the annotation

is quite coarse, the segmentation network M is able to fit

the soiling patterns more precisely. See Figure 4 for a few

examples of M outputs in comparison to the original an-

notations. We use WoodScape Dataset [33] for training the

soiling segmentation network. Last but not least, we train a

super-resolution network U , which we use to transform the

GAN generated image to the original image resolution (i.e.,

up-scaling of 4× factor).

The idea of a baseline data generation algorithm is de-

scribed in Figure 5. We take the generator transforming

a clean image to the soiled image (GC2S) and apply it to the

clean image I . It gives us an image with a random soil-

ing pattern Is. Next, we obtain the soiling mask m. This is

achieved by applying the semantic segmentation network on

the generated soiled image followed by a Gaussian smooth-

ing filter γ: m = γ (M (Is)). The resulting soiling mask

m is an image with values in range [0, 1], where 0 means

background, and 1 means soiling. The intermediate values

can be understood as semi-transparent soiling. We apply

the Gaussian smoothing filter because it mimics the physi-

cal nature of the soiling phenomenon where the edges of the

soiling patterns are typically semi-transparent, due to pho-

ton scattering. Finally, the artificially soiled version of the

original image Î is a composition of the original image I

and the soiling pattern Is via the estimated mask m:

Î = (1− U (m)) · I + U (m) · U(Is) . (1)
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Figure 5: The soiling generation baseline pipeline. From left to right: an image into which we would like to paint a random

soiling pattern; CycleGAN generated “soiled” version; blurred mask of the segmented soiling from the generated image; the

resulting artificially “soiled” image obtained by convex combination of the original image and the generated soiling via the

segmented mask.

Note, it is possible to use arbitrary images for the final com-

position, once we obtain Is and m. The mask m obtained

by the semantic segmentation network M serves as an au-

tomatic annotation of the soiling in the generated image.

This simple pipeline has certain limitations. The biggest

one is that it cannot be expected to work smoothly for soil-

ing types caused by water (e.g., raindrops, snow) in this

specific formulation. One option for dealing with this issue

is to follow the approach of [1], where the authors model

the reflection patterns of the water drops using the whole

image and apply filters and transformations consequently.

The other option is to formulate a CyleGAN-like approach,

which can cope with changing only those parts of the im-

age that correspond to the soiling pattern and keep the rest

unchanged. We formulate this approach in the following

section.

3.2. DirtyGAN

The problem of applying CycleGAN in artificial soiling

synthesis is twofold. Firstly, CycleGAN does not constrain

the image generation to any specific regions and instead re-

generates the whole image, affecting all pixels. In the case

of the artificial soiling generation, this is highly undesir-

able. For the investigation of the soiling impact on the fur-

ther image processing, the background (i.e., regions of the

image not affected by the soiling) must remain untouched.

Secondly, the generation branch “clean” → “soiled” is ill-

posed, as there is no visual clue for where the soiling should

be produced. There are infinitely many patterns that could

be created. Furthermore, there is also no control over the

soiling pattern production process.

The first problem can be addressed, e.g., by Insta-

GAN [17]. However, in such a case, the second problem

becomes even a more significant issue. We decided to guide

the pattern generation process via a Variational AutoEn-

coder (VAE) [5] and modify the CycleGAN algorithm so

that it applies only on the masked regions of the source and

target domain images. We coin the proposed network Dirty-

GAN.

We use the weak polygonal soiling annotations from the

WoodScape Dataset for training the VAE. The main idea of

using VAE for the soiling patterns generation is as follows.

By using the encoder of the trained VAE, we can obtain the

projection of an actual sample from the dataset to a lower-

dimensional representation. If we select two samples z1

and z2 that are close on the soiling pattern manifold, we can

obtain a novel sample z by taking their convex combination.

z = αz1 + (1− α)z2 , (2)

where α ∈ [0, 1]. Then, we take this intermediate repre-

sentation z and apply the trained decoder from VAE to re-

construct the corresponding soiling pattern. In Figure 6, we

depict several examples of this intermediate soiling pattern

reconstruction.

The benefit of using sampling from the learned VAE is

that we could even use it to create animated masks, e.g., to

mimic dynamic soiling effects, such as water drops in heavy

rain or to be able to investigate the impact of dynamic soil-

ing in general. After training the VAE, we limit CycleGAN

to be applied only on the masked regions corresponding to

the generated mask for the “clean” → “soiled” translation

or the mask obtained by the soiling semantic segmentation

mask M. We use a similar composition as in the baseline

presented in Section 3.1. In Figure 7, we depict the whole

DirtyGAN scheme.

3.3. Dirty Datasets

We have used the baseline pipeline to generate artificial

soiling on our recently published WoodScape Dataset [33]

with 10k images, which comes with semantic segmentation

annotation. It makes it a suitable candidate for the soiling

generation since we can merge the provided annotation with

the soiling mask and measure the direct impact on classifi-

cation models. Our generated data with updated annotation

will be released as a WoodScape Dataset companion under

the name of Dirty WoodScape Dataset2.

In Figure 8, we show several generated examples to-

gether with their automatically obtained annotations. Our

method of soiling generation is not limited to fisheye images

2https://github.com/valeoai/WoodScape
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Figure 6: Variational AutoEncoder and the walk on the soiling manifold. The leftmost column depicts the original soiling

pattern (the annotation for some particular soiled image). The next column is the reconstructed version by applying the

whole VAE. The next 10 columns represent the transition (the walk on the soiling manifold) from the leftmost image to the

rightmost one, which represents another example.
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Figure 7: The DirtyGAN scheme. The original CycleGAN scheme is enhanced by VAE for novel soiling pattern generation

in “clean” → “soiled” branch and by mask estimation in the opposite branch. Please see the supplementary material for a

higher resolution version of this image.

only. Since we would like to support standard benchmark-

ing as well, we also release a Dirty Cityscapes dataset. It is,

as the name suggests, based on the Cityscapes [4] dataset.

4. Experimental Evaluation

4.1. Data Augmentation for Soiling Detection Task

A primary purpose of generating soiling is to mimic the

real soiling scenarios. Firstly, we trained a soiling segmen-

tation network on real soiling data only (8k images). We

tested this model performance on real soiling test data and

achieved 73.95% accuracy. Then, we added generated soil-

ing data (8k images) to our training catalog. As the gen-

erated soiling replicates the real soiling patterns, the net-

work’s performance increased to 91.71% on real soiling test

data, forming a 17.76% increase in accuracy without the

need for costly annotations and real-time soiling scene cap-

tures (see the second and fourth row of Table 1).

We observe a significant reduction in accuracy when the

network is trained on artificial images solely. It can be at-

tributed to a limited ability to capture the entire data diver-

sity to support the original soiled data. We also conduct

a simple ablation study with standard data augmentation

techniques (flipping, contrast changes) to match the size of

training data with generated samples and observe a much

lesser improvement in accuracy (third row), compared to the

scenario with augmentation by generated synthetic samples.

The classifier used in the experiment uses ResNet50 [8]

for an encoder and FCN8 [22] for a decoder. The binary

cross-entropy was used as a loss function with the ADAM

optimizer [13] for training with a learning rate of 1× 10−4.

The image resolution was 640× 480 pixels.

Table 1: Comparison of Soiling Segmentation model

trained on generated and real soiled images. Accuracy is

computed on a real test dataset with 2, 000 images.

ResNet50-FCN8 based

Soiling Segmentation Model

Accuracy [%] on real

test 2K dataset (mIoU)

Trained solely on generated images

(8000 samples)
47.41

Trained solely on real images

(8000 samples)
73.95

Trained on real & data augmentation

(16000 samples)
78.20

Trained on real & generated images

(16000 samples)
91.71

4.2. Artificial Soiling Quality

We performed a subjective visual study of the quality of

the artificial soiling similarly as it is done in other GAN

based image generation algorithms. We selected represen-
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Figure 8: Examples of the generated images from the DirtyWoodScape Dataset, together with the generated annotations.

Top: WoodScape Dataset RGB images with generated opaque soiling. Bottom: corresponding automatically generated

annotations. White pixels represent the soiling, while black pixels represent the background.

tative human participants with a variable level of the prob-

lem understanding: ranging from absolutely no knowledge

about the computer vision and surround-view camera imag-

ing systems for autonomous driving to people working with

the soiling data daily. The participants were asked to clas-

sify the presented images either as real ones or fakes. Then,

we randomly showed images with the real soiling from

the WoodScape Dataset [33] and with the artificially gen-

erated soiling. To make the task even more complicated, we

used soiled images showing similar scenes as they occur in

the WoodScape Dataset. Otherwise, the participants might

eventually spot the differences in the data distribution as the

real soiling data comes only from limited scenarios.

Table 2: Quantitative evaluation on our WoodScape dataset

using DeepLabV3+. The accuracy measure is mIoU [%].

Train\Test Clean Soiled

Clean 56.6 34.8
Soiled 52.1 48.2

Table 3: Quantitative evaluation on Cityscapes using

DeepLabV3+. The accuracy measure is mIoU [%].

Train\Test Clean Soiled

Clean 38.1 26.6
Soiled 35.5 38.0

The non-expert participants were not able to recognize

real images from fakes. The expert participants were some-

times able to spot a difference in the soiling pattern because

it was novel, and also they sometimes spotted small arti-

facts, e.g., blurry texture. However, expert participants were

biased as they know the real data. In general, we can say

that the image quality of the generated artificial soiling is

satisfactory when judged by human inspection for 95% of

scenarios.

We chose a random subset of 5% of generated samples

for quantitative comparison due to the manual annotation

cost. We use the mIoU metric to compare between artifi-

cially generated annotation and manual annotation. We ob-

tain a high accuracy of 93.2%. It is to be noted that manual

annotation can be subjected, especially at boundaries, and

sometimes it is worse than artificial annotation based on vi-

sual inspection.

4.3. Degradation Effect on Semantic Segmentation

To demonstrate the impact of the soiling on the camera

lens, we provide an empirical evaluation on semantic seg-

mentation task. Pixel level classification is commonly used

in autonomous driving applications. Our dataset consists of

10k pairs of images (clean and synthetically soiled using the

proposed baseline framework). We split our data into train-

ing and testing by 80 : 20 ratio according to the sampling

strategy described in [26]. We trained two DeepLabV3+ [3]

models on the clean and soiled images, respectively. We

evaluate the performance separately on clean and soiled test

data. Table 2 summarizes the obtained results.

A segmentation model trained on clean images records

56.6% mIoU on clean test data and 34.8% on soiled data, a

performance drop of 21.8% compared to clean images. This

significant drop shows that soiling can cause severe degra-

dation to a standard visual perception task in autonomous

driving.

A model trained on the synthetic soiling data shows a

limited degradation to 16.1%. However, training on the

soiled images shows a 4% accuracy degradation on clean

test data compared to the baseline when evaluated on clean

images. Note, that model trained on the synthetic data per-

form reasonably well on the clean data with a few percent-

age drop in mIoU. This is expected as the data contain addi-

tional class, which is treated as background/unknown (void

class). Thus, the trained model used less portion of data to
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(a) Clean Image (b) Train clean, test clean (c) Train clean, test soil (d) Ground Truth

(e) Soiled Image (f) Train soil, test clean (g) Train soil, test soil

Figure 9: Qualitative evaluation using clean vs soiled images on the semantic segmentation network DeepLabV3+.

Figure 10: Examples of the generated images from the Dirty Cityscapes Dataset. Top: Cityscapes Dataset RGB images.

Bottom: Generated soiled images corresponding to clean images.

train the remaining classes.

Figure 9 depicts a qualitative evaluation of the soil-

ing impact on the segmentation task. The baseline model

trained on clean images 9a is evaluated on soiled images in

9c showing a high level of degradation due to the soiling.

Figure 9d shows the ground truth annotations, while 9f and

9g illustrate results of model trained on the soiled images

while testing on the clean images in 9a and soiled images

in 9e. In a realistic scenario, annotations are not available

for the occluded region of soiled images. Using our GAN

generated dataset, we use annotations in the soiled area to

enable the model to interpolate segmentation classes in oc-

cluded soiled parts. Figure 9f shows the capability of seg-

mentation networks to perform segmentation even behind

the soiled area. However, it is less reliable compared to the

clean baseline and sensitive to overfitting.

The same type of experiments were conducted using the

Cityscapes dataset [4]. The results are presented in Table 3,

which, as you can see, show a similar trend as in the Wood-

Scape experiment.

5. Conclusions

In this paper, we proposed two algorithms for the gen-

eration of soiling on images from surround view fisheye

cameras. The first algorithm is a pipeline built from sev-

eral well-known blocks, such as CycleGAN [34], semantic

segmentation of the generated soiling, and image composi-

tion. The second algorithm is a novel DirtyGAN network,

which can generate similar results as the baseline pipeline

in an end-to-end fashion. The possibility to generate ran-

dom but realistic soiling patterns on camera images is an

integral component in examining the degradation of other

image processing methods. We provided an empirical eval-

uation of the performance degradation on several typical

classification tasks common for autonomous driving sce-

narios. We demonstrate that our soiling model trained on

fisheye images generalizes well on the Cityscapes dataset,

enabling us to create dirty versions of public datasets. Last

but not least, we release a public dataset as a companion

to the recently published WoodScape Dataset [33], coined

Dirty WoodScape Dataset, which can serve as a benchmark

for measuring the degradation of the off-the-shelf classifi-

cation algorithms.
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