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Abstract

Hatching is a common method used by artists to accen-

tuate the third dimension of a sketch, and to illuminate the

scene. Our system SHAD3S
1 attempts to compete with a

human at hatching generic three-dimensional (3D) shapes,

and also tries to assist her in a form exploration exercise.

The novelty of our approach lies in the fact that we make

no assumptions about the input other than that it represents

a 3D shape, and yet, given a contextual information of il-

lumination and texture, we synthesise an accurate hatch

pattern over the sketch, without access to 3D or pseudo

3D. In the process, we contribute towards a) a cheap yet

effective method to synthesise a sufficiently large high fi-

delity dataset, pertinent to task; b) creating a pipeline with

conditional generative adversarial network (CGAN); and

c) creating an interactive utility with GIMP, that is a tool

for artists to engage with automated hatching or a form-

exploration exercise. User evaluation of the tool suggests

that the model performance does generalise satisfactorily

over diverse input, both in terms of style as well as shape.

A simple comparison of inception scores suggest that the

generated distribution is as diverse as the ground truth.

1. Introduction

Sketches are a widely used representation for design-

ing new objects, visualizing a 3D scene, for entertainment

and various other use-cases. There have been a number

of tools that have been developed to ease the workflow for

the artists. These include impressive work in terms of non-

photorealistic rendering (NPR) that obtain sketches given 3D

models [19, 13], others that solve for obtaining 3D models

given sketch as an input using interaction [16, 8], and sev-

eral others that aim to ease the animation task [1, 25, 11].

However, these works still rely on the input sketch being

fully generated by the artist. One of the important require-

ments to obtain a good realistic sketch is the need to provide

the hatching that conveys the 3D and illumination informa-

1https://bvraghav.com/shad3s/— The project page; hosted

with further resources.

tion. This is a time consuming task and requires effort from

the artist to generate the hatching that is consistent with the

3D shape and lighting for each sketch drawn. Towards eas-

ing this task, we propose a method that provides realistic

hatching for an input line drawn sketch that is consistent

with the underlying 3D and illumination.

Though recent works have tried to address problems as-

sociated with shading sketch [53], however, to the best of

our study we couldn’t find any prior work addressing the

problem we intend to solve. Here we hope to leverage deep

learning to decode and translate the underlying 3D infor-

mation amongst a rasterised set of 2D lines. Deep learning

has been promising to solve many interesting and challeng-

ing problems [14, 35, 24, 8]. Moreover, it is well known

that deep learning algorithms are data intensive. There exist

datasets [8, 53] which aim to solve 3D-related problems like

predicting the illumination, and mesh inference from line

drawings, but they are limited in their diversity and level of

pertinence (see § 2.3). This motivates us to contribute the

SHAD3S dataset for Sketch-Shade-Shadow like tasks (see

§ 4). Hereby, we attempt to help the research community to

bring closer, the two domains of graphics and vision.

With the aim of creating artistic shadows with hatch-

patterns for a given contour drawing of a 3D object, under a

user specified illumination, we define this research problem

as an attempt to learn a function, that maps a combination

of — a) hand-drawn 3D objects; b) illumination conditions;

and c) textures — to a space of completed sketches with

shadows manifested as hatch-patterns. See § 3.

Our proposed pipeline is based on training a conditional

generative adversarial network (CGAN) [35] with a data-set

of 3D shape primitives and aims to model the problem as

one of contextual scene completion. While this approach

has been widely explored in the image domain [32, 24], the

challenge is to ensure that we are able to obtain convincing

results in sketch domain using a sparse set of lines. In or-

der to solve this we train our model using a novel SHAD3S

dataset explained further in § 4. These are rendered to be

consistent with the illumination and 3D shape. We include

the context required for solving the problem in the input.

Once this is learned it is possible to automate the sketch
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Figure 1. SHAD3S: a Model for Sketch, Shade and Shadow — is a completion framework that provides realistic hatching for an input line

drawn sketch that is consistent with the underlying 3D and a user specified illumination. The figure above shows choice of illumination

conditions on the top row, user sketches in the middle row, and the completion suggestions by our system. Note that the wide variety of

shapes drawn by the user, as well as the wide variations in brush styles used by the user were not available in the training set.

generation using the proposed CGAN model. A glimpse of

our results can be seen in Fig. 1, that once again reinforces

the significance of sufficiently large dataset in the context

of deep learning, and its generalizability.

A natural approach given a dataset would be to train a

regression based system that would aim to generate the ex-

act information that is missing. This can be achieved using

reconstruction based losses. The drawback of such an ap-

proach is that the resultant generation would be blurred as it

averages over the multiple outputs that could be generated.

In contrast, our adversarial learning based approach allows

us to generate a sharp realistic generation that we show is

remarkably close to the actual hatch lines.

The system has been tested for usability and deployment

under casual as well as involved circumstances among more

than 50 participants, the qualitative results of which are se-

lectively displayed here (see § 6), and a larger subset has

been made available as supplement. We would like to men-

tion that the samples for which the system has been tested

by the user are very different from the distribution of sam-

ples for which it was trained on. It is able to generalize and

produce satisfactory sketches as shown in Fig. 1. Through

this paper we provide, to the best of our knowledge, the first

such tool that can be used by artists to automate the tedious

task of hatching each sketch input. The tool and the syn-

thetic dataset (described in § 4) are available for public use

at the project page2.

Summary. To provide an overview of our work, we sum-

marise our main contributions as follows. Firstly, we define

an extremely inexpensive method to generate sufficiently

large number of high fidelity stroke data, and contribute the

2https://bvraghav.com/shad3s/

resultant novel public dataset.

Secondly, we define simple method to inject data from

three different modalities, namely: i) sketch representing

3D information; ii) rendered canonical geometry represent-

ing illumination; and iii) a set of hand drawn textures rep-

resenting multiple levels of illumination — these three may

be plugged into any well established deep generative model.

Finally, we push boundaries for artists through an inter-

active tool to automate a tedious hatching task, and to serve

as a form-exploration assistant.

2. Relevant Works

As the proposed method is the first work to address the

task of automating hatch generation from sketches, there is

no directly related work to the best of our knowledge. How-

ever, there are two prominent lines of approach, namely

stylization and sketch-based modeling that are related to our

problem. In contrast to these approaches, we aim to address

the task as one of contextual information completion and

therefore the proposed approach differs substantially from

these approaches.

2.1. Stylization

An undercurrent, is arguably visible in a series of works

following Siggraph ’88, where in a panel proceedings [33],

Hagen said,

The goal of effective representational image mak-

ing, whether you paint in oil or in numbers, is to

select and manipulate visual information in order

to direct the viewer’s attention and determine the

viewer’s perception.

We see this in the initial works [15, 40, 6] focusing on at-

tribute sampling from user input to recreate the image with
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arguably a different visual language and accentuation and

offer interactivity as a medium of control. Thereby fol-

lowed, a shift towards higher order controls, to achieve finer

details, for example temporal coherence [31], modelling

brush strokes [17], and space-filling [43]. Space-filling had

been buttressed, on one hand with visual-fixation data and

visual-acuity [7, 41], and on the other with semantic units

inferred using classical vision techniques [51]. The finer

levels of control, in these works, allowed for interactivity

with detail in different parts of the synthesised image.

Image Analogies had popularised the machine learning

framework for stylising images, with analogous reasoning

A : A′ :: B : B′, to synthesise B′, using image match-

ing [18]; to achieve temporal coherence [1]; using synthesis

over retrieved best-matching feature [11, 10, 25]. The prob-

lems thus formulated, allowed use of high level information

as a reference to a style, for example a Picasso’s painting.

Deep Learning Techniques have recently documented

success in similar context, using Conditional Generative

Adversarial Networks (CGAN) [35], and its variants using

sparse information [24]; using categorical data [48]; or for

cartoonization of photographs [5].

Researchers have recently contributed to line drawings

problem pertaining to sketch simplification [46, 44], line

drawing colorization [12, 27, 52] and line stylization [29].

Sketch simplification [46, 44] aims to clean up rough

sketches by removing redundant lines and connecting ir-

regular lines. Researchers take a step ahead to develop a

tool [45] to improve upon sketch simplification by incorpo-

rating user input. It facilitates the users to draw strokes indi-

cating where they want to add or remove lines, and then the

model will output a simplified sketch. Tag2Pix [27] aims

to use GANs based architecture to colorize line drawing.

Im2pencil [29] introduce a two-stream deep learning model

to transform the line drawings to pencil drawings. Among

the relevant literature we studied, a recent work [53] seems

to be most related to our approach, where authors propose

a method to generate detailed and accurate artistic shadows

from pairs of line drawing sketches and lighting directions.

In general, it has been argued that models over the deep

learning paradigm handle more complex variations, but they

also require large training data.

2.2. Sketch­based Modeling

Interactive Modeling [50] introduced a set of rule-based

shortcuts with the aim of creating an environment for

rapidly conceptualizing and editing approximate 3D scenes.

Sketching was integrated soon into the system with TEDDY

and its relatives, [23, 22, 36], with prime focus on inflated

smooth shapes as first class citizens, and sketch-based ges-

tures for interactivity. Recently, SMARTCANVAS [54] ex-

tended the works relying on planar strokes.

Analytical Inference, for 3D reconstruction is another

popular approach to modeling from sketches. With the

context of vector line art, [34] inferred simple curved

shapes, and [30] showed progress with complex composi-

tions of planar surfaces. Recently, for illuminating sketches,

[42, 21] had shown the effectiveness of normal-field infer-

ence through regularity cues, while [49] used isophotes to

infer the normal-field.

Deep Learning Techniques, have more recently, shown

substantial progress in inferring 3D models from sketches:

a deep regression network was used to infer the param-

eters of a bilinear morph over a face mesh [16] training

over the FaceWarehouse dataset [3]; a generative encoder-

decoder framework was used to infer a fixed-size point-

cloud [9] from a real world photograph using a distance

metric, trained over ShapeNet dataset [4]; U-Net [38]-like

networks were proven effective, to predict a volumetric

model from a single and multiple views [8] using a diverse

dataset, but this dataset lacks pertinence to our task.

2.3. How we stand out

Deep learning applications has seeped into many re-

search domains. The profusion of data has helped the

research community and has nicely complemented deep

learning algorithms. However, there does seem to be lack

of feasible, scalable, impressive in terms of both quality and

quantity, and user-interpretable dataset in the graphics com-

munity specially artistic domain. There does seem to be a

gap when we compare these datasets with popular datasets

suitable for deep learning algorithms. For instance, ShadeS-

ketch dataset [53] doesn’t offer much diversity as it is lim-

ited to a specific domain and dataset has comparitively less

number of images.

In our approach, we aim to solve the problem of gener-

ating hatches for sketches using our contextual image com-

pletion framework. The framework ensures that the relevant

context required in terms of illumination information and

textures is incorporated. We use generative adversarial net-

works to ensure realistic generation of hatch patterns that

are indistinguishable from ground-truth hatch patterns that

are generated by using accurate ground-truth 3D. Note that

in our inference procedure, we make use only of the line

drawings, the illumination and the texture context. We do

not require access to 3D or psuedo-3D in order to generate

the accurate hatch pattern. Further ways in which we differ

are as follows.

Firstly, the problem of stylization inherently requires an

information-dense image to start with. For an artist, it is

evidently quicker as well as more intuitive, to create a basic
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Figure 2. Progressive evaluation of DM:WB (see § 5) model varying camera pose, illumination, constituent geometry and texture. Clockwise

from top left. POSE; POSE+LIT; POSE+LIT+SHAP; ALL; TXR. (Details at § 5.1.)

line-art, than to create a well rendered sketch; but line-art is

sparse in nature.

Secondly, the heuristic based methods although coarsely

capture the distribution, wherein different parameter values

cater to different class of problems, they are vulnerable in

fringe cases. Deep learning on the other hand has shown

promise.

Finally, in decision making, it is pivotal for the designers,

to control the stylization parameters of lighting and texture.

3. Problem formulation

The objective of this research is to learn a function

F : C × L × T → S; where, C represents the space of

hand-drawn contours for any 3D geometry; L represents an

illumination analogy shown for a canonical geometry; T is

a set of textures representing different shades; and S is the

space of completed sketches with shadows manifested as

hatch-patterns.

3.1. Model

To this end, we leverage the CGAN[14, 35] framework.

If Fθ parameterised by θ, be a family of functions modelled

as a deep network; c ∈ C be a line drawing, l ∈ L be the

illumination analogy, t ∈ T be the set of tonal art maps

(aka. textures), and s ∈ S be the completed sketch, then

the reconstruction loss is defined as in Eq. (2). For diversity

in generation task, Fθ is implemented with dropouts [28] as

implicit noise. In order to bring closer the model-generated

sketches and real data distribution, we define a discrimina-

tor Dφ parameterised by φ, as another family of functions

modelled by a deep network. The adversarial loss, is thus

defined as in Eq. (3). We hope the model to converge, alter-

nating the optimisation steps for the minimax in Eq. (1). We

call this formulation as direct model, illustrated in Fig. 3.

In the same spirit, since data generation is cheap (see

§ 4), we see an opportunity to make use of the illumination

masks m ∈ M as an intermediate step for supervision using

a split model, for which the losses LL1
and Ladv in Eq. (1)

are formulated as in Eqs. (4) and (5).

θ∗ = argmin
θ

max
φ

Ec,l,t,s∼data

[LL1
(θ) + λLadv(θ, φ)]

(1)

Direct Model:

ŝ = Fθ(c, l, t)

LL1
(θ) = ‖s− ŝ‖1 (2)

Ladv(θ, φ) = log(Dφ(s)) + log(1−Dφ(ŝ)) (3)

Split Model:

m̂ = F
(1)
θ (c, l)

ŝ = F
(2)
θ (m̂, t)

LL1
(θ) = ‖m− m̂‖1 + ‖s− ŝ‖1 (4)

L
(1)
adv(θ, φ) = log(D

(1)
φ (m)) + log(1−D

(1)
φ (m̂))

L
(2)
adv(θ, φ) = log(D

(2)
φ (s)) + log(1−D

(2)
φ (ŝ))

Ladv(θ, φ) = L
(1)
adv(θ, φ) + L

(2)
adv(θ, φ) (5)
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Figure 3. The overview of the our framework. Clockwise from top. Illustration of structure of GAN detailing injection of data from different

modalities into the CGAN framework; Further detailed view of direct model; Coarse sketch of a direct model, Eqs. (2),(3),(1); Analogous

sketch of a split model, Eqs. (4),(5),(1).

3.2. Architecture

Akin to earlier attempts [24], we utilise U-Net [38] with

≈ 12M as our base architecture. The only main difference

being the use of multi-modal bounding conditions that are

infused into the network by varying the number of input

channels, namely the sparse object outline sketch, illumina-

tion hint, and texture (See Fig. 3). We experiment with alter-

nate formulations of the model so that the complete sketch

is predicted using a direct model Eqs. (2),(3), or by pre-

dicting an extra intermediate representation of illumination

masks using a split model Eq. (4) (5). The discriminator is

designed as a PatchGAN based classifier, which determines

whether N ×N patch in an image is real or fake.

Inspired by recent success of self-attention in adversarial

nets [53], we also use a squeeze-and-excitation [20] based

architecture for our model, Fθ in Eqs. (2),(3).

3.3. Remarks

We propose a conditional GAN framework to solve for

the task. We adopt the baseline architecture [24], and fur-

ther implement a model inspired by a recent advancement

as an ablation study. However, our architecture is differ-

ent and stands out from prior works in the way how muti-

modal bounding conditions are being infused into the net-

work. The model so designed can be trained in an end-to-

end manner while satisfying the desired constraints.

As a general notion, deep neural networks are difficult

to train and are sensitive to the choice of hyper-parameters.

But our model doesn’t introduce additional complex com-

ponents, and thus allows us to take advantage of knowing

the hyper-parameters of underlying base architecture. This

also results in a conceptually clean and expressive model

that relies on principled and well-justified training proce-

dures. This is, to the best of our knowledge, the first attempt

to solve the problem of generating hatches for sketches

while incorporating multiple modalities as constraints.

Figure 4. Three sketches rendered using three different objects

with TAM’s implemented using BLENDER.

CNT ILL HI MID SHA SHW SK DIF

Figure 5. Few examples from the dataset. Columns left to right.

CNT: Contour; ILL: Illumination; HI: Highlight mask; MID: Mid-

tone mask; SHA: Shade mask (on object); SHW: Shadow mask;

SK: Sketch render; DIF: Diffuse render.

Figure 6. Gnomon in a sundial is used as canonical object to cap-

ture illumination information. Left to right: A sundial (Courtesy:

liz west https://flic.kr/p/EWBd4); Perspective render of

a gnomon; A top view of the same.

4. Dataset

We introduce the SHAD3S dataset ( Fig. 4), where each

data-point contains: a) a contour drawing of a 3D object;

b) an illumination analogy; c) 3 illumination masks over a,

namely highlights, midtones and shades; d) a shadow mask

on the ground; e) a diffuse render; and f) a sketch render.

Additionally, it contains a catalogue of 6 textures.
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Geometry and render This is a fully synthetic dataset

created from scratch using the following steps: a) Cre-

ate a Constructive Solid Geometry (CSG)-graph using sim-

ple grammar over a finite set of eulidean solids; b) Cre-

ate a mesh from CSG; c) Render the mesh. The illumina-

tion masks were created by thresholding a diffuse shader.

Blender’s [2] official freestyle tool [47] was used to render

the contours. And sketch renders were created after imple-

menting the tonal art maps [37] (see Fig. 4).

Since the geometry is also procedurally generated on

the fly, we take the opportunity to progressively increase

the complexity of geometry by varying the upper-bound of

number of solids in the composition between 1 and 6. This

assists in the progressive evaluation of the models.

Illumination and background Additionally, we also

froze the information of illumination conditions in the form

of a diffuse render of a canonical object resembling a

gnomon (of a sundial). The rationale behind using this style

of information is to provide information to image domain.

We also attempted to use a background filled with hatch

patterns, instead of transparent background, and analysed

its effects on the model performance detailed out in § 5.

Textures as Tonal art maps For the purpose of this re-

search, we follow the principle of tonal art maps [37], albeit

in a low-fidelity version. To approximate the effect, we cre-

ate an 6-tone cel-shading [26], including the pure white and

pure black. For the rest of the four shades we map one tex-

ture corresponding to each tone on the object.

The similarity to tonal art maps lies in the fact that any

hatch pattern map for a given tone should also be visible

in all the tones darker than itself. To this effect, we col-

lect samples of high resolution tonal art maps apriori, from

artists. A random crop of these images is used by the model

as input conditions (see Fig. 4)

All in all we create six subsets, each restricting the max-

imum number of solids in a CSG composition of a scene to

be from 1 through 6. Each subset is created from ∼ 1024
distinct scenes. Each scene is rendered from ∼ 64 different

camera poses. The dataset thus contains ∼ 216 × 6 data

points with a resolution of ∼ 256× 256.

5. Experimentation and results

To test our hypothesis we performed experiments on the

three models, namely a) the direct model over U-Net ar-

chitecture (DM); b) the split model over U-Net architecture

(SP); c) the split model over squeeze-and-excitation archi-

tecture (SE). As an extension, we also studied the direct

model trained over a dataset with background (DM:WB),

and the split model trained over a dataset without shadows

IN DM SP SP:WS SE

Figure 7. Comparative results for all models. Columns left to right.

Input contour drawing; Corresponding evaluation with DM; With

SP; With SP:WS; With SE.

SINGLE SOLID UPTO TWO UPTO THREE

Figure 8. Progressive results for DM. Left three with single solid

on scene; Middle three with upto two solids; and Rightmost three

with upto three solids.

Table 1. Quantitative evaluation using PSNR, SSIM, Inference time

(in ms), followed by inception scores of model predictions, juxta-

posed against those of the dataset.

MODEL PSNR SSIM Time Pred. IS GT IS

DM 55.72 0.347 13 4.25 5.51

SP 55.48 0.349 33 4.12 5.51

SE 55.90 0.376 426 4.35 5.51

SP:WS 58.92 0.287 36 3.71 5.27

Table 2. Progressive improvement in inception scores against an

increase in dataset complexity

Max objects 1 2 3 4 5 6

GT IS 3.36 3.94 4.13 4.86 5.15 5.51

on ground (SP:WS). Further, the results are analysed quali-

tatively (§ 5.1), quantitatively (§ 5.2) and for generalizabil-

ity of the model (§ 5.3).
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5.1. Qualitative Evaluation

Initially the a DM model was trained with low resolution

datasets, starting with single solid in a scene, through to a

combination of upto three solids in a scene. The indicative

results in Fig. 8,show that with progressive increase in the

complexity of scene, the model struggles to keep up with

the expected response.

To illustrate the strength of our experiments, we present

the qualitative results of the following progressive analysis

of our DM:WB model with increasingly complex scenes, as

shown in Fig. 2. The model visibly learns to shade well

for given lighting conditions, and standard primitives over a

canonical texture. The figure is coded as follows,

POSE: Pose variations of a cube, with a canonical scene.

POSE+LIT: Variations in lighting and pose of a cube, com-

bined with a canonical texture.

POSE+LIT+SHAP: Variations in lighting, pose and shape

(single primitive solid in scene), with a canonical texture.

TXR: Variations in lighting, pose, shape (single primitive

solid in scene) and texture.

ALL: Variations in lighting, pose, texture and complex com-

positions (upto six solids combined in a scene.)

Further qualitative comparison of all the five models, are

presented in Fig. 7. The nuances of shading with complex

solids, and the consequent mistakes, that the model incurs,

may escape an untrained eye, solely because, the hatching

and shading is acceptable at a coarse level. The models

trained without background also perform well but qualita-

tively seem far from the performance of a model trained

with background. Self occlusion and self shadows pose a

major challenge.

5.2. Quantitative analysis

Inception score has been a widely used evaluation metric

for generative models. This metric was shown to correlate

well with human scoring of the realism of generated im-

ages [39]. We see in Table 2 that as expected the metric

increases with increase in scene complexity, indicating pro-

gressively more diversity through the experiment.

We evaluate the models, DM, SP, SP:WS, SE, and results

are summarised under Table 1. In our case we use the NPR

rendered images as a reference to the generated sketch com-

pletions. The inception scores of the images generated by

our models, are comfortably close to the scores for ground

truth (GT). Furthermore, the metrics PSNR, SSIM and IS

exhibit mild perturbations amongst the models trained with

shadow, whereas a sharp change in case of the model trained

without shadows. We see a steep decline in the diversity

(SSIM and IS), and a sharp ascent in PSNR, both of which

can be explained by the absence of shadows, that on one

hand limit the scope of expressivity and diversity; and on

the other, limit the scope of discrepancy from GT and hence

noise, improving the count of positive signals.

5.3. Generalizability

IN SEDM SP SP:WS SE IN DM SP SP:WS

C
H

A
IR

S
V

A
S

E
S

Figure 9. Generalizability results — chairs in top two rows; and

vases in the next. Set of five columns left to right. Input contours;

Evaluation with DM; With SP; With SP:WS; With SE.

We deploy two methods to verify a model’s tendency to

overfit, and/or its ability to generalize. One is to run on

other publicly available datasets. To this end, we utilize the

class of objects in chairs and vases from the ShapeNet [4].

And the other method we deploy is by user evaluation

(see § 6). The representative results of qualitative evaula-

tion can be seen in Fig. 9.

5.4. Limitations

Although the model is able to predict even for human

sketches, unseen as well as totally different from the seen

dataset, they are barely satisfactory. We have seen here that

the model at times modifies the contours, which raises a

question of fidelity in production mode. Also, to the best

of our knowledge, there seems to be a lack of popularly ac-

cepted metric for measuring the levels of realism and diver-

sity in the human sketches. Hence, we borrow the metrics of

Inception score[39], PSNR, SSIM from optical domain as a

proxy to examine and verify a similar trend for our dataset.

6. User Evaluation

We prepared a tool called DHI—deeply hatch it, for a

user to evaluate the model in a real world scenario. The

tool leverages the widely popular GIMP program over a pen-

touch display to provide the real-world digital drawing ex-

perience. There is another TK-based applet which allows for

choosing the illumination and texture. For consistency, the

illumination images were computed in real-time on client-

side using the blender backend. The image from the user-

end (client) is sent to the compute server for inference trig-

gered by a click on the result window on the TK applet,

where the response is displayed.

We have classified the interactions as a) casual, and b)

involved. The former was more of a rendezvous with the

tool and model. In order to get familiar with the tool, the

user was guided by a mentor for a couple of drawings, and

later left alone to engage with the tool, hoping for her to

develop familiarity and find her comfort zone .
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IN SEDM SP SP:WS SE IN DM SP SP:WS

G
E

O
M

E
T

R
IC

S
IM

IL
A

R
O

R
G

A
N

IC
S

Figure 10. User evaluation results. Blocks top to bottom. Geomet-

ric shapes; Similar shapes with geometric and organic variations;

Organic shapes. Set of five columns left to right. Input contours;

Evaluation with DM; With SP; With SP:WS; With SE.

ILL CNT SK USER SKETCHES

C
U

B
E

S
P

R
IM

IT
IV

E
S

C
O

M
P

L
E

X
E

S

Figure 11. Selected responses from user task completion (see § 6).

Blocks top to bottom. With only CUBES in scene; With PRIMI-

TIVES only; With COMPLEX geometries. Columns left to right.

ILL: Illumination hint; CNT: Contours; SK: GT sketch for review-

ers reference; Next five columns show users responses.

The time of participant engagement varied between 5-

43 minutes (µ = 21.47, σ = 5.24). The sample size was

55 users with their age varying between 12-57 years (µ =
26.15, σ = 7.04). The results of this evaluation are shown

in Fig. 10. More impressive results from model trained with

background DM:WB have been shown in Fig. 1.

We also conducted a more involved group based task

completion exercise with 19 volunteers having art/design

background, split into groups of 4. This exercise was con-

ducted in three phases and lasted a couple of hours either

side of the lunch.

The first phase was an individual level task. A user was

required to complete a sketch instead of the computer in a

threshold of 40 sec; the threshold had been chosen by con-

sensus. A total of 21 samples were presented, split into

three levels of difficulty: a) the first being the nascent level

where only a cube is looked at from different poses; b) the

second consisting a simple geometry like euclidean solids

and tori; and c) the last were combination of multiple solids

generated procedurally. The results shown in Fig. 11 in-

dicate that the users seem to have understood the problem

principally. The second phase was akin to the casual inter-

action as described earlier. The last phase, was a group task

where a group was required to utilize the tool to create a

stop motion picture, one frame at a time.

We encourage the reader to view the supplementary

video3 for the results of this exercise, evaluated against dif-

ferent models.

7. Conclusion

We have shown the use of CGAN in our pipeline for con-

ditional generation of hatch patterns corresponding to line-

art representing 3D shapes, by synthesising a large training

set, and have portrayed its generalizability over a wide va-

riety of real world user input.

We started with a basic model called DM and experi-

mented with architectures and models with varying com-

plexity, assuming that model capacity was limiting to get

more satisfactory results. However, that wasn’t the case as

suggested by our investigations and as seen from the results;

there is no clear winner, in general. From a utilitarian per-

spective, we should hence suggest the use of simplest and

most efficient model, ie. DM.

This is nascent research area, which opens up potential

investigation into higher fidelity hatching patterns. Recent

advances from the deep learning community have the po-

tential to be explored to improve the results.

3Supplementary video is accessible on project page, https://

bvraghav.com/shad3s/
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Illumination-guided example-based stylization of 3D render-

ings. ACM Trans. Graph., 35(4), July 2016.
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