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Abstract

Image demosaicing and rectification are key tasks that

are frequently used in many computer vision systems. To

date, however, their implementations have been plagued

with large memory requirements and inconvenient dataflow,

making it difficult to scale them to real-time, high resolution

settings. This has motivated the development of joint demo-

saicing and rectification algorithms that resolve the back-

ward mapping dataflow for improved hardware implemen-

tation. Towards this purpose, we propose Splatty: an al-

gorithmic solution to pipelined image stream demosaicing

and rectification for memory bound applications requiring

computational efficiency.

We begin by introducing a polynomial Look-up-Table

(LUT) compression scheme that can encode any arbitrar-

ily complex lens model for rectification while keeping the

remapping errors below 1E-10 pixels, and reducing the

memory footprint to O(min(m,n)) from O(mn) for an

m × n sized image. The core contribution leverages this

LUT for a unified, forward-only splatting algorithm for

simultaneous demosaicing and rectification. We demon-

strate that merging these two steps into a single, forward-

only splatting pass with interpolation, provides distinctive

dataflow and performance efficiency benefits while main-

taining quality standards when compared to state-of-the-art

demosaicing and rectification algorithms.

1. Introduction

Robotic and mobile imaging systems often require image

processing to occur in real-time, or near real-time [21]. Vi-

sion algorithms inherently depend on input pixel values and

correctness of model assumptions that are used for higher-

level cognitive and heuristic interpretations. A common

use case of image preprocessing is stereo depth estimation

where two sensor streams, as illustrated in Figure 1, are de-

mosaiced and rectified before stereo matching can be used

to extract pixel-wise depth estimates using the epipolar con-

straint [15].

The data dependency should in theory allow for the data

to be operated on sequentially, one pixel row at a time, with-

out the need to temporarily store whole frames to calculate

the output. In reality however, most of the preprocessing

pipeline implementations separate the stages whereby full

images are buffered between the steps. Additionally, both

the demosaicing and rectification can each be interpreted

as a lossy interpolation step, which when stacked together

result in an unnecessary loss of data [18], which can be mit-

igated if we used one interpolation step which did both of

these tasks simultaneously. This work is motivated with a

two-fold set of objectives. Firstly, it is to create an algo-

rithm that approaches ideal color and re-mapping results,

and secondly, it is to have it be optimized for a streaming,

forward only mapping and First-in, First-out (FIFO) data

flow. By achieving this proposed flow, the hardware map-

ping becomes inherently efficient. This results in a compu-

tational strategy that allows the data to be processed using

minimal buffer memory, thereby reducing the processing

and memory requirements which are often limited in em-

bedded systems.

Figure 1: Stereo Pipeline- top: traditional preprocessing,

bottom: Splatty preprocessing

This work proposes a novel preprocessing algorithm and

architecture, Splatty, that simplifies rectification and demo-

saicing into a single forward mapping pass. At the time of

this publication, this unification has not been explored and it

is the goal that the advancement of video stream processing

will enable accelerated image stream processing across sys-
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tems with ever growing sensor resolutions and frame rates.

In Section 2, we provide an overview of Demosaicing

and Rectification algorithms, as well as the previous work

that has been done for each of them. In Section 3, we

describe our approach in detail. In Section 4, we provide

quantitative as well as qualitative comparisons between our

method and existing methods for debayering as well as rec-

tification, and show how our method yields a pipeline which

is an order of magnitude more memory efficient than any

other pipeline that can be constructed from current set of

algorithms, while yielding competitive output quality. We

finally provide discussion in Section 5, and our conclusions

in Section 6.

2. Background Overview

2.1. Demosaicing

A majority of cameras in use today use Complementary

Metal-Oxide-Semiconductor (CMOS) or a Charge-Coupled

Device (CCD) based sensors, which only capture the inten-

sity of light falling on each pixel. To capture information

about color, a Color Filter Array (CFA) is usually placed

over the sensor. This CFA is designed in such a way that

each pixel gets light from only a single color. The most

common color filter array used is the Bayer Pattern, where

each pixel can measure the intensity of Red, Green or Blue

color. An RGB image is obtained by interpolating the in-

tensities of missing colors at each pixel from the intensities

of pixels in the neighbourhood [30]. This process is usually

referred to as debayering, or demosaicing. Several demo-

saicing methods have been proposed in the literature and

have been compared in the works of [30].

Some algorithms (such as [31]) use interpolation meth-

ods, like bi-linear, bi-cubic, or spline interpolation, to cal-

culate the missing color values at each pixel for each color

channel. While these algorithms work very fast, these of-

ten fail at regions with sharp edges, and leave artifacts like

color bleeding, and zipper effect. Other algorithms, such as

[7], [27], [14] do a multi-pass approach, using interpolation

to get an initial estimate of each channel, and then exploit-

ing the correlation between each channel to improve upon

their initial estimates. They produce better quality images,

but this comes at the cost of increased processing: these

methods need about double the computation as compared to

simpler methods, to produce their outputs. Other methods

(such as [10], and [28]) use frequency domain analysis to

arrive at estimates for debayered images which have fewer

artifacts. But frequency domain analyses have the disad-

vantage of being much more computationally intensive than

solely spatial domain analyses, and as such, this limits their

use in real-time vision pipelines, which require methods ef-

ficient in space and computational cost.

In the recent years, many neural network based ap-

proaches for demosaicing have also been suggested. [12]),

[38], [25], [4], have proposed deep learning models for de-

mosaicing. Others, such as [29], [9], [26], [39] have pro-

posed deep CNN based approaches to super-resolution, and

these have also shown success in demosaicing, since demo-

saicing can be reframed as super-resolution in the 3 color

channels. [35], [22], [17] propose replacing Image Signal

Processing (ISP) pipelines in vision systems with end-to-

end learnt deep CNN models; however, they only perform

demosaicing, denoising, and in some cases, intensity cor-

rection. None of these handle joint demosaicing and rec-

tification. Almost all of the deep learning based solutions

suffer from the same issue of large memory requirements:

they need hundreds of MBs to store model parameters and

intermediate feature maps. This makes them infeasible for

use on edge devices with real-time processing requirements.

There has been some progress in recent years to transfer

learnt neural network architectures to FPGAs for inference

([3], [37], [1]), by optimizing the model, datapath, or in-

ference pipelines. Even so, with the advent of extremely

deep convolutional neural networks used in various vision

tasks, optimizing the best performing models so that they

can process HD images in real-time hasn’t been feasible up

to now.

We adapt the ideas presented in [31], and [7] to design

our own method of debayering that leverages a forward

mapping, splatting based interpolation, which yields itself

for ideal dataflow, and hardware parallelism.

2.2. Rectification

Rectification is a general image re-mapping process,

used for correcting a set of distortions that are introduced

in the image capturing process: lens distortion, camera tilts,

offset from focal axes; as well as compensating for non-

perfect placement of stereo camera pairs. This is common

in stereo depth systems [19], where two cameras in a bi-

focal stereo apparatus are not coplanar or row-aligned, and

require re-mapping so that the epipolar lines in both the im-

ages are pixel row aligned. It is usually the most computa-

tionally demanding step in stereo processing pipelines (for

eg., see Table 1 in [13]), and hence the focus of optimiza-

tion, to improve resource utilization.

There are two methods to perform rectification: forward

mapping, and backward mapping, with the latter being the

dominant method. In forward mapping, each pixel in the in-

put image is mapped to a location in the output image, and

the input pixel’s intensity value is used to calculate the in-

tensities at the image pixels in the neighbourhood of the out-

put pixel, as shown in top part of Figure 2. There are various

methods to perform this extrapolation: the simplest method

is to map the output pixel to the nearest pixel location in

the output image. However, this approach leads to so called

“holes” in the output image [6]. An improvement over this
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approach is to use a bleeding or splatting technique, which

extrapolates the pixel values from the forward-mapped pixel

to all its neighbourhood pixels, and depending on the dis-

tance it bleeds over, it’s value is more or less dampened us-

ing a decay function. For example, in the method described

in [36], the intensity value falls off inversely with the square

of the distance from the mapped location.

Figure 2: Forward and Backward Mapping

Backward mapping aims to overcome the problems of

holes in the output image, by performing a reverse map-

ping: for each pixel in the output image, it finds the sub-

pixel level accurate location of a point in the input image

which maps to it. Then, it fills up the output image pixel by

interpolating the intensity at the sub-pixel level accurate lo-

cation from the intensities of the pixels in its neighbourhood

[32]. This is shown in Figure 2. This approach yields good

results, but is difficult to implement in a streaming setting,

where the input image is coming in one row at a time, and

buffering large number of rows is not feasible. The loca-

tions of backward mapped pixels may not vary uniformly,

and this necessitates buffering multiple rows for both input

and output images. [11].

Adapting rectification to a streaming setting to operate

in real-time is shown to be a difficult endeavor by many

academic and industry efforts. [2] attempts to create a real-

time 3D vision system, where it uses rectification as a first

step in their 3D vision pipeline. However, their results are

limited to small image sizes (640x480 px). Larger image

sizes at 30fps frame rates are not feasible on their systems,

due to memory constraints. The work in [20] demonstrates

that on state-of-the-art FPGA systems, it is still necessary

to buffer image data to off-chip DDR memory instead of

having it all on the on-chip BRAM memory, which means

there’s signification I/O overheads involved. Furthermore,

the remapping step of the full stereo pipeline, is by a fac-

tor of 5, the slowest stage in the system throughput. One

implementation by [34] has highlighted the feasibility to

perform a radial only rectification with a backward map-

ping, but this implementation and architecture does not al-

low for more general rectifications to take place, and the

output does not respect a FIFO order. [24] describe a lossy

compression and subsampling based rectification method,

which can handle more general cases of rectification, but it

trades off reconstruction accuracy for reduced memory us-

age. We show in our results section that we utilise even

less memory than [24] (we use O(min(M,N)) space for

LUT storage vs O(M ×N) for theirs, for an M ×N pixels

image), while keeping the reconstruction errors low.

3. Unifying Demosaicing and Rectification

We propose that combining rectification and debayering

into one will provide improved dataflow as it reduces the in

between buffering requirements, and may lead to improved

accuracy. This is because both debayering and rectifica-

tion can be interpreted as interpolation steps, and both these

steps aren’t perfectly lossless. In that scenario, performing

one lossy, joint debayering+rectification step can be better

than performing those two lossy steps, one after another, es-

pecially if our performance on both these tasks is as good

as the existing methods for each task.

We start off by decoupling the three channels and per-

forming rectification on each channel separately through

one forward splatting pass. A Lookup Table informs the

destination location of the splatting and a decay functions

weighs the splatting to neighboring pixels in a set of output

buffer rows. These get divided out depending on a count

that is accumulated by the splatting contributions. Then, to

improve the rectification result, we use the information of

the green channel to improve the results of the blue and red

channels, taking inspiration from the method proposed by

[7]. This allows us to improve the reconstruction in areas

with high frequency, such as sharp edges.

3.1. Implementation Overview

We implement rectification using a forward mapping

based approach. Not only does this allows us to simplify

the ordering of incoming stream of input pixels, it makes it

easier for us to perform debayering along with rectification

in one go on the stream of pixels, since they are ordered

properly. It also allows us to map the input pixels as they

come, and then discard them, allowing minimal buffering at

the input side. For the output image, we need to buffer a

few rows; the number depends on the extent of image dis-

tortion introduced by the rectification mapping. For most

of the cases of stereo rectification that we’ve encountered,

the maximum width of the output buffer does not exceed 50

rows. We present the algorithm flow in Figure 3, and lay

out the complete algorithm in Algorithm 1

3.2. Look Up Table compression

We note that the LUT compression is important because

the full look up table size grows with the size of the im-
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Bayer Image
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Forward Mapping
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Debayered + Rectified 
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Ch == R

Ch == B

Ch == G

Figure 3: Proposed algorithm architecture

Algorithm 1 Forward mapping based debayering and recti-

fication

for each row in input image do

for each pixel, (xi, yi), in input row buffer do

The color channel at (xi, yi) in the bayer pattern: c

Find polynomial coefficients Px = LUTx[xi], Py =
LUTy[xi]
Compute output coordinates: xo = Px(yi), yo =
Py(yi)
Splat to the neighbourhood of (xo, yo), but only in

the channel c

end for

if Top row in output buffer was not splatted to then

Normalise row, adjust the values in 3 channels, and

pop it out

else

Do nothing

end if

end for

age. We compress LUT using a polynomial curve fitting

scheme. In the most general setting, a LUT is the value of

the function f(xin, yin) at discrete points xin, yin, which

are the coordinates of the pixels in the input image. To

perform LUT compression, we assume that the output y

coordinate, (yout) depends only on the input y coordinate

(yin) as an nth order polynomial function of yin: yout =
a0+a1·yin+a2·y

2
in...an·y

n
in. These coefficients will then be

a function of Xin, the input x coordinate. We store the coef-

ficients in a table whose size is max(Xin) For compression

of the x coordinate LUT, we assume that even the output x

coordinate xout depends on the input y coordinate, yin, as

a nth order polynomial, whose coefficients depend on Xin,

and can be found as above. We have assumed here that

max(Xin) < max(Yin). If that’s not the case, then we can

flip the values and coefficient dependencies to be on xin and

yin, instead of on yin and xin, respectively. This way, we

will be able to compress the LUT from size (xmax ∗ ymax)
to (2 ∗ min(xmax, ymax) ∗ (n + 1)), where n is the order

of the polynomial we use for curve fitting. For a full HD

image (1080x1920), with even a 6th order polynomial, we

see the memory footprint decrease by > 100x, with min-

imal increase in the computational expense for calculating

Figure 4: Illustration of splatting mechanism. Note that we

splat each pixel only to it corresponding channel in the out-

put image

the locations in the output image.

3.3. Splatting

We use a simplified version of the approach taken by

[42], and [5] to define an isotropic splatting function, since

computing the parameters for an anisotropic gaussian dis-

tribution at each pixel will be too computationally intensive

for the demands of real-time processing on FPGAs. The

splatting function, which describes how the a pixel’s inten-

sity contributes to the intensities of pixels in its neighbour-

hood, is defined as follows: For all pixels, Po in the neigh-

bourhood N(P
′

o) of pixel P
′

o, we can describe the contribu-

tion of Po to the intensity of P
′

o as

S(P
′

o, Po) = IPo
∗ f(d(Po, P

′

o)) (1)

where IPo
is the intensity of the pixel at location Po, f(.)

is the fall-off function, which describes the variation in the

contribution as a function of distance, d(.).
Once we have the contribution of all neighbouring pix-

els, to the intensity at pixel P
′

o, we normalize by dividing

with the weights assigned to each of the neighbour’s contri-

bution. This can be expressed as follows:

IP ′

o

=

∑
Po∈N IPo

∗ f(d(Po, P
′

o))∑
Po∈N f(d(Po, P

′

o))
(2)

We tested functions of the form f(d) = e−(dp) and f(d) =
1

1+dp , for varying exponents p, and in section 4.2, we show

how varying the functional forms affected the reprojection

performance.
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3.4. Rectification

The rectification step is automatically accounted for in

the splatting destination. The decoded LUT table provides

the destination pixel address to where the weighted values

need to to be splatted to, and as such, there is no need for

additional interpolation.

3.5. Debayering

To perform debayering, we start with the assumption that

the channels can be decoupled, and each channel is debay-

ered and rectified together independently. After getting an

initial estimate of the channels, we correct our estimates for

each channel by using the intensities of the other channels,

in a fashion similar to the method proposed by [7] Since

each channel is being filled out by the same input pixel, we

can perform this correction as we are pushing the rows out

of the buffer. This ensures that each pixel of the output im-

age stream is coming out debayered and rectified.

3.6. Dataflow

The major novelty of Splatty manifests itself in the

dataflow optimization of the algorithm that lends itself to

streaming processing. Image streams are generally trans-

mitted as pixel rows, which are buffered into row buffers.

Our method operates sequentially on pixels as they are

incoming, directly deriving forward mapping coordinates

through the polynomial LUT decoding. The LUT mem-

ory footprint is of order N × O × B × 2, where N is the

image height, O is the polynomial order and B is the coef-

ficient bit-depth. The decoding of the LUT is accomplished

through a decoding block, which evaluates the polynomial

at the pixel location. Using the destination pixel coordi-

nates, a distance calculation block is used to calculate ei-

ther the L1 or L2 distance norm. This gets passed to a

decay function that calculates the splatting coefficient for

the neighboring pixels, which in turn multiply accumulate

the results in the output buffer. Once the output row has

been completely contributed to, a row state releases the row.

This implies that the number of output buffer rows needed

is equal to the largest vertical remapping difference per row

defined by the LUT. As this can be precomputed after a

camera calibration, logic synthesis and architecture can be

optimally adapted. This architecture lends itself to pipelin-

ing and block parallelism that scales due to the eliminated

data dependency issue that is present with a backward map-

ping approaches.

4. Results

4.1. Look Up table compression

In order to find the polynomial order which best fits

the rectification maps, we find the mean squared error

Figure 5: Mean squared Reconstruction Error vs polyno-

mial order

distance between the values predicted by the polynomial-

compressed rectification maps and the uncompressed maps

for all pixels in the input image for each polynomial order.

This way we can find the smallest order polynomial which

fits the mapping well (i.e. which has MSE below a thresh-

old, which we set to 1e-10).

Once we find the polynomial coefficients which best fit

the mapping, we don’t have to compute them again till we

change the mapping itself. Therefore, the polynomial com-

pression of the Look Up Table needs to happen only when

we’re calibrating the system.

In Figure 5, we present the mean squared reconstruction

error as a function of the order of polynomial used for poly-

nomial curve fitting. We observe that a 6th order polyno-

mial is sufficient for compression of LUT for this type of

rectification. For orders greater than 6, we see that the er-

rors do not decrease, and hence, in order to be as memory

efficient as we can, we use order = 6.

4.2. Splatting Function

For our splatting function defined in Equation 1, we vary

the falloff function f and the distance metric between two

pixels, and choose the parameters which yield the highest

average PSNR scores on the Kodak dataset [8].

For each value of any parameter, we find the average

PSNR over all the possible values of the other parameters,

over all images in the dataset. From these, the value of the

parameter with the highest PSNR value is chosen. We show

the results in Figure 6. From the figure, we find that the

optimal splatting function would look like the following:

S(P
′

o, Po) = IPo
∗ exp(−‖Po − P

′

o‖
4
1) ∀Po ∈ N8(P

′

o)
(3)

where ‖.‖1 is the l1 norm, and Nk is the set of k nearest

neighbours.
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Figure 6: Variation of Average PSNR scores as we modify

different parameters in the splatting function

4.3. Debayering

Since most of the debayering algorithms in use have been

proposed for the general CPU+GPU architecture, we com-

pare them with our C++ implementation in Table 1, compar-

ing their reconstruction accuracy (via Peak Signal to Noise

Ratio values) on the Kodak Images Dataset [8], along with

the memory usage as a function of the image size, and the

effective number of passes that each algorithm takes to pro-

duce the final output. The last two metrics are important,

since multi-pass algorithms which need the full intermedi-

ate images in memory to produce outputs cannot be used

effectively in a pipelined setting, where we would want to

buffer the data, and use as few input and intermediate rows

to produce an output row as we can. Because of this rea-

son we only present the PSNR vs passes and memory us-

age order-of-magnitude for spatial domain based demosaic-

ing algorithms, and skip the frequency domain and neural

network based algorithms, since passes and memory us-

age order-of-magnitude make little sense in those scenar-

ios. We also provide a more thorough comparison between

all the different algorithms, by looking at average PSNR

score on Kodak dataset vs the memory usage for process-

ing 1920x1080 images, in Figure 8. The results show that

our algorithm is better than the existing single pass algo-

rithms, and some of the multi-pass algorithms ([40]), while

being orders of magnitude more memory efficient than ev-

ery other algorithm.

In the interest of space, we show the qualitative results

from our algorithm and [31] on the complete Kodak dataset,

and several close ups, in the supplementary material. The

qualitative results show that our algorithm produces fewer,

or about the same visual artifacts in high frequency regions

(sharp edges) as the other approach ([31]).

Algorithm Avg. PSNR (dB) Num Passes Memory

Bilinear 30.889 1 O(mn)
Cnst. Hue 33.259 2 O(mn)

Malvar 34.337 1 O(mn)
Li 34.388 2 O(mn)

Kimmel 35.61 2 O(mn)
Hamilton 36.9 2 O(mn)
Gunturk 35.8 2 O(mn)
Proposed 34.937 1 O(min(m,n))

Table 1: Debayering performance of various algorithms on

Kodak Dataset, measured by PSNR in decibels, the effec-

tive number of passes to produce the output, and the order

of memory consumed.

4.4. Rectification

To test our algorithm’s rectification performance in a real

world setting, we use a series of images from a stereo cam-

era pair introduced in [33], and test our algorithm’s perfor-

mance on performing stereo rectification. As a implementa-

tion reference, we created a pipeline that uses the works by

([31], [16], and [41]), implemented in the OpenCV library

debayering and rectification functions. We also use [16] to

create our uncompressed LUT. The rectified outputs from

the reference pipeline and from our Splatty algorithm are

showing in Figure 7. From the qualitative results from Fig-

ures 7 along with the reconstruction errors in Figure 5 we

can see that our rectification is on par with the standard rec-

tification algorithm in use today ([16]), having a variation

of less than 1e-10 in RMSE between pixel locations calcu-

lated by [16] and ours, even though we use a fraction of the

memory for rectification (as seen from Table 4).

We also present a quantitative comparison between [16]

and our implementation, by comparing their performance

on rectifying radial, tangential and projective distortions,

and their combinations. We use OpenCV’s initUndis-

tortRectifyMap function to create uncompressed LUTs

from lens distortion parameters, which we then invert for

use in forward mapping setting, and [16] to create uncom-

pressed LUTs from projective transformation matrices. We

take a high density checkerboard pattern, apply said distor-

tions, and use both rectification pipelines to undistort the

images, and then compute the mean absolute distance be-

tween corner points in the ground truth and the undistorted

outputs from both pipelines (Table 2). Images generated in

this experiment are present in the supplementary material.

4.5. Memory footprint

To the best of our knowledge, no other algorithm per-

forms joint debayering and rectification in a streaming

based approach. Therefore, we consider multiple rectifi-

cation and debayering algorithms, and create a pipeline by

stacking the most memory efficient rectification and debay-

791



(a) Bayer Input (b) [31] + [41] (c) Our Algorithm

(d) RAW Bayer input (e) [31] + [41] (f) Our algorithm

Figure 7: (a),(d) Raw, unrectified image from right camera of a stereo pair, (b),(e) Debayered, then Stereo Rectified Image

using [31], and [41] (c)Debayered + Stereo Rectified Output from our algorithm, (d)-(f) Close ups from respective images

Distortions\Algorithm Bwd Mapping ([16]) Proposed

Radial 0.8473 0.7177

Radial + Tangential 0.831 0.6998

Tangential 0.4831 0.2021

Projective 0.7678 0.9013

Average 0.7323 0.630225

Table 2: Mean Absolute Error in corner detection after rec-

tifying distortions using backward mapping based approach

([16]) and our forward mapping based approach

ering algorithms together. Since many of the debayering

algorithms are multi-pass algorithms which cannot work ef-

ficiently in a buffering setting, it is infeasible to implement

them on FPGAs and compare their memory utilisation di-

rectly. We present a theoretical estimate on the memory

utilisation of each algorithm, taking into account only the

memory needed to store the input, output (as unsigned 8

bit integer values) and intermediate stages or LUTs (if any)

(as float32 values), and buffering when possible, to high-

light the feasibility of each algorithm for use on an edge

compute device. We then show the approximate usage for

processing a 1920x1080 image for non-deep-learning based

methods in Table 4. In order to also compare the recent

Name BRAM DSPs FF LUT

Splatty 266 63 136954 113436

ZU15EG Total 1488 3528 682560 341280

Utilization % 17 1 20 33

Table 3: Splatty Implementation Resources on a Xilinx

ZU15EG FPGA

deep learning based demosaicing methods, we consider the

memory usage of storing the parameters, and any interme-

diate feature maps that need to be stored to produce output

at inference time (for eg., feature maps used in skip con-

nections). We compute the memory usage for these meth-

ods and present a plot of demosaicing + rectification per-

formance (in terms of PSNR scores) vs memory utiliza-

tion for processing 1920x1080 image, in Figure 8. We also

show the total on-chip memory available on a commonly

used reference FPGA, the Xilinx Ultrascale+ ZU15EG, and

the commercially available FPGA with the largest amount

of on-chip memory, the Xilinx Virtex Ultrascale+ VU19P.

The algorithms on the right of these lines will need to store

their parameters/intermediate outputs onto off-chip mem-

ory, which is a hinderance in real-time systems, since I/O

from off-chip memory is slow. We validate the algorithm

using High-Level-Synthesis (HLS) tools for synthesized

and routed RTL on a Xilinx ZU15EG FPGA. The resource

utilization is shown in Table 3, which delivers an overall

throughput of 16FPS and can accommodate up to 3 full

1080p pipelines on a single device. No off-chip memory

or UltraRAM is used for this implementation and the video

streams are implemented using an AXi4-Stream. Our al-

gorithm takes 4x less memory than the next most efficient

combined, debayering and rectification pipeline, and per-

forms better than the most memory-efficient debayering al-

gorithms, evident from the PSNR scores in Table 1. This

proves that for edge scenarios, where efficiency and accu-

racy need to be balanced, our algorithm is the best choice

for debayering and rectification preprocessing steps.
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Figure 8: Memory Utilization by a theoretical debayering + rectification pipeline, constructed from various debayering

algorithms and the most efficient rectification algorithm considered [34]

Rectification Debayering

Bwd Mapping 8100

Bilinear 15.12

Malvar [31] 15.12

Smooth Hue [7] 15.12

Oh, Kim 2044.72
Hamilton [23] 75

Gunturk [14] 15693

Junger et al. 2120.63
Kimmel [27] 14175

Li, Orchard [40] 35.63

Best 2044.72 Best 15.12

Rectification + Debayering Best 2059.84

Ours 513.00

Table 4: Theoretical estimates of memory consumption of

different Debayering and Rectification algorithms, while

processing a 1920x1080 pixels image, in kilobytes

5. Discussion

The results provide a valuable justification that rectifica-

tion and demosaicing performance can be maintained de-

spite the drastic gains in memory and dataflow efficiency.

Firstly, we highlight that the splatting process is largely de-

pendent on the splatting radius and decay function. Sharper

fall-offs yield crisper images, but are slightly more expen-

sive to compute in the decay function block, and larger

splatting radii eliminate holes in more extreme rectifica-

tion cases, but also comes at the cost of needing to splat

to more pixels, that is hardware expensive. The LUT re-

sults are promising, and it can be concluded that we can

achieve minimal reconstruction errors using even a low or-

der polynomial approximation. Also, since our rectification

method relies only on a general LUT to model distortions,

we can incorporate more complex lens models, or refine a

LUT created from simpler models to improve rectification

accuracy. Future research may include color channel cou-

pling to be adopted as a terminal stage of the pipeline and

additional filtering operations to be incorporated within the

decay function. While the works that outperform Splatty in

terms of PSNR, all use more complex and multi-pass demo-

saicing, these concepts can in future also be applied to the

post-splatting operations of Splatty, to similarly, improve

output qualities.

6. Conclusions

We present a novel forward mapping algorithm that

merges two common image preprocessing steps - demo-

saicing and rectification, for improved streaming feasibil-

ity. Embedded camera systems often are limited by their

throughput capabilities due to hardware resource limita-

tions, namely memory and computational blocks. We have

shown that it is possible to maintain state of the art- de-

mosaicing and rectification results by reducing the memory

footprint to O(min(m,n)) from O(mn) by merging these

steps. We have also validated a polynomial rectification

LUT that maintains remapping accuracies to 1E-10 RMSE.

We hope that enabling efficient preprocessing through uni-

fied splatting will allow future systems to increase resolu-

tion and frame-rate operations while reducing hardware re-

sources.
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