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Abstract

We present a meta-learning based generative model

for zero-shot learning (ZSL) towards a challenging setting

when the number of training examples from each seen class

is very few. This setup contrasts with the conventional ZSL

approaches, where training typically assumes the availabil-

ity of a sufficiently large number of training examples from

each of the seen classes. The proposed approach leverages

meta-learning to train a deep generative model that inte-

grates variational autoencoder and generative adversarial

networks. We propose a novel task distribution where meta-

train and meta-validation classes are disjoint to simulate

the ZSL behaviour in training. Once trained, the model can

generate synthetic examples from seen and unseen classes.

Synthesize samples can then be used to train the ZSL frame-

work in a supervised manner. The meta-learner enables

our model to generates high-fidelity samples using only a

small number of training examples from seen classes. We

conduct extensive experiments and ablation studies on four

benchmark datasets of ZSL and observe that the proposed

model outperforms state-of-the-art approaches by a signifi-

cant margin when the number of examples per seen class is

very small.

1. Introduction

The traditional machine learning models for supervised

classification assume the availability of labeled training ex-

amples from all the classes. This requirement is unrealistic

and is rarely true in many real-world classification problems

that consist of an ever-growing set of classes. Zero-Shot

Learning (ZSL) [10, 39] is a learning paradigm aimed at

addressing this issue and learns to predict labels of inputs

from the previously unseen classes. In particular, ZSL as-

sumes that, during training, we have access to labeled exam-

ples from a set of seen classes, and the test examples come

from unseen classes, i.e., classes that were not present dur-

ing training. The ZSL methods typically accomplish learn-

ing using the class attributes/descriptions of the seen and
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unseen classes that help bridge the two.

Recent work on ZSL has shown the effectiveness of deep

learning-based approaches [39, 58, 20, 5, 44, 52, 23, 4, 59,

22, 6, 50]. However, these methods usually assume that

a large number of labeled example from each of the seen

classes are available to train the model. In practice, it may

often be challenging and time-consuming to collect a large

number of labeled examples from the seen classes; some-

times, very few (say 5-10) labeled examples per seen classes

may be available. Recently, meta-learning based frame-

works [9, 48, 33] have addressed the issue of labeled data

scarcity and have shown promising results for supervised

few-shot learning problems[31, 34, 42, 17, 21]. The basic

idea in meta-learning is to train a model on various learn-

ing tasks, such that it can solve a new learning task using

only a small number of training samples from each task.

However, the meta-learning framework cannot handle the

scenario if no labeled data is available for the unseen classes

(new tasks). In this work, we propose incorporating the ZSL

setup in meta-learning to handle this issue.

The recent works on ZSL, generative models have gained

a significant attention [44, 52, 5, 24, 45] and have shown

promising results for ZSL as well as for the more chal-

lenging setting of ZSL called generalized zero-shot learn-

ing (GZSL). In GZSL, the test inputs may be from seen as

well as unseen classes. The success of generative models

for ZSL leverages over recent advances in deep generative

models, such as VAE [18] and GAN [11, 2]. These gener-

ative models [44, 52, 5, 24, 45] can generate the synthetic

examples from unseen and seen classes (given their class

attributes), using which we can train a classifier, which es-

sentially turns the ZSL problem into a supervised learning

problem. The generative approach is appealing but suffers

from several shortcomings: (i) These models do not mimic

the ZSL behavior in training; therefore, there may be a large

gap between the original and generated samples’ quality.

(ii) These methods require a significant amount of labeled

data, and (iii) GAN based models generate high-quality

samples but suffer from mode collapse. In contrast, VAE

based models generate diverse samples, but there is a large
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gap between generated samples and the actual samples.

We develop a meta-learning-based ZSL framework that

integrates a conditional VAE (CVAE) and a conditional

GAN (CGAN) architecture to address the issues mentioned

above. We divide the dataset into task/episode where, un-

like standard meta-learning, each task has disjoint support-

set and query-set classes. The disjoint classes help to mimic

the ZSL behaviour during training. The joint architecture

helps to overcome the mode collapse problem and generates

diverse samples for the seen and unseen classes. The aug-

mentation of the joint architecture of VAE-GAN, with the

meta-learning model, helps to train the model even when

very few (say 5 or 10) samples per seen class are available.

Once trained, the model can synthesize unseen class sam-

ples. These synthesized samples can be used to train any su-

pervised classifier, essentially turning ZSL into a supervised

learning problem. Our generation based framework is also

ideal for the generalized ZSL problem [23, 44, 3, 15, 45, 54]

where the test inputs can be from seen as well as unseen

classes.

Developing a meta-learning approach for ZSL is chal-

lenging. In the supervised meta-learning setup [9, 48, 33],

we have meta-train, meta-validation, and meta-test. The

meta-train and meta-validation share the same classes,

while meta-test classes are disjoint. Also, the meta-test

contains a few labeled samples for each unseen class. In

the ZSL setup for the meta-test, we do not have any la-

beled samples but have access only to the class attribute

vector. Contrary to the standard meta-learning approach,

the meta-train and meta-validation classes are disjoint in the

proposed ZSL setting. The disjoint class simulates the ZSL

setup during training. For the task distribution of the data,

we follow the N-way, K-shot setup proposed by [48] and

trained our model under Model-Agnostic Meta-Learning

(MAML) [9] framework that adapted to the ZSL setting.

The main contributions of the proposed approach are sum-

marized as follows:

• We propose a meta-learning based framework for ZSL

and generalized ZSL problem. We train the joint VAE-

GAN model with a meta-learner’s help to generate di-

verse, high-quality samples that yield superior ZSL

prediction accuracy.

• We propose a novel task distribution different from the

traditional meta-learning model [9, 48] that mimics the

ZSL setup in training and helps generate robust unseen

class samples.

• Our framework can learn even when only a few labeled

examples (say 5 or 10) are available per seen class. On

the standard datasets, our approach shows state-of-the-

art results against the strong generative baselines for

the ZSL and GZSL.

2. Related Work

Some of the earliest approaches for ZSL are based on

learning a mapping from visual space to semantic space.

During the test time, they use the learned mapping to predict

the class-attributes for unseen examples and then do a near-

est neighbor search to predict the class label [20, 27, 39].

Similarly, some methods also use transfer learning between

seen classes and unseen classes. They represent the parame-

ters of unseen classes as a similarity weighted combination

of the parameters of seen classes [35, 58]. All these ap-

proaches rely on the availability of plenty of labeled data

from the seen classes and do not perform well in the GZSL

setting.

Another popular approach to ZSL focuses on learning

the linear/bilinear compatibility function between the vi-

sual and semantic spaces. Methods, such as ALE [1],

DEVISE [10], ESZSL [35],[43], learn a relationship be-

tween the inputs and class-attributes via a linear compati-

bility function, whereas SAE [19] adds an autoencoder loss

to the projection that encourages re-constructability from

the attribute space to the visual space. Some of the ap-

proaches [41, 55, 30] assume that all test inputs of unseen

classes are present during training and use these unlabeled

examples also in training. This setting is referred to as

transductive setting because of the extra information model

leads to improve performance. The transductive assump-

tion is often not realistic since the test inputs are usually not

available during training. The attention-based approach is

also explored in [14, 60], and these approaches work well

for the fine-grain datasets. Paper [12, 23] are calibration

based approach and [12] use metric based meta-learning for

the feature calibration.

The Generalized ZSL (GZSL) problem is a more realis-

tic and challenging problem as compared to standard ZSL.

Unlike standard ZSL, in GZSL, the seen (training) and un-

seen (test) classes are not disjoint, which makes ZSL harder

since the classifier is biased towards classifying each input

(seen/unseen class) as belonging to the seen class. Most of

the previous approaches perform well in standard ZSL but

fail to handle biases towards seen classes [1, 35, 19, 10].

Recently, generative models have shown promising results

for both ZSL and GZSL setting. These approaches synthe-

size examples from both seen and unseen classes to train

a supervised classifier, which somewhat mitigates the bias

towards seen classes [47, 5, 24, 8, 52, 36, 13, 30, 37].

Most of the recent generative models for ZSL are based

on VAE [40] and GAN [11]. Among the generative mod-

els, [24, 44, 37, 50, 46, 56] are based on VAE architectures,

while [57, 26, 52, 8, 5, 13, 45, 29, 28, 25, 16] use adversarial

learning for sample generation based on the class-attribute.

The current generative approaches are unable to mimic ZSL

behaviour in training. This limits the model’s performance;

also, they require significant labeled data from seen classes.
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In contrast, our proposed model Meta-VGAN leverage on

the meta-learning framework can easily learn using very

few labeled examples (as few as 5-10) from the seen classes.

Also, disjoint task distribution helps to mimic ZSL be-

haviour in training. Our proposed model mainly focuses

on ZSL/GZSL when very few labeled examples from seen

classes are available. In contrast, we also conduct exper-

iments using all examples from seen classes and observe

that the proposed approach outperforms all recent state-of-

the-art methods.

3. Proposed Model

3.1. Problem Setup
In ZSL, we assume that classes are divided into a disjoint

set of seen (train) and unseen (test) classes. Only seen class

examples are present during training, while the test set con-

tains examples form unseen classes. Let S and U denote the

number of seen/train and unseen/test classes, respectively.

In ZSL, we also assume having access to class-attribute vec-

tors/descriptions A = {ac}
S+U
c=1 , ac ∈ R

d for each of the

seen and unseen classes. Our ZSL approach is based on

synthesizing labeled features from each (unseen/seen) class

using the trained generative model given the class attribute.

Later, synthesized label features can be used to train a clas-

sifier; essentially, this turns the ZSL problem to a standard

supervised learning problem.

Task-Distribution: We use the MAML [9] as the base

meta-learner. Note that unlike few-shot learning, in ZSL, no

labeled data are available for the unseen classes. Therefore

we also need to modify the episode-wise training scheme

used in traditional MAML. We have train and test samples

for ZSL where train and test classes are disjoint, also each

class are associated with an attribute vector. The training

data further divide into train-set and validation-set. Meta-

learning further divides the train-set into a set of tasks fol-

lowing the N-way and K-shot setting, where each task con-

tains N classes and K samples for each class. In particular,

let P (T ) be the distribution of tasks over the train-set i.e.

P (T ) = {τ1, τ2, . . . , τn}, τi is a task and τi = {τvi , τ
tr
i }.

The set τvi and τ tri are in the N -way K-shot setting. How-

ever, unlike the traditional meta-learning setup, the classes

of τvi and τ tri are disjoint. The disjoint class split simulate

the ZSL setting during training and helps to generate high-

quality unseen class samples.

3.2. Motivation for Zero­Shot Meta­Learning

The standard meta-learning [9, 48, 38, 33] can quickly

adapt to novel tasks using only a few samples. As demon-

strated in prior work [48, 38], even without any labeled

data form the novel classes, the meta-learning models can

learn robust discriminative features. These works have

also shown that sometimes zero-gradient step (without fine-

tuning) model performs better than the fine-tuned archi-

tecture (refer to Table 1 in [48]). Another recent work

[32] demonstrates that the meta-learning framework is more

about feature reuse instead of quick adaption. They have

shown that a trained meta-learning model can provide a

good enough feature for the novel classes that secure high

classification accuracy without any fine-tuning. This moti-

vates to a train of a generative model (VAE, GAN) in the

meta-learning framework to synthesize the novel class sam-

ples. Our approach is similar in spirit to [32]. The main dif-

ference is that (i) the proposed approach learns a generative

model instead of discriminative, and (ii) Our problem set-

ting is ZSL as opposed to a few-shot classification. In par-

ticular, the proposed approach’s objective is to solve ZSL by

generating novel class samples, while the goal in [32] is to

learn discriminative features that are suitable for (few-shot)

classification.

3.3. Meta Learning­based Generative Model

The proposed generative model (Meta-VGAN), shown

in Fig. 1, is a combination of conditional VAE (CVAE) and

conditional GAN (CGAN). The model has shared parame-

ters between the decoder and the GAN generator. The de-

coder’s reconstructed samples are also fed to the discrim-

inator; this increases the decoder’s generation robustness.

The decoder implicitly also works as a classifier. The Meta-

VGAN consists of four modules - Encoder (E), decoder

(De), Generator (G), and Discriminator (Ds). Each of these

modules is augmented with a meta-learner. The E and De
modules are from CVAE, whereas G and Ds modules are

formed CGAN. Here De and G share common network

parameters over different inputs. Unlike other generative

models for ZSL [52, 8], we do not need a classifier over the

G module, since De ensure the separability of the different

classes generated by G. Let the parameters of the module E
and Ds be denoted by θe and θd and the shared parameter of

De and G be denoted by θg . In Fig.-1, we have shown the

module-wise overall structure of the proposed model. The

objective function of CVAE is defined as:

LV (θe, θg) =−KL(qθe(z|x,ac)||p(z|ac))

+ Ez∼qθe (z|x,ac)[log pθg (x|z,ac)]
(1)

Here ac ∈ R
k is the attribute vector of the class for the

input x ∈ τ tri , and τ tri ∈ τi. The conditional distribution

qθe(z|x,ac) is parametrized by the encoder E(x,ac, θe)
output, the prior p(z|ac) is assumed to be N(0, I), and

pθg (x|z,ac) is parametrized by the decoder De(z,ac, θg)
output. Similarly, for CGAN, the discriminator objective

LD and generator objective LG are

LD(θg, θd) =E[Ds(x,ac|θd)]− E
z∼N(0,1)[Ds(G(z,ac|θg),ac|θd)]

− E
z∼N(0,1)[Ds(De(z,ac, θg)),ac|θd)]

(2)

LG(θg, θd) = Ez∼N(0,I)[Ds(G(z,ac|θg),ac|θd)] (3)
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Figure 1: The overall architecture for our Meta-VGAN Zero Shot Learning model

Next, we adapt the above objective to the MAML frame-

work over the proposed task distribution (Sec. 3.1). Our

approach samples a task τi from the task distribution P (T )
i.e. τi ∼ P (T ) where τi = {τvi , τ

tr
i }. The τ tri is used to

train the inner loop of the joint objective and τvi is used to

update the meta-objective. The joint objective of the CVAE

and generator G for the task τi is defined as:

lV G
τi

= min
θeg

(

−LV (θe, θg) + L
G(θg, θd)

)

(4)

where θeg = [θe, θg] collectively denotes all the parame-

ters of E and G/De. The discriminator Ds considers the

samples generated from the G and De as fake samples and

samples obtained from τi as real samples. Its objective for

each task τi is given as:

lDτi = max
θd
LD(θg, θd) (5)

In Eq. 4-5 τi is τ tri for the inner loop and τvi for the global

update. A brief description is provided below. The meta-

learner (inner loop) update are performed on τ tr ∈ τi. Em-

pirically, for the ZSL setting, which is considerably harder

than standard meta-learning, we observe that updates over

individual tasks are unstable during training (because of

GAN). To solve this problem, unlike the standard meta-

learning model where updates are performed on each task,

we update the meta-learner over a batch of tasks, i.e., the

loss is averaged out over the set of tasks. Therefore, our

inner loop objective is given by:

min
θeg

∑

τtr
i

∈τi∼P (T )

lV G
τtr
i

and max
θd

∑

τtr
i

∈τi∼P (T )

lDτtr
i (6)

The inner loop update for Eq. 4, i.e. joint objective of CVAE

and G is performed as:

θ′eg ← θeg − η1∇θeg

∑

τtr
i

∈τi∼P (T )

lV G
τtr
i
(θeg) (7)

Similarly the inner loop update for Eq. 5 i.e. Ds’s objective

is performed as:

θ′d ← θd + η2∇θd

∑

τtr
i

∈τi∼P (T )

lDτtr
i
(θd) (8)

The optimal parameters obtained by meta-learner (θ′eg and

θ′d) are further applied on the meta-validation set τvi . Note

that, since classes of τvi and τ tri are disjoint, in the outer

loop the optimal parameters θ′eg and θ′d are applied to novel

classes. With these parameters, if the model can generate

novel class samples that fool Ds, it indicates that the model

has the ability to generate novel class samples. Otherwise,

the outer loop is updated, and θ′eg and θ′d are considered the

initializer for the model on the outer loop. The outer loop

objective for the Eq. 4 and Eq. 5 is given by:

min
θeg

∑

τv
i
∈τi∼P (T )

l
V G
τv
i
(θ′eg) & max

θd

∑

τv
i
∈τi∼P (T )

l
D
τv
i
(θ′d) (9)

The global update (outer loop) for the Eq. 9 is:

θeg ← θeg − η1∇θeg

∑

τv
i
∈τi∼P (T )

lV G
τv
i
(θ′eg) (10)

θd ← θd + η2∇θd

∑

τv
i
∈τi∼P (T )

lDτv
i
(θ′d) (11)

The algorithm 1 represents the training procedure of the

proposed Meta-VGAN model.
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3.4. Zero­Shot Classification using Synthesized Ex­
amples

Once the Meta-VGAN model is trained, we synthe-

size the examples (both unseen or seen classes) using

their respective class attribute vectors passed to the genera-

tor/decoder module (Gθdg). The generation of unseen class

examples is done as x̂ = Gθdg(z,ac). Here z is sampled

from a unit Gaussian i.e. z ∼ N(0, I). The sampled z is

concatenated with the class-attributes ac and passed to the

decoder as input, and it generates x̂, i.e., feature vectors of

input from class c. These synthesized unseen class exam-

ples can then be used as labeled examples to train any super-

vised classifier (e.g., SVM/Softmax). In the GZSL setting,

we synthesize both the seen and the unseen class examples

using the class attributes and train an SVM or softmax clas-

sifier on all these training examples. The Experiments sec-

tion contains further details of our overall procedure.

Algorithm 1 Meta-VGAN for ZSL

Require: p(T ):distribution over tasks

Require: η1, η2: step-size hyperparameters

1: Randomly initialize θe, θg, θd
2: while not done do

3: Sample batch of tasks Ti ∼ p(T ); where, Ti =
{T tr

i , T v
i } such that T tr

i ∩ T
v
i = φ

4: for all Ti do

5: Evaluate ∇θeg l
V G
T tr
i

(θeg)

6: Evaluate ∇θd l
D
T tr
i

(θd)

7: Compute adapted parameters: θ
′

eg = θed −

η1∇θeg l
V G
T tr
i

(θeg)

8: Compute adapted parameters: θ
′

d = θd +
η2∇θd l

D
T tr
i

(θd)

9: Update θeg ← θeg − η1∇θeg

∑

Ti∼p(T ) l
V G
T v
i
(θ

′

eg)

10: Update θd ← θd + η2∇θd

∑

Ti∼p(T ) l
D
T v
i
(θ

′

d)

Dataset Attribute/Dim #Image Seen/Unseen Class

AwA2[51] A/85 37322 40/10

CUB[49] CR/1024 11788 150/50

SUN[53] A/102 14340 645/72

aPY[7] A/64 15339 20/12

Table 1: The benchmark datasets used in our experiments,

and their statistics.

4. Experiments

We conduct experiments on four widely used bench-

mark datasets and compare our approach with several state-

of-the-art methods. Our datasets consist of Animals with

Attributes (AwA) [51], aPascal and aYahoo (aPY) [7] ,

Caltech-UCSD Birds-200-2011 (CUB- 200) [49] and SUN

Attribute (SUN-A) [53]. The Table 1 shows description

about the datsets.The details description of the datasets are

provided in the supplementary material. We report our re-

sults on ZSL evaluation metrics proposed by [51]. In par-

ticular, for GZSL, the harmonic mean of the seen and un-

seen class accuracies is reported, while for ZSL, the mean of

the per-class accuracy is reported. These evaluation metrics

helps to evaluate the model in an unbiased way. ResNet-101

features are used for all the datasets. All the baselines mod-

els also use the same features and evaluation metrics. Due

to space limitations, further details of the implementation

and experimental setting are provided in the supplementary

material.

4.1. Comparison with ZSL baselines

To prove our proposed model’s efficacy, we create a

baseline for a few examples per seen class using various

recent state-of-the-art models. We follow the same experi-

mental settings and the same number of samples for all the

baseline as we used in the proposed model.

• CVAE-ZSL [24]: CVAE-ZSL is a conditional vari-

ational autoencoder based generative model converts

a ZSL problem into a typically supervised classifica-

tion problem by using synthesized labeled inputs for

the unseen classes. This approach generates the sam-

ples conditioned on the unseen class attributes, using a

CVAE. The generated samples are used to train a clas-

sifier for the unseen classes. For the GZSL setting,

both seen and unseen class samples are generated, and

the classifier is trained on the union set.

• GF-ZSL [44] GF-ZSL, a state-of-the-art method, is an

extended version of the CVAE-ZSL model, where it

uses a feedback mechanism in which a discriminator

(a multivariate regressor) learns to map the generated

samples to the corresponding class attribute vectors,

leading to an improved generator.

• f-CLSWGAN [52] f-CLSWGAN uses the

Wasserstein-GAN as a generative model with an

additional classifier associated with the generator.

The classifier increases the class separation between

two classes, while the generator’s goal is to generate

samples that follow the original data distribution

closely.

• cycle-UWGAN [8] This approach uses cycle con-

sistency loss as a regularizer with Wasserstein-GAN,

which helps to reconstruct back semantic features from

generated visual features. Using cycle consistency

loss, it synthesizes more representative visual features

for both seen and unseen classes.

• ZSML [45] Recently ZSML [45] train the GAN in

the meta-learning framework, that helps to generate
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the robust samples for the novel classes. The pro-

posed approach shows a significant improvement over

the ZSML model.

Method N SUN CUB AwA2 APY

CVAE-ZSL [24] 5 49.7 52.8 41.5 21.6

10 51.2 53.5 45.6 21.8

GF-ZSL [44] 5 53.2 56.5 57.4 32.6

10 55.3 56.9 59.2 35.1

cycle-UWGAN [8] 5 45.6 56.8 61.9 36.3

10 45.8 57.2 62.0 38.1

f-CLSWGAN [52] 5 32.6 40.9 59.8 41.4

10 34.5 41.5 62.3 41.9

Ours(Meta-VGAN) 5 59.1 66.9 67.3 48.6

10 60.3 68.8 68.4 49.2

Table 2: Zero-Shot learning (ZSL) results only using five

and ten example per seen classes to train the model

4.2. Results

We train our model and all the baselines using five and

ten examples per seen class. For this experiment, we com-

pare our model with CVAE-ZSL, GF-ZSL, f-CLSWGAN,

and cycle-UWGAN. We consider both the ZSL (test ex-

amples only from unseen classes) as well as generalized

ZSL (test examples from seen as well as unseen classes)

settings. To prove our proposed Meta-VGAN model’s effi-

cacy, we also perform the experiments using all the exam-

ples from seen classes and compare against recent methods

(refer Table-4).

Zero­Shot Learning (ZSL)

For the ZSL setting, we compare our Meta-VGAN with

the state-of-the-art methods on all the datasets in Table 2.

The proposed approach shows a significant improvement

over the baseline methods for all four datasets. We use a

small training set (5 and 10 samples per seen class) to train

the model in all of these experiments. We observe that our

Meta-VGAN model can train the model well using only a

few examples per seen class and significantly better results

than the baselines. The proposed approach achieves the sub-

stantial absolute performance gains by more than 11.1%,

5.4%, 7.2%, and 6.4%, in comparison with the baseline

methods, on CUB, AWA2, aPY, and SUN datasets, respec-

tively for five examples per seen class.

Generalized Zero­Shot Learning (GZSL)

In the GZSL settings, the test input is classified into

the joint class space of the seen and unseen classes, i.e.,

Y = Y S ∪ Y U . The GZSL setting is more practical as

it removes the assumption that test input only comes from

unseen classes. For the evaluation metric, we compute the

harmonic mean [51] of seen and unseen class accuracy’s:

H = 2 ∗ S ∗ U/(S + U), where S and U denote the ac-

curacy of seen classes and unseen classes respectively. We

evaluate our method on three standard datasets and show

the performance comparison with the baseline approach in

Table 3.

To have a fair comparison with the previous state-of-the-

art generative methods, we keep the number of synthetic

samples per class the same. For the baselines, we follow

the same setup as in the original papers and perform ex-

periments in our novel setup when only a few samples per

seen class are available. We perform the experiments in

two settings. In the first setting, we assume that each seen

class has only five samples for training, while in the other

setting, we assume that ten samples are available. In both

cases, our Meta-VGAN method shows the improvements

by notable margins on all the datasets compared to all base-

line methods. Our model achieves the substantial absolute

performance gains in the harmonic mean by 10.8%, 11.9%,

and 3.4% in comparison with the baseline method on CUB,

AWA2, and aPY datasets, respectively.

5. Ablation Study

To disentangle the role of each component of the pro-

posed framework, we conduct a detailed ablation analysis.

We are primarily interested in the following: (i) The perfor-

mance with and without meta-learner. (ii) The performance

in traditional ZSL when the number of examples per seen

class is not very small. (iii) Investigating why meta-learner

helps in improved sample generation and which of the com-

ponents of our model benefit more from meta-learning and

(iv) The effect of disjoint task distribution vs standard task

distribution.

5.1. With and without meta­learning

The proposed model trains the generative model in the

meta-learning framework. To illustrate the contribution of

the meta-learner module, we perform an experiment when

no meta-learning component is present. We trained the

model with and without meta-learner, for CUB and AWA2

datasets, for standard ZSL and GZSL settings. We observe

that a meta-learner’s role in our proposed model is cru-

cial, which helps to train the model very efficiently using

a few examples per seen class. The meta-learner compo-

nent boosts the model’s absolute performance by 7.8% and

6.4% in standard ZSL, while by 9.9% 6.2% in GZSL for

CUB and AWA2 datasets, respectively. Please refer to sup-

plementary material for more detail.

5.2. What if we DO have plenty of training examples
from seen classes?

Our meta-learning-based model is primarily designed for

the setting when the number of training examples per seen

class is very small (e.g., 5-10). We also investigate whether

meta-learning helps when the number of examples per seen

class is not small (i.e., the conventional ZSL setting). In

this experiment, we consider the complete dataset for our
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Method N AwA2 CUB aPY

U S H U S H U S H

CVAE-ZSL [24] 5 16.5 28.7 21.0 50.1 28.1 36.0 19.9 65.4 30.5

10 18.1 29.2 22.3 50.5 28.7 36.5 20.5 65.8 31.2

cycle-UWGAN [8] 5 40.4 43.3 41.8 48.2 33.3 39.4 18.6 64.2 28.8

10 45.5 50.9 48.0 48.3 35.2 40.7 19.6 66.3 30.2

f-CLSWGAN [52] 5 37.8 44.2 40.7 30.4 28.5 29.4 17.2 40.6 24.5

10 40.5 55.9 46.9 34.7 38.9 36.6 21.2 32.2 25.6

GF-ZSL [44] 5 38.2 44.3 41.0 29.4 33.0 31.0 20.2 66.3 30.9

10 41.4 45.9 43.5 35.6 43.5 39.1 20.6 67.8 31.5

ZSML [45] 5 38.4 61.3 47.3 32.9 38.2 35.3 – – –

10 47.8 59.6 53.1 42.7 45.1 43.9 – – –

Ours (Meta-VGAN) 5 44.5 67.5 53.7 51.5 47.8 50.2 24.1 58.9 34.3

10 46.2 73.1 56.6 52.5 49.2 52.1 24.5 59.1 35.3

Table 3: GZSL results when only five and ten examples per seen class are used to train the model. We randomly selected

5/10 samples per class, for examples in the CUB dataset for 150 training classes we have new dataset size 150*(5/10), rest

samples are not used.

experiment; this is essentially a traditional ZSL setting.

We conduct experiments on both standard ZSL and

GZSL setting for CUB and AWA2 datasets, and the re-

sults are shown in Table 4. Using all the examples from

seen classes to train the model, we observe that our model

improves the result with a significant margin compared

to all baseline approaches in both the settings. For the

ZSL setting, our model achieves 9.4% and 2.1% improve-

ment as compared to the state-of-the-art result on CUB

and AWA2 datasets, respectively. Similarly, for the GZSL

setting, the model achieves consistent performance gain

harmonic mean (a more meaningful metric) on CUB and

AWA2 datasets. We observe that all existing baseline meth-

ods show a significant difference in performance between

the two regimes, i.e., using all samples and using only a few

samples. In contrast, our proposed model shows competi-

tive results in both cases. It shows that the existing baseline

approaches are not suitable when the number of seen class

examples is very small.

5.3. Why meta­learning helps and which model
components benefit by it the most?

The meta-learning framework is capable of learning us-

ing only a few samples from each seen class. The episode-

wise training helps the meta-learning framework to adapt

to the new task quickly using only a few samples. In the

zero-shot setup, we do not have the samples of the un-

seen classes; therefore, quick adaption is not possible in

this case. In our proposed approach, we trained the model

such that adaption is based solely on the class attribute vec-

tors. Later, the unseen class attribute vectors can be used

for unseen class sample generation. In the case of adver-

sarial training, the generation quality depends on the qual-

ity of discriminator, generator, and the feedback provided

by discriminator to the generator. The inner loop of the

meta-learner provides reliable guidance (initialization) to

the outer loop. As we know, adversarial training is sensitive

to initialization, in our case, because of the better initializa-

tion model learns the robust parameter. The guided discrim-

inator network is capable of learning the optimal parame-

ters with the help of a very few examples. Therefore dis-

criminator provides strong feedback to the generator. The

guided (better initialized) generator uses this strong feed-

back, and because of its improved power, the generator can

counter the discriminator. The alternating optimization with

the guided generator and discriminator improves the over-

all learning capability of the adversarial network. Similarly,

the meta-learning framework also helps the VAE architec-

ture using the inner loop guidance to initialize the parame-

ter. Therefore the joint framework in the proposed approach

improves the generation quality even though only very few

samples are available per seen class.

We also experiment with the discriminator without meta-

learning. On CUB, this reduces the ZSL accuracy from

70.4% to 65.6%. The performance drop occurs because,

without meta-learning, the discriminator is sub-optimal and

is unable to provide robust feedback to the generator. There-

fore the generator is unable to learn robustly. Also, we ob-

serve that removal of meta-learner from the generator (but

not the discriminator), over CUB dataset, the performance

drops from 70.4% to 68.8%. Through this analysis, we

observe that the meta-learning based discriminator is more

critical than the meta-learning based generator.

5.4. Disjoint task distribution vs. standard task
distribution

The empirical evaluation shows that the proposed dis-

joint task distribution helps to generate robust samples for

the seen/unseen classes. We have disjoint classes between

τ tri and τvi . Therefore, if the inner loop parameter is op-

timal only for the τ tri , it produces a high loss for the τvi .

Consequently, the network tries to learn an optimal param-
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Method Standard Setting Generalized Setting

CUB AwA2 CUB AwA2

U S H U S H

CVAE-ZSL [24] 52.1 65.8 - - 34.5 - - 51.2

cycle-UWGAN[8] 58.6 66.8 47.9 59.3 53.0 59.6 63.4 59.8

f-CLSWGAN [52] 57.3 68.2 43.7 57.7 49.7 57.9 61.4 59.6

GF-ZSL [44] 59.6 69.2 41.5 53.3 46.7 58.3 68.1 62.8

Ours (Meta-VGAN) 70.4 73.2 55.2 48.0 53.2 57.4 70.5 63.5

Table 4: The comparison of our ZSL and GZSL result with the recent state-of-the-art generative model when using all

samples. All the approach follow the same setting proposed by [51]

(a) Use all samples from seen classes to train the model (b) Using 5 examples per seen class to train the model

Figure 2: t-NSE visualization of synthesized features on the CUB dataset for the random 10 classes. We can observe that

using very few training samples the generated data distribution are very close to the case when model use all samples.

eter that minimizes the loss on the meta-train as well as the

meta-validation set. The evaluation of the proposed split

vs. standard split supports our claim. On the CUB and

AWA2 dataset for the ZSL setup, the proposed split shows

the 68.8% and 68.4%, while the standard split shows poor

performance, and we obtained 66.2% and 65.7% mean per-

class accuracy.

5.5. A simpler generative model trained with meta­
learner for ZSL

We also compare with vanilla CVAE trained with meta-

learning (a simple generative model) with the Meta-VGAN.

The results are shown in Table 5, we observe that a com-

plex model (CVAE+CGAN) synthesizes better quality fea-

tures for unseen classes as compared to a simple generative

model. The proposed model outperforms over CVAE based

model for all datasets by a significant margin. Therefore the

joint model has better generalization ability for the feature

generation of the unseen classes.

6. Conclusion

We proposed a novel framework to solve ZSL/GZSL

when very few samples from each of the seen classes are

available during training. The various components in the

proposed joint architecture of the conditional VAE and con-

Datasets Accuracy

5 10

SUN [53] 54.95 56.54

CUB[49] 63.70 65.63

AWA1 [51] 64.20 64.32

AwA2[51] 64.22 64.85

aPY 42.15 42.99

Table 5: ZSL results using vanilla CVAE as generative

model trained with meta learner over the five standard

dataset.

ditional GAN are augmented with meta-learners. The GAN

helps to generate high-quality samples while VAE reduces

the mode collapse problem that is very common in GANs.

The meta-learning framework with episodic training re-

quires only a few samples to train the complete model. The

meta-learners inner loop provides a better initialization to

the generative structure. Therefore, the guided discrimina-

tor provides strong feedback to the generator, and the gen-

erator can generate high-quality samples. In the ablation

study, we have shown that meta-learning based training and

disjoint meta-train and meta-validation classes are the cru-

cial components of the proposed model. Extensive exper-

iments over benchmark datasets for ZSL/GZSL show that

the proposed model is significantly better than the baselines.
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