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Abstract

Understanding the structure of complex activities in

untrimmed videos is a challenging task in the area of ac-

tion recognition. One problem here is that this task usually

requires a large amount of hand-annotated minute- or even

hour-long video data, but annotating such data is very time

consuming and can not easily be automated or scaled. To

address this problem, this paper proposes an approach for

the unsupervised learning of actions in untrimmed video se-

quences based on a joint visual-temporal embedding space.

To this end, we combine a visual embedding based on a

predictive U-Net architecture with a temporal continuous

function. The resulting representation space allows detect-

ing relevant action clusters based on their visual as well as

their temporal appearance. The proposed method is eval-

uated on three standard benchmark datasets, Breakfast Ac-

tions, INRIA YouTube Instructional Videos, and 50 Salads.

We show that the proposed approach is able to provide a

meaningful visual and temporal embedding out of the visual

cues present in contiguous video frames and is suitable for

the task of unsupervised temporal segmentation of actions.

1. Introduction

Research shows that humans usually understand com-

plex activities through the ongoing temporal segmentation

of perceived inputs into meaningful segments [39]. Never-

theless, replicating this behavior in fully automated systems

is a challenging problem as it requires identifying the mean-

ingful steps in a given task and how do they logically relate

to each other. Fully supervised systems have been proposed

to address this, but they rely on large amounts of training

data. Manually annotating this data is especially expen-

sive for temporal video segmentation as this task usually re-

quires a dense frame-based annotation. Weakly supervised

approaches attempt to alleviate this by incorporating the use

(a) Breakfast Actions (BF)

(b) INRIA YouTube Instructional Videos (YTI)

Figure 1: Temporal segmentation of two videos from the

Breakfast Actions [13] and INRIA YouTube Instructional

Videos (YTI) [2] Datasets. The black segments in the

YTI video correspond to background frames whose content

is not associated with a sub-activity relevant to the video

task. Our approach maintains the logical ordering of sub-

activities and a good estimate on their start and duration.

of additional sources of human-generated information such

as speech or video captions [2, 24]. However, differences

between the alignment of additional modalities like audio,

subtitles, or descriptive meta-data to the video frames might

prove challenging for some of these approaches [34].

Therefore, other methods have been proposed to tackle

the challenge of training such models without dense human-

generated labels, spanning from learning with weak or

sparse annotation [10, 15, 19] to completely unsupervised

learning of temporal action segmentation [4, 33, 16, 1]. The

work described in this paper deals with the latter problem,

the unsupervised learning of action segments from unla-

beled video data, which can be framed as the task of un-

supervised temporal action segmentation. This follows the

idea that, given a set of videos all capturing the same activ-
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ity, it should be possible to identify temporal segments with

similar sub-actions across all videos.

Previous work [4, 33, 16] has shown that temporal ap-

pearance can play a critical role in this task. For instance, in

videos showing how to make pancakes the process of crack-

ing eggs should not only look visually similar across dif-

ferent videos but would generally occur before other tasks

such as mixing the eggs into the batter or pouring the bat-

ter onto the griddle. So, it can be assumed that actions, at

least in task-oriented videos, not only share certain visual

features but also occur in a similar temporal space. Recent

approaches usually incorporate this property by learning a

strong temporal regularization [33, 16], which helps to find

clusters over time but may result in a lower ability to iden-

tify segments based on their visual representation.

To address this problem, this paper proposes a joint

visual-temporal learning pipeline that combines the advan-

tages of current temporal embedding systems with a visual

embedding based on a combination of predictive visual and

temporal learning tasks. To this end, we combine a state-

of-the-art temporal embedding system [16], designed to es-

timate the relative timestamp of a given video frame, with a

visual encoder-decoder pipeline that is trained on a combi-

nation of visual and temporal losses.

The intuition behind this is that the embedding should

not only reconstruct the plain input signal, but it should also

find a reconstruction that allows for a better estimation of

the respective timestamp and, thus, a better temporal recon-

struction. To prevent the learning of weak visual cues, we

shift the output of the visual encoder by a number of frames,

which turns it into a visual prediction architecture, simi-

lar to other self-supervised models [25, 7]. Combined with

the temporal loss, the model predicts a frame-representation

that is optimized to give the best timestamp prediction in the

temporal embedding framework. The resulting embedding

space thus captures visual and temporal representations of

each individual frame.

We evaluate the proposed system on three challenging

standard benchmark datasets, the Breakfast dataset [13], the

INRIA YouTube Instructional Videos (YTI) dataset [4], and

the 50 Salads dataset [36], achieving good temporal seg-

mentation compared to state-of-the-art approaches. Fig-

ure 1 shows qualitative examples which demonstrate that

the proposed architecture is able to adapt well to a diverse

set of action tasks.

2. Related Work

2.1. Unsupervised learning of temporal sequences

While there has been plenty of work done in the area

of action segmentation in video, a vast majority of the ap-

proaches are fully supervised methods relying on frame an-

notations [10, 8, 14, 30], or weakly supervised approaches

that use some form of metadata [19, 5, 31]. Supervised

models achieve high-quality temporal segmentations but

their training is heavily dependent on vast amounts of good

quality hand-annotated minute-or even hour-long video data

which can become prohibitive in most real-life scenarios as

this process can be time-consuming and can not easily be

automated or scaled.

To overcome the dependence on labeled data, unsuper-

vised methods have seen increased interest recently. Chen et

al. [6] propose a domain adaptation approach based on self-

supervised auxiliary tasks (SSTDA) that is able to obtain

state-of-the-art performance with a reduced amount of la-

beled data (they show that even when using 65% of the

labeled data their method still produces state-of-the-art re-

sults). One of the first unsupervised methods for action

segmentation is the one proposed by Bojanovski et al. [4]

based on a Frank-Wolfe optimization algorithm. Sener

et al. [33] later proposed the modeling of the temporal

structure of sub-activities using a combination of Gener-

alized Mallows Model (GMM) sampling and the estima-

tion of the action length calculated using the frame distribu-

tion to estimate the action segmentation in complex action

videos. Following a similar segmentation pipeline, Kukleva

et al. [16] proposed instead a combination of temporal en-

coding generated using a frame timestamp prediction net-

work and Viterbi decoding for consistent frame-to-cluster

assignment. Another interesting take on the problem is fur-

ther proposed by Aakar et al. [1]. Different from the meth-

ods so far, the idea here is not to cluster the feature space

to identify actions, but to detect action boundaries in an un-

supervised way by learning a predictive framework which

uses the difference between observed and predicted frame

features as a means to determine event boundaries. As such

the approach is focusing on a per video-based segmentation

instead of the identification of action classes across multiple

videos.

2.2. Unsupervised and self­supervised learning of
visual representations

Various approaches have been proposed for the learn-

ing of visual representations without labels [12]. Partic-

ularly, in the case of learning video representations in an

unsupervised way, various approaches make use of tempo-

ral properties of the data e.g., in the form of shuffling [27],

or similar to the idea proposed in this paper, temporal pre-

diction [35, 7]. Temporal prediction has been established

as a way to achieve a deeper understanding of the data as it

requires an implicit understanding of the structure of the ob-

served visual features and the rules they follow while they

change over time [35, 23, 38]. However, it has been pointed

out that the use of traditional losses does not translate well

for video frame prediction. Srivastava et al. [35] observed

that predictive models trained solely with an MSE loss have

a tendency of blurring regions with uncertainty.

This has given way to the introduction of promising al-
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Figure 2: Joint visual-temporal training pipeline. If the feature embedding has a good representation of the visual and

temporal attributes of each frame, the frames that cluster together will have similar temporal locations and share visual

attributes that represent a given sub-activity.

ternatives such as the adversarial loss present in Gener-

ative Adversarial Networks (GANs) [9] and Conditional

GANs [26], which have led to significant advances in

the performance of video prediction [7, 22, 25]. GAN-

based methods have incorporated the use of U-Net archi-

tectures [32] into their generator module given their good

performance in image-to-image translation [11, 40] and im-

age segmentation [32, 3, 21] tasks. Our proposed approach

does not focus on learning feature representations as is the

case in those methods but instead borrows other ideas from

the field to improve the joint visual-temporal learning of an

embedding space for unsupervised actions recognition.

3. System Description

Given a collection of complex activity videos DA =
{vi}

V
i=1 with V videos belonging all to the same activity

class A, we want to learn k action classes Ck that appear

in this activity, as well as the action class label of all the

frames (Nvi ) of each video vi = {fn}
Nvi

n=1 . Note that the

frame input used here is a pre-extracted one-dimensional

feature vector, that can be derived from hand-crafted fea-

ture representations or from a network that has been trained

in an unsupervised way.

To learn an embedding space for this input, we propose

a two-stage pipeline (see Figure 3). The first stage (3a) con-

sists of the independent training of two models: one encod-

ing a visual embedding and the second encoding a temporal

embedding only. We pre-train both models separately and

then join them in the second stage (3b), where the temporal

model becomes a discriminator for the frames generated by

the visual model. We update the components of this model

in an alternate fashion, keeping the visual model constant

during the training phase of the temporal model in order to

allow it to identify the loss of valuable temporal information

from the reconstructed frame. Similarly, we then keep the

temporal model constant while the visual model is training

to improve the results of its outputs when they are evaluated

by the temporal discriminator.

This joint training allows our system to learn an embed-

ding space that not only captures visual properties by pre-

dicting the next frame but also ensures that we retain enough

temporal information to estimate a consistent timestamp for

the output. The embedding space of the model is then used

for clustering to form the respective classes and segment the

videos accordingly. We illustrate our clustering and seg-

mentation pipeline during testing in Figure 2. We discuss

each step of the pipeline in the following sections.

3.1. Stage 1: Disjoint training of the Visual and
Temporal Models

3.1.1 Visual Embedding Model

The visual embedding model is designed to learn a low di-

mensional embedding of the frame-based input vector. For

this, we make use of an encoder-decoder structure to model

a frame prediction framework which, using as a prior the

visual features of the frame at time t (frame ft) learns to

predict the features at a future time t+ s (ft+s).

As is shown in Figure 3a, our visual model (displayed

in blue) consists of three down-sampling layers followed

by three up-sampling layers with skip connections between

the down-sampling and up-sampling layers to preserve fine-

grained details from being discarded by the encoding pro-

cess. As such, we are able to suppress visual noise and

find visual cues that are more relevant to the respective task

while ensuring that the encoded embedding xt maintains

enough relevant information in order to reconstruct a viable

future frame in the video sequence. This linear U-Net is

then used during testing to generate an abstract representa-

tion of the frame’s features xt (generated by the last down-

sampling layer), which is then used as the embedding of the

frame ft during the later clustering process (see Figure 2).

This visual embedding model learns to generate accurate

future frame predictions by minimizing the mean squared

difference between the predicted and the real frames:

Lossvis =
1

N − s

N−s
∑

t=1

(ft+s − f̂t+s)
2 (1)
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(a) Stage 1 (b) Stage 2

Figure 3: Two-stage visual-embedding pipeline: 3a) Visual+Temporal embedding: next frame prediction U-Net to generate

a visual-temporal embedding (output of the last down-sampling layer, denoted by a red arrow), 3b) Temporal discriminator:

timestamp predictor MLP used to identify the loss of temporal information in the frames predicted by stage 1.

For ease of notation, we use N as the number of all frames

of all videos V belonging to the same activity class A, and s
as the prediction time step. That is, for s = 5 given an input

frame captured at timestamp t = 0 (ft=0) the network will

return a predicted frame s frames into the future (f̂t=5). For

our experiments we used s = 5 as the prediction goal of our

visual embedding model. However, we study the impact of

different step sizes in Section 5.1.

3.1.2 Temporal Embedding Model

The temporal embedding model (displayed in red in Fig-

ure 3a) is designed to extract valuable temporal information

out of a given frame. For this we implemented a three-layer

Multilayer Perceptron (MLP) with the learning goal of pre-

dicting the relative timestamp t of a given frame (where

t = frameIdx/N ). The MLP receives as input a video

frame ft captured at a timestamp t and provides a predic-

tion for the relative timestamp of the frame T (ft). As such,

to ensure the MLP has a working knowledge on the tem-

poral structure of the data, it must minimize the difference

between the timestamp prediction T (fn) it provides for a

given ft frame, and the actual timestamp t of such frame:

Losstemp =
1

N

N
∑

t=1

(T (ft)− t)2 (2)

3.2. Stage 2: Joint visual­temporal training

In this stage we joined our visual and temporal models in

a single framework, as such, our final architecture is com-

posed of (1) a frame predicting U-Net that is able to retain

enough visual and temporal features in its predictions, and

(2) a timestamp predictor, trained to recognize any discrep-

ancy between the temporal quality of the frame predicted

by the U-Net f̂t+s and the observed frame ft+s.

3.2.1 Joint Visual-Temporal Embedding Model

The learning objective of the U-Net during stage 1 was to

predict a frame that seemed visually plausible (Equation 1),

this helps to ensure that the valuable visual cues in the frame

embedding are retained. In the second stage of our training,

we build on this objective to ensure that the temporal cues

of the frame are also preserved. For this we use our tempo-

ral model: the timestamp predictor evaluates the quality of

the temporal features encoded into our embedding by mea-

suring the difference between the predicted timestamp of

the U-Net’s output T (f̂t+s) and the predicted timestamp of

the observed frame (T (ft+s), allowing us to measure the

temporal reconstruction loss of our generated frames:

Losstrec =
1

N − s

N−s
∑

t=1

(T (ft+s)− T (f̂t+s))
2 (3)

We incorporate this temporal reconstruction loss into the

U-Net’s learning objective:

Lossjoint = Lossvis + Losstrec (4)

This joint loss (Equation 4) ensures that our embedding

model maintains a good balance of visual and temporal cues

into its embedding. Its learning objective is now minimiz-

ing both the visual and temporal reconstruction losses.

3.2.2 Temporal Discriminator

The goal of our temporal embedding model is now to serve

as a discriminator for the reconstructed frames generated

by our Joint Visual-Temporal Embedding Model. For this,

our temporal discriminator must be able to identify the loss

of the “temporal quality” between the frame predicted by

the U-Net f̂t+s and the ground-truth frame ft+s. Given a

frame ft we consider that the U-Net’s embedding xt has

led to the loss of temporal cues if the predicted timestamp

T (f̂t+s) (estimated by the temporal embedding model) of

the U-Net’s output f̂t+s is not similar to the timestamp of

the ground-truth frame ft+s. The temporal quality (TQual)
of the U-Net embedding can then be measured as follows:

TQual = 1−

(

1

N − s

N−s
∑

t=1

T (f̂t+s)− (t+ s))2

)

(5)
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We can then use the estimation of the temporal quality

loss as a means for the MLP to discriminate between a real

video frame ft+s and a low-quality estimation f̂t+s. As

a result, the timestamp predictor can learn to discriminate

between the temporal differences of the U-Net’s prediction

and the ground-truth. The loss of the MLP temporal dis-

criminator is then evaluated as follows:

LossMLP =
1

N

∑N
t=1

(T (ft)− (t))2

TQual
(6)

In the above formulation, T (fi) represents the output of the

timestamp predictor given an input frame fi.

3.3. Clustering and decoding

For all further processing, we follow the protocol of [16,

33, 4]. Once we have the temporally enhanced embedding,

we cluster the embedded features of all videos into k clus-

ters. For this, we employ a single Gaussian Mixture Model

to model all the embedded features of a given task. To fit

them into k clusters, we then use the logarithm of the prob-

ability of each frame belonging to each of the clusters. As

such, for every video frame n, we have a corresponding k
dimensional vector with each of the frame’s scores for each

of the clusters (see step 2 in Figure 2).

A naive approach for segmentation would be using the

scores obtained by the clustering method in order to assign

a sub-activity to each video frame. This, however, generates

a non-homogeneous segmentation with few groups of con-

tinuous frames being assigned to the same sub-activity clus-

ter. We use a modified version of the frame labeling method

presented in [16], Viterbi decoding with length model as

proposed by [15] to alleviate this effect. We evaluate the

probability of each frame n belonging to a cluster cx with

respect to the probabilities of the neighboring frames and

seek to maximize the probability of the sequence following

a fixed cluster order. The cluster order is determined by the

mean time-stamp of each cluster.

A fixed cluster ordering c1, c2, ..., ci, cj , ..., ck, would

constrain the possible clusters a frame ft can be assigned

to. Frame ft could belong to either the same cluster ci as it

preceding sampled frame ft−γ -where γ is the frame sam-

pling size (in the method introduced by [16] γ = 1) or to

the next cluster cj in the predetermined ordering.

4. Experimental Evaluation

4.1. Datasets

We evaluate our method using three datasets: Breakfast

Actions dataset (BF) [13], INRIA YouTube Instructional

Videos (YTI) [2], and 50 Salads (50S) [36]. We are using

the reduced Fisher Vector features as proposed by [14] and

used by [16, 33, 28] for the evaluation of the three datasets.

The Breakfast Actions (BF) dataset contains 70 hours

of cooking activities of varying complexity. It contains 10

different cooking tasks (with about 170 videos per task),

which can be further split into 48 sub-activities. The length

of each video is highly dependent on the type of task, rang-

ing from 30 seconds to a few minutes. The videos are

recorded in different real-life environments with 52 people

performing each of the 10 different actions. They have a

fixed viewpoint through all activities for each person, which

leads to a high intra-class and low inter-class variance.

The INRIA YouTube Instructional Videos (YTI)

dataset contains five tasks of different instructional do-

mains: “making coffee”, “changing a car tire”, “CPR”,

“jumping a car”, and “potting a plant” (with about 30 videos

per task), which can be divided into 47 sub-activities. As

opposed to Breakfast Actions, the videos might have been

edited and include shot boundaries, as well as different

and changing viewpoints or zooming. The videos in this

dataset are in average longer than the videos in Breakfast

Actions, however, there is a significant presence of back-

ground frames whereas the Breakfast Action actions are

densely labeled without intermediate background classes.

The 50 Salads (50S) dataset contains over 4.5 hours

of video captures of different actors preparing 2 kinds of

mixed salads (with 25 videos for each type of salad). While

similar in nature to the data present in the Breakfast dataset,

the videos in 50 Salads tend to be longer and contain more

sub-activities. These videos have an average length of 10k

frames and contain complex interactions between hands,

utensils, and ingredients. In addition to this, different ac-

tions in this dataset often contain similar motions, differing

only on the ingredient or utensil used and can be further

classified into three stages: preparing the dressing, cutting

and mixing ingredients, and serving. As such we have sim-

ilar actions like “adding oil” or “adding vinegar” and “cut-

ting tomato” or “cutting cucumber” which follow similar

hand motions (but differ in the interacting objects) and can

happen at interchangeable times.

4.2. Training

Following the two-stage training protocol described in

Section 3, we first train the visual and temporal models in-

dependent from each other. The visual embedding model

is trained for 160 (for the BF Dataset) and 140 epochs (for

the YTI and 50S datasets) while the temporal embedding

model is trained for 10, 20, and 30 epochs (for 50S, YTI,

and BF respectively).

During our second training stage, we alternate the train-

ing of the visual and temporal models: we train the visual

model for 40 consecutive epochs (in which the temporal

model is frozen) and then train the temporal discriminator

for 5 epochs (where the visual embedding model remains

constant. We run these alternating periods for 60 (for the

BF dataset) and 120 epochs (for the YTI and 50S datasets).
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Figure 4: Segmentation examples from our approach on videos from the Breakfast Actions dataset. We omit some of the

ground-truth labels in the visualizations to facilitate reading the labels of the more prominent segments.

4.3. Mapping
To evaluate the segmentation returned by our unsuper-

vised approach, we need to map the segmented clusters of

sub-activities to the ground-truth sub-activities related to

each specific task. For this, we use Hungarian matching to

provide a one-to-one mapping that maximizes the similarity

between the segmented clusters and the ground-truth sub-

activities. We follow the protocol of [4, 33, 16] and compute

the Hungarian matching over all the videos of one activ-

ity. Note that this is different from the Hungarian matching

for every single video as used by [1], which optimizes the

matching for every single video and usually leads to higher

accuracy, but also allows clusters to change their label from

one video to another.

We evaluate the accuracy of our method using two com-

mon evaluation metrics used in [33, 16, 1], 1) Mean Over

Frames (MoF) to indicate the percentage of frames in the

segmentation that were correctly labeled over all the frames

of videos assigned to a given task for the Breakfast Ac-

tions and 50 Salads Datasets, and 2) F1 score for the IN-

RIA YouTube Instructional Videos (YTI) Dataset to com-

pare with other state-of-the-art approaches.

5. Results and Analysis

We compare the performance of our two-stage visual

embedding pipeline to state-of-the-art approaches (includ-

ing weakly-supervised and fully supervised setups) on three

challenging action segmentation datasets. As can be seen in

Figure 4 our approach is able to maintain the logical order-

ing of sub-activities and a good estimate on their start and

duration in actions with different levels of complexity.

Breakfast Actions Dataset: Our method is able to out-

perform the state-of-the-art on the unsupervised learning

methods applied to this dataset (see Table 1) and performs

competitively against weakly-supervised approaches. It is

important to note that our cluster-to ground-truth mapping

and evaluation is done in a global manner, that is, we use all

the predicted labels and ground-truth for all the videos of a

given task to do the Hungarian matching, and then evaluate

calculating the MoF using the count of all the true predic-

tions on the whole dataset. On the other hand, approaches

such as LSTM+AL [1] employ a per-video (local) cluster to

Supervision Approach MoF

Full

TCFPN [8] 52.0%

HTK [14] 56.3%

GRU [30] 60.6%

MS-TCNN++ [20] 67.6%

Local SSTDA [6] 70.2%

SSTDA[18] 70.3%

Weak

Fine2Coarse [29] 33.3%

GRU [30] 36.7%

TCFPN+ISBA [8] 38.4%

NN-Viterbi [31] 43%

D3TW [5] 45.7%

CDFL [19] 50.2%

Unsupervised

GMM [33] 34.6%

CTE-MLP [16] 41.8%

(LSTM+AL [1]) (42.9%*)

Ours 48.08%

Table 1: Segmentation results on the Breakfast Action

dataset compared to supervised, weakly supervised, and un-

supervised state-of-the-art methods. (*denotes results with

video-based Hungarian matching).

Approach F1

GMM [33] 27.0%

CTE-MLP [16] 28.3%

(LSTM+AL [1]) (39.7%*)

Ours 29.86%

Table 2: Segmentation results on the YTI dataset compared

to unsupervised state-of-the-art methods. (*denotes results

with video-based Hungarian matching).

ground-truth mapping, which might account for the differ-

ence in the performance of the two approaches. For com-

parison purposes, when applying a video-based Hungarian

matching our method obtains a MoF of 52.25%.

INRIA YouTube Instructional Videos (YTI): The YTI

Dataset is particularly challenging as the majority of its

frames consist of “background” information (see Figure 5).

That is, most of the frames in this dataset do not provide

any relevant visual cues related to the action we are seg-

menting. In line with other approaches, our evaluation on
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Supervision Approach Eval Mid

Full

S-CNN [18] 68.0% 54.9%

ST-CNN[18] 72.00% 58.06%

ED-TCN [17] 73.4% 64.7%

MS-TCNN++ [20] – 83.7%

Local SSTDA [6] – 82.8%

SSTDA[18] – 83.8%

Unsupervised

CTE-MLP [16] 35.5% 30.2%

(LSTM+AL [1]) (60.6%)* -

Ours 30.59% 24.19%

Table 3: MoF Segmentation results on the 50 Salads dataset

at mid and eval granularity compared to state-of-the-art

methods. (*denotes results with video-based Hungarian

matching) Blank fields were left for methods that did not

report a score for a type of granularity.

Figure 5: t-SNE[37] Visualization of the cluster distribution

on a video from the YTI Dataset. Notice the heavy presence

of background (bg) frames.

this dataset excludes any frames our method assigned to

the label background so as to avoid any bias towards the

over-segmentation of this sub-activity. Despite the reduced

amount of valuable visual cues we can gather from single

frames in this data, our method outperforms other global-

based Hungarian matching approaches (see Table 2). We

observed a considerable improvement when using larger

frame prediction steps (predicting further into the future)

for this dataset, which probably helped our visual embed-

ding model to discriminate the minutiae associated with ir-

relevant frames.

50 Salads (50S): While more similar in nature to the

videos in Breakfast Actions, the order of the sub-activities

in 50 Salads is not as important as with the previous

datasets. Sub-activities belonging to the same category have

similar temporal locations (e.g., “cutting tomato”, and “cut-

ting cucumber”), and often the order in which they are per-

formed does not have a big impact on the performance of

the task. Consequently the benefits we see from following

the two training stages (Table 3) are not as significant as

Step size BF YTI 50S (eval)

U-Net (s=0) 33.34% 12.16% 31.17%

U-Net (s=1) 42.06% 13.51% 28.56%

U-Net (s=3) 47.17% 21.32% 28.93%

U-Net (s=5) 47.27% 25.72% 31.24%

Table 4: U-Net Learning task impact: Given an input frame

captured at a time t the U-Net was trained to estimate the

frame s steps after the input frame. MoF is reported for BF

and 50 Salads, F1 score is reported for YTI.

for the other two datasets, just using the visual embedding

from the first stage seemed to provide fewer distractions

(brought on by the weak temporal ordering of the actions

in this dataset) and resulted on a better performance (see

Table 4).

5.1. Ablation Studies
5.1.1 Future frame prediction task

In order to assess the value of future frame prediction as a

good learning task to encode both the visual and temporal

cues of the data, we tested the performance of our visual

embedding model (Section 3.1) using a frame prediction

step sizes s of 0, 1, 3, and 5 (see Table 4). When s = 0
the network would learn to reconstruct the same input frame

from the generated encoding (rather than generating a pre-

diction of a future frame), with s > 0 the network would

predict the next sth frame in the video sequence following

the input frame (we should be able to generate a given frame

t from the encoding of a previously seen frame at time t−s).

We observed a distinctive improvement for both the BF

and YTI Datasets as the step size increases, with the low-

est performance obtained by just reconstructing the original

input frame (s = 0). The strong correlation between tempo-

ral and visual cues in these datasets allowed us to extract a

more significant encoding using our approach. However, it

is important to note that, while our approach benefits from

the future frame prediction task, when testing overly large

step sizes (see Fig. 6) the performance degrades as the step

size increases. Overly large step sizes could exacerbate the

erosion of shorter sub-activities from the temporal segmen-

tation as well as disrupt the learning of the logical ordering

of the sub-activities in a given action.

This was not the case for the 50 Salads dataset, while

overall the U-Net with the largest step size obtained the

best performance, the further enforcement of the tempo-

ral encoding brought on by the second stage of our training

pipeline proved to be detrimental as the temporal cues are

not that significant in this type of data.

5.1.2 Feature Embedding

The purpose of our embedding algorithm is to encode valu-

able visual and temporal information derived from our input

features, to evaluate the impact of such embedding, we first
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Figure 6: U-Net Embedding Performance when predicting

longer step sizes (s). We do not test s > 60 for BF as some

of the videos in the dataset have as few as 180 frames.

analyze the performance of the segmentation pipeline when

omitting the feature embedding step. For this, we skipped

the embedding process and directly clustered the reduced

Fisher Vectors following the process described in Sec. 3.3.

We observed a significant decrease in the performance ob-

tained for all three datasets, with a 13.5% F1 score for the

INRIA Youtube Instructional Videos (YTI) Dataset, and an

MoF score of 28.13% and 29.07% for the Breakfast Actions

(BF) and 50 Salads (50S) Datasets respectively.

As described in Sec. 3, we train our visual (U-Net) and

temporal (MLP) components in two stages to obtain a joint

visual and temporal embedding (extracted from the visual

model after the second stage). We now evaluate the im-

pact of different types of embedding (visual, temporal, or

joint) during both stages of our training. Table 5 shows

the result using the embedding of the visual and temporal

components, the U-Net and the MLP respectively. At stage

1 both components were trained in a disjoint fashion, fol-

lowing the losses described in Equations 1 (U-Net) and 3

(MLP). At stage 2 the loss of both models is updated so that

they are trained jointly (alternating the training of the U-

Net and MLP for 40 and 5 epochs respectively) following

Equations 4 (U-Net) and 6 (MLP). We used the output of

the U-Net’s encoder as our embedding for the U-Net, and

the output of the inner layer of the MLP as its embedding.

Overall the visual embedding of the U-Net after the first

stage already led to an increased performance of the whole

system. Nevertheless, further enforcing a stronger temporal

Training Embedding Source MoF

– Fisher Vector (no embedding) 28.13%

Stage 1
U-Net 47.27%

MLP 40.91%

Stage 2
U-Net 48.08%

MLP 39.04%

Table 5: Analysis of the feature embedding sources on the

Breakfast Actions dataset at both stages of training. Stage 1

Models were trained independently of each other.

embedding through stage 2 provided the best performance

for the Breakfast Actions Dataset.

6. Discussion

Various approaches have been proposed for learning vi-

sual representations without labels [12, 16, 1, 33]. Partic-

ularly, in the case of learning video representations in an

unsupervised way, the temporal properties of the data have

been commonly employed to understand the structure of the

observed visual features and the rules they follow while they

change over time. Following the idea that given a set of

videos all capturing the same activity it should be possi-

ble to identify temporal segments with similar sub-actions

across all videos, we have studied the suitability of a joint

visual-temporal approach to learn to identify different ac-

tion segments from unlabeled video data.

The results of our experiments have shown that a combi-

nation of predictive visual and temporal learning tasks en-

courages the encoding of valuable information for temporal

segmentation that might have been otherwise disregarded

by a solely temporal approach. The segmentations obtained

with our method maintain the logical ordering of the ana-

lyzed tasks and are able to produce coherent segments that

have led us to significant improvements over previous ap-

proaches that have exclusively used temporal embeddings.

We have observed that incorporating the visual cues that

might be present in a frame into our joint approach has

shown promise in the area of temporal segmentation, par-

ticularly for cases in which the sub-activities have either 1)

distinct visual appearances (e.g., “cracking egg” vs. “butter-

ing pan”), and/or 2) a strong temporal coherence (e.g., the

“making coffee” sub-activities “pouring coffee” and “pour-

ing milk” would have similar visual aspects, however, in

most cases the actors in the videos pour the coffee (into

the mug) first before adding milk to it), as was the case for

datasets like Breakfast Actions and INRIA Youtube Instruc-

tions (YTI)). However, our approach struggles with data

that has a weak temporal coherence and low visual variance

(like the data in 50 Salads). We suggest as a future research

direction incorporating an evaluation of the temporal coher-

ence of sub-activities, both to address this issue and to in-

corporate the segmentation of repetitive actions (which lead

to inconsistent results in their temporal location).
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