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Abstract

For further progress in video object segmentation (VOS),

larger, more diverse, and more challenging datasets will

be necessary. However, densely labeling every frame with

pixel masks does not scale to large datasets. We use a

deep convolutional network to automatically create pseudo-

labels on a pixel level from much cheaper bounding box

annotations and investigate how far such pseudo-labels

can carry us for training state-of-the-art VOS approaches.

A very encouraging result of our study is that adding a

manually annotated mask in only a single video frame for

each object is sufficient to generate pseudo-labels which

can be used to train a VOS method to reach almost the

same performance level as when training with fully seg-

mented videos. We use this workflow to create pixel pseudo-

labels for the training set of the challenging tracking dataset

TAO, and we manually annotate a subset of the valida-

tion set. Together, we obtain the new TAO-VOS bench-

mark, which we make publicly available at www.vision.

rwth-aachen.de/page/taovos. While the perfor-

mance of state-of-the-art methods on existing datasets starts

to saturate, TAO-VOS remains very challenging for current

algorithms and reveals their shortcomings.

1. Introduction

Semi-supervised Video Object Segmentation (VOS) is

the task of segmenting objects in every frame of a video

given their ground truth masks in the first frame in which

they appear. VOS is a fundamental task in computer vi-

sion with important applications including video editing,

robotics, and self-driving cars. Recently, VOS has received

a lot of attention in the computer vision community and the

quality of results has significantly improved. In addition to

the adoption of recent deep learning methods, this progress

was largely driven by the introduction of the DAVIS 2017

[28] and the YouTube-VOS [37] benchmarks.

With its size of 60 videos for training and 30 videos for

validation, DAVIS 2017 is very useful for measuring the
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Junior Research Fellowship.

performance of VOS methods, but its utility for training is

limited. The introduction of the much larger YouTube-VOS

dataset with 3,471 training sequences was a milestone for

VOS and led to a large jump in result quality. In particu-

lar, it enabled the development of end-to-end trained VOS

methods. However, the videos of YouTube-VOS are short,

contain relatively low diversity with a focus mainly on per-

sons and animals, the number of objects per video is rela-

tively low, and the total amount of data is still much smaller

than what is available for other areas of computer vision

such as image classification or object detection.

Hence, we argue that in order to make significant

progress in VOS, new datasets which contain more diverse

data, longer sequences, and more objects per sequence will

be necessary. However, manually labeling all objects in a

video with segmentation masks for every frame is extremely

time consuming, which limits the creation of such datasets.

Contributions. Towards the goal of creating VOS datasets

with less effort, we make the following contributions.

(1) We show that densely labeling all frames in a video

with segmentation masks by hand is not necessary to ben-

efit from the additional data. Only annotating bounding

boxes requires an order of magnitude less effort, and yet we

show that these labels can be used to train a VOS model and

achieve results which come close to what can be achieved

with dense pixel-wise labeling. (2) We investigate a strategy

of manually annotating a single segmentation mask per ob-

ject (in a single frame), resulting in a huge reduction of the

number of masks to be annotated. We evaluate this method-

ology on the YouTube-VOS dataset. Here, we only use

4% of all hand-labeled masks and are able to retain more

than 97% of the performance that is achieved with full su-

pervision, which demonstrates that this setup achieves an

excellent trade-off between annotation effort and utility of

the labels for training. (3) As a first step towards new

VOS datasets, we apply this method for labeling the recent

Tracking Any Object (TAO) dataset [10], which so far only

had bounding box annotations, and obtain the challenging

TAO-VOS benchmark, which we make publicly available.

(4) We evaluate current state-of-the-art methods on the new

TAO-VOS benchmark and show that TAO-VOS is effective
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at highlighting significant performance differences, some-

thing that is no longer possible for the already saturated

DAVIS and YouTube-VOS benchmarks.

2. Related Work

In the following, we review work on learning with fewer

segmentation labels and reducing annotation effort.

Weakly-Supervised Image Segmentation. In the con-

text of semantic segmentation or instance segmentation for

static images, most focus has been put on learning segmen-

tation only from image-level classification labels [18, 3, 2].

Other methods closer to our work focus on segmentation

from bounding box supervision [9, 17, 15]. However, even

when using bounding boxes, the result quality still lacks be-

hind what can be achieved with more supervision.

In contrast to the aforementioned methods, we consider

videos with given bounding box annotations and we also

make use of existing segmentation annotations for static im-

age datasets, allowing us to create segmentation masks of

much higher quality.

Weakly-Supervised VOS. Recent work on weakly-

supervised VOS mainly focused on learning VOS only from

unlabeled videos [20, 21, 23, 19, 34, 39, 23]. While being

scientifically interesting, these approaches still leave a big

gap to the results which can be achieved with full supervi-

sion. In our work, we make use of more supervision and get

very close to the results of fully-supervised methods.

Reducing the Effort of Pixel-wise Annotations. There

are many methods for semi-automatic image-level segmen-

tation, which can be used to speed up the annotation pro-

cess. For example, user input in the form of scribbles [29],

bounding boxes [35], or clicks [36, 25, 16] can be used to

interactively segment objects. Other examples are automat-

ically predicted polygons [5, 1] or segments [4], which can

be manipulated by the user. While speeding up the an-

notation for static images, most of these methods do not

make use of existing bounding box level annotations and

we found them often not to be robust enough to produce

good results on out of domain data.

Recently, Voigtlaender et al. [32] introduced a semi-

automatic annotation procedure to create dense segmenta-

tion labels for videos based on bounding box tracking an-

notations. Similar to our work, they use a convolutional

network which converts bounding boxes into segmentation

masks. However, they considered much smaller datasets

and invested significant manual interaction in order to re-

move any errors in the annotations. Instead, we focus on

a much larger dataset and allow some remaining errors in

the annotations. This allows us to significantly reduce the

amount of manual effort required, and we show that the re-

maining errors only have a minor impact on the final per-

formance of models trained using these labels.

3. Reducing the Annotation Effort for VOS

Annotating dense segmentation labels for videos is ex-

tremely expensive. However, just annotating bounding

boxes is much less effort and has already been done for

more datasets like TAO [10]. In this paper, we evaluate

which level of results can be achieved with a reduced set

of annotations by automatically converting bounding boxes

into segmentation masks. Furthermore, we investigate how

the usefulness for training of automatically created pseudo-

labels can be further improved.

3.1. Creating Pseudo­Labels from Boxes

When annotating segmentation labels for static images,

there is much less redundancy, since there is a much larger

variety between different images than between different

frames of the same video, and segmentation labels for static

image datasets like COCO [22] are readily available. We

hypothesize that the information from already labeled static

image datasets can be automatically transferred to videos

for which only bounding boxes are labeled. In order to

investigate how well this works, we adopt the powerful

Box2Seg method for converting bounding boxes into seg-

mentation masks [24].

Box2Seg. The Box2Seg network has also been used suc-

cessfully in other works [24, 32, 33]. Box2Seg is a fully-

convolutional network based on the DeepLabv3+ [7] seg-

mentation architecture which uses an Xception-65 [8] back-

bone. The input to Box2Seg is an image together with a

bounding box. The image is concatenated with a fourth in-

put channel which encodes the bounding box as a mask.

Afterwards, all four input channels are cropped to the box

with an added margin, and then resized to a fixed size of

385 × 385 pixels. We train Box2Seg on COCO to predict

the pixel-precise mask of an object given its bounding box.

Fine-Tuning. Just using a bounding box as input, Box2Seg

already produces pseudo-labels of high quality as will be

shown in Sec. 5. However, for some applications it might

be necessary to get even better labels without resorting to

extensive labeling of every frame. We can annotate a sin-

gle mask (in a single frame) for each object and then use

this mask to fine-tune Box2Seg on it for 300 steps before

creating the masks for this object on the other frames. We

hypothesize that this should achieve a good effort/quality

trade-off. We evaluate this methodology on the YouTube-

VOS 2018 [37] dataset. Here, on average 25 masks are an-

notated for each object. Hence, by annotating only a single

mask, the effort is reduced 25-fold, and yet using the result-

ing labels to train, a result which is very close to using all

annotations can be achieved (c.f . Sec. 5).

In the usual semi-supervised VOS task, always the first

frame in which an object appears is given as annotated

ground truth. However, using the first frame is a sub-
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Figure 1. Qualitative example of automatically obtained pseudo labels on the YouTube-VOS training set. The first row shows the results

produced by Box2Seg without using any manual mask annotations. The second row shows the result after fine-tuning on a single annotated

frame per object. It can be seen that the segmentation quality improves significantly by only adding one mask per object manually. Note

that this is a hard example and the mask quality looks better for most sequences.

optimal choice, and using instead the middle frame is a

better heuristic [13]. Hence, for each object we take the

middle frame from all frames in which this object appears.

The improvement of the quality of pseudo-labels through

fine-tuning is illustrated in Fig. 1.

3.2. Training using Pseudo­Labels

After obtaining the pseudo-labels from Box2Seg, we use

them to train a VOS method on them. Here, we want to in-

vestigate what performance can be achieved by performing

the training using the obtained pseudo-labels instead of the

manually annotated ground truth.

As a case study, we use the extremely successful space-

time memory network (STM-VOS) [27] architecture. STM-

VOS uses two networks. The first network is a memory

encoder, which takes an image together with a segmenta-

tion mask as input and produces key and value embeddings

used as memory to segment further frames. This mask used

by the memory encoder can be either given as first-frame

ground truth, or it can be the prediction of STM-VOS for

a previous frame. The second network consists of a query

encoder, a space-time memory read block, and a decoder.

The query encoder takes as input the current frame without

a mask, and also produces key and value embeddings. The

space-time memory read block then uses these embeddings

for the current frame to produce feature maps by attending

to the memory. The resulting feature maps are processed

by the decoder to produce the segmentation masks for the

current frame.

STM-VOS is first pre-trained on simulated data created

from static image datasets, and afterwards the main train-

ing is done on a densely labeled video object segmentation

dataset like YouTube-VOS. As baseline, we perform the

main training of STM-VOS without any change in the train-

ing procedure, except for replacing the hand-labeled ground

truth with the generated pseudo-labels. Although Box2Seg

generally performs well, there will still be some errors in

the pseudo-labels. For an effective training, it is important

to limit the adverse effect of these errors. To this end, we

evaluate two extensions for improving the results.

Filtering out Bad Masks. One possibility to deal with

errors in the labels is to manually filter out bad masks.

This does require manual effort, but is significantly cheaper

than labeling all masks by hand. We evaluate how suitable

this technique is by simulating this process on YouTube-

VOS. To this end, we calculate the intersection-over-union

(IoU) of the pseudo-label with the ground truth mask and

mark its quality as bad if the IoU is below a certain thresh-

old. In order to disregard the bad masks during training, in

the pseudo-labels we remove this mask and instead fill the

bounding box of the object with an ignore label, for which

during training no loss is applied.

Robust Loss Function. An alternative to limit the influ-

ence of errors in the training annotations, is to use a more ro-

bust loss function. In the default setup, STM-VOS is trained

by applying a pixel-wise cross entropy loss, i.e.

lθ(x, y) = − log pθ(x, y), (1)

where x is the input, y is the label for the considered pixel,

and θ are the parameters to be optimized. For this loss func-

tion, the influence of a single pixel is unbounded and loss

values can increase dramatically for wrongly-labeled data.

In the context of learning classification models with label

noise, Menon et al. [26] propose the partially Huberised

cross entropy loss

l̃θ(x, y) =

{

−τ · pθ(x, y) + log τ + 1 if pθ(x, y) ≤
1

τ

− log pθ(x, y) else,

(2)

which asymptotically saturates so that the influence of

wrongly labeled data is bounded and the result for training
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Dataset Videos Avg Objects Ann. Categories

train val len.(s) / video fps

DAVIS 2017 60 30 3.4 1.7 20 -

YouTube-VOS 2018 3,471 474 4.5 2.3 6 94

TAO (bound. boxes) 500 988 36.8 5.9 1 833

TAO-VOS 500 126 36.7 5.9 1 361

Table 1. Statistics of the most popular VOS datasets DAVIS and

YouTube-VOS together with TAO (annotated only with bound-

ing boxes) and the newly introduced TAO-VOS annotations. Se-

quences in TAO-VOS are significantly longer, cover more classes,

and more objects per video than in previous VOS datasets. TAO-

VOS has only 361 classes instead of 833, because we only anno-

tated part of the validation set and we did not annotate the test set

of TAO-VOS, and many classes only appear in the test set.

with noisy labels can be dramatically improved. The hyper-

parameter τ should be set according to the expected amount

of noise in the labels. We adapt this loss to the task of VOS

by applying it to every pixel individually with τ = 3 and af-

terwards taking the average over spatial positions as usual.

4. The TAO-VOS Benchmark

Recently, the Tracking Any Object (TAO) [10] bench-

mark for multi-object tracking has been introduced. It

consists of 500 videos for training, 988 videos for vali-

dation, and 1,419 videos for testing. TAO features 833

different classes, and contains on average 5.9 objects per

video. To ensure a high diversity of the data, TAO is

composed of videos obtained from seven different existing

video datasets: Charades [30], ArgoVerse [6], HACS [42],

AVA [14], YFCC100M [31], BDD [41], and LaSOT [11].

Tab. 1 shows statistics of the TAO dataset and compares

it to the most important VOS datasets. It can be seen,

that with 36.8 seconds, the average duration of the videos

of TAO are much longer than in DAVIS 2017 [28] and

YouTube-VOS [37]. Additionally, the average number of

objects per video is much higher. DAVIS does not use pre-

defined categories and the number of videos is very small.

With 833 categories, TAO covers much more diversity than

YouTube-VOS which features 94 classes. Moreover, for

DAVIS and YouTube-VOS, objects almost always occupy

a large fraction of the video, while for TAO new objects

often appear and disappear.

Due to these unique challenges, TAO has a strong po-

tential to serve as a new VOS benchmark. However, due to

its large size, it was only annotated with bounding boxes.

Furthermore, TAO is annotated at a lower frame-rate than

DAVIS and YouTube-VOS, but this is not a problem since

most modern VOS methods sample a few frames with a ran-

dom time gap for each training step. Moreover, not all ob-

jects in all videos are annotated in TAO, however this is also

not a problem for VOS, where the objects of interest are

specified by their first-frame ground truth masks. In order

to make this benchmark usable for VOS, we manually label

the middle frame of each object of the training set with a

mask, and then use Box2Seg with fine-tuning (c.f . Sec. 3.1)

to generate masks for the whole training set of 500 se-

quences. Because TAO contains many more objects per se-

quence and is significantly more challenging than YouTube-

VOS, the quality of the pseudo-labels is lower. Hence, in or-

der to guarantee a high quality of the training set, we man-

ually identified pseudo-labels with errors and added addi-

tional masks to fix the majority of these. First, for the mid-

dle frames, we manually created 5,666 masks. Afterwards,

we manually added another 9,680 masks to guarantee a high

quality of pseudo-labels. In total, 12,513 of the total 59,200

masks (21%) were annotated manually.

While the training set can be semi-automatically labeled,

we argue that for evaluation, a definite ground truth without

any mistakes is important. Hence, we select a representative

subset (same amount from each sub-dataset) of 126 video

sequences of the 988 validation videos and label each frame

which has bounding box annotations by hand with masks to

obtain the TAO-VOS validation set. In total, we annotated

14,987 masks for the validation set.

Tab. 1 shows statistics of the new TAO-VOS benchmark

and Figures 2 and 3 show examples of the annotations on

the training and the validation set, respectively.

5. Experiments

In the following, we perform experiments to validate the

quality of the pseudo-labels, their effectiveness for training

VOS models, and finally we present results of state-of-the-

art VOS methods on the new TAO-VOS benchmark.

5.1. Quality of Pseudo­Labels

As our first experiment, we evaluate the quality of the

pseudo-labels for the YouTube-VOS training set consisting

of 3,471 sequences. Tab. 2 shows the mean IoU J together

with the number of used manually annotated masks for dif-

ferent sets of labels. For a conventional VOS evaluation,

also frames for which an object is not present are evaluated

and the IoU is set to 1.0 if also the predicted mask is empty.

Since we assume that the ground truth boxes are given, here

we take the average only over frames in which an object is

present, which leads to lower scores but gives a more intu-

itive understanding of the label quality.

Without annotating any masks, a mean IoU of 82.1 is

reached. When fine-tuning using the middle frame, this re-

sult is improved by 5.5 percentage points at the cost of an-

notating only 6,459 masks. It can also be seen that using

the middle frame for fine-tuning is slightly more effective

than using the first frame. Fig. 1 shows a qualitative exam-

ple of the label quality without and with fine-tuning using

the middle frame.
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Figure 2. Example annotations of the TAO-VOS training set. We show one frame of one example sequence for each sub-dataset.

Figure 3. Example annotations of the TAO-VOS validation set. We show one frame of one example sequence for each sub-dataset.

Another way to evaluate the labels is to define a quality

requirement for each mask, e.g. we require a mask to have at

least 50% or 70% IoU with the ground truth mask and then

we measure the fraction of automatically generated masks

for which this quality is reached. The corresponding re-

sults are shown in Tab. 2 as recall@50% (recall at 50% IoU

threshold) and as recall@70%. It can be seen that without

using any manual labels, already 94.3% of the masks reach

an IoU of at least 50% and 85.3% even reach an IoU of at

least 70%. When fine-tuning using the middle frame, these

values are largely improved to 97.9% for the 50% threshold

and to 93.1% for the 70% threshold.

5.2. Training using Pseudo­Labels

Now we want to investigate how the label quality trans-

lates to the final VOS performance obtained when using

these labels for training. Tab. 3 shows the results together

with the number of used annotated masks on video datasets.

For each configuration, first STM-VOS is pre-trained us-

ing static image datasets, and afterwards further trained on

YouTube-VOS using the specified set of labels.

The results of the first three lines are directly copied from

the STM-VOS paper [27], and indicate that training only us-

ing static images leads to poor results. Additionally, when

adding the small but densely-annotated DAVIS 2017 train-

ing set, the results on the DAVIS 2017 validation set im-

prove, but the results on the YouTube-VOS 2018 validation

set degrade due to over-fitting.

For our own experiments, we use the code and the initial-

ization checkpoint from static image pre-training provided

by the authors. We then re-implemented the missing train-

ing code, and re-ran the training with full supervision and

closely matched the results provided by the authors. We

further show that the robust loss function does not lead to a

significant change when applied with full supervision.

When training using the Box2Seg labels which re-

quire 0 annotated masks on video datasets, we achieve a

J&F score of 74.9 on the DAVIS 2017 validation set

and 74.3 on the YouTube-VOS 2018 validation set, re-

spectively. This is only 3.9 percentage points less than

our fully-supervised version on DAVIS and 5.0 percentage

points less on YouTube-VOS, albeit the effort to annotate

159,976 segmentation masks was saved. Note that using

the Box2Seg labels performs significantly better than both

only doing static-image pre-training and to train using the

fully-annotated DAVIS 2017 train set.

When manually filtering out bad masks (c.f . Sec. 3.2),

this gap reduced further by 1.1 percentage points on DAVIS,
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Labels J recall@50% recall@70% Annotated masks (video)

Ground Truth 100.0 100.0 100.0 159,976

Box2Seg 82.1 94.3 85.3 0

Box2Seg + 1st frame FT. 86.7 97.4 91.8 6,459

Box2Seg + middle frame FT. 87.6 97.9 93.1 6,459

Table 2. Quality of pseudo-labels together with the number of used annotated ground truth masks on the YouTube-VOS training set. FT

denotes fine-tuning, Annotated masks (video) refers to the number of used annotated masks on video datasets (excluding static image

datasets), and recall@x% denotes recall (in percent) at an IoU threshold of x%.

Setup Annotated Masks DAVIS’17 val YouTube-VOS’18 val

for Videos J&F J&F

Fully-Supervised (YouTube-VOS) [27] 159,976 78.6 79.4

Fully-Supervised (DAVIS’17) [27] 9,627 71.6 56.3

Pre-training only [27] 0 60.0 69.1

Fully-Supervised (ours) 159,976 78.8 79.3

Fully-Supervised (ours) + Robust Loss 159,976 78.2 (-0.6) 79.8 (+0.5)

Box2Seg Labels 0 74.9 (-3.9) 74.3 (-5.0)

Box2Seg labels + Filtering * 76.0 (-2.8) 74.6 (-4.7)

Box2Seg labels + Robust Loss 0 76.1 (-2.7) 76.2 (-3.1)

Box2Seg Fine-tuned labels 6,459 77.7 (-1.1) 77.3 (-2.0)

Box2Seg fine-tuned labels + Robust Loss 6,459 76.9 (-1.9) 77.9 (-1.4)

Table 3. Results of STM-VOS when training with different labels. Fully-Supervised (DAVIS’17): training on DAVIS 2017 instead of

YouTube-VOS. Pre-training only: training only on static image datasets. Fully-Supervised (ours): our re-produced result using the code

from STM-VOS [27]. Box2Seg labels + Filtering: using the pseudo-labels from Box2Seg and replacing low-quality masks with an ignore

label (c.f . Sec. 3.2). *: indicates manual effort to assess the quality of the masks. Robust Loss: use of partially Huberised cross entropy loss

(c.f . Sec. 3.2). Box2Seg fine-tuned labels: using the labels from Box2Seg which has been fine-tuned on the middle frame (c.f . Sec. 3.1).

and by 0.3 percentage points on YouTube-VOS. However,

manual effort needs to be spent to assess the quality of the

masks, which seems not worth it for the small improvement.

We find that using the robust loss function (c.f . Sec. 3.2)

instead is more effective (1.2 and 1.9 percentage points

improvement for DAVIS and YouTube-VOS, respectively),

and does not require any manual effort.

When annotating the 6,459 middle frame masks (roughly

4% of all masks) for fine-tuning Box2Seg, the gap to full su-

pervision is greatly reduced to a small difference of 1.1 per-

centage points and 2.0 percentage points for DAVIS 2017

and YouTube-VOS, respectively. Using the labels obtained

with fine-tuning, because of the higher label quality, the ef-

fect of the robust loss function is less significant. The robust

loss slightly improves the results on YouTube-VOS, while

slightly degrading the results on DAVIS.

In the supplemental material, we show that training using

Box2Seg labels is also effective for the related task of video

instance segmentation [38].

5.3. Comparison to Weakly­Supervised Methods

In addition to interpreting our approach as a method for

reducing the annotation effort, the combination of pseudo-

label generation by Box2Seg and then training STM-VOS

on these labels can also be seen as a weakly-supervised

method for VOS. In Tab. 4 we compare the results of this

approach to other weakly-supervised VOS methods. We

are only aware of two other methods, PReMVOS [24], and

Siam R-CNN [33], which consider the training setup of only

using bounding box annotations for videos, but making use

of segmentation masks for static image datasets.

On DAVIS 2017, PReMVOS slightly outperforms our

approach, but this comes at the cost of having to use four

different neural networks and a run-time of more than 37

seconds per frame (compared to 0.32 seconds per frame for

STM-VOS). For YouTube-VOS, PReMVOS has a signif-

icant gap of almost 8 percentage points to our approach.

STM-VOS with Box2Seg labels (0 segmentation annota-

tions for videos required), achieves a J&F score of 76.2,

while the closest result is by Siam R-CNN [33] with 68.3.

We also compare to a number of approaches which use

even weaker supervision: MuG [23] uses ImageNet clas-

sification labels and unlabeled videos, while MAST [19],

UVC [21], and CorrFlow [20] are learned only from un-

labeled videos. While these methods address an interest-

ing research topic and achieve impressive results given that

they do not need any annotations, the overall result qual-

ity is still far away from what can be achieved by including
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Setup Ann. Masks Ann. Boxes Ann. Masks DAVIS’17 val YouTube-VOS’18 val

for Images for Videos for Videos J&F J&F

STM-VOS (Box2Seg Labels + Robust Loss) ✓ ✓ 0 76.1 76.2

STM-STM (Box2Seg Fine-tuned Labels) ✓ ✓ 6,459 77.7 77.3

PReMVOS [24] ✓ ✓ 0 77.8 66.9

Siam R-CNN [33] ✓ ✓ 0 70.6 68.3

MAST [19] ✗ ✗ 0 65.5 64.2

MuG [23] ✗ ✗ 0 56.1 -

UVC [21] ✗ ✗ 0 59.5 -

CorrFlow [20] ✗ ✗ 0 50.3 46.6

Table 4. Comparison of our results to other methods for weakly-supervised VOS. Here, Ann. Masks and Ann. Boxes denote the use of

annotated masks and bounding boxes, respectively. Especially on YouTube-VOS, there is a big gap to the results of all previous methods.

Method TAO-VOS DAVIS’17 YT-VOS’18

J&F J&F J&F

STM [27] 63.8 81.8 79.4

CFBI [40] 66.3 81.9 81.4

LWL [12] 59.5 81.6 81.5

Table 5. Results on the validation sets of TAO-VOS, DAVIS 2017,

and YouTube-VOS. The result for STM-VOS for DAVIS here in-

cludes fine-tuning on the DAVIS 2017 training set and all results

on TAO-VOS include fine-tuning on the TAO-VOS training set.

Method TAO-VOS val

J&F J F

STM [27] (YouTube-VOS) 62.3 59.9 64.7

+ TAO-VOS fine-tuning 63.8 (+1.5) 61.5 66.1

CFBI [40] (YouTube-VOS) 63.9 61.9 66.0

+ TAO-VOS fine-tuning 66.3 (+2.4) 63.8 68.8

LWL [12] (YouTube-VOS) 55.9 53.0 58.7

+ TAO-VOS fine-tuning 59.5 (+3.6) 56.7 62.4

Table 6. Effect of fine-tuning on the TAO-VOS training set.

static-image training data with segmentation labels.

5.4. TAO­VOS

Next we evaluate recent VOS methods on the new TAO-

VOS benchmark. We consider three methods that together

cover the current state-of-the-art: STM-VOS [27], CFBI

[40], and LWL [12]. CFBI employs a global and a local

matching strategy to match the pixels of the current frame

to pixels of other frames in order to transfer information

which is used as internal guidance of the network to pro-

duce masks. Additionally, a special handling of the back-

ground and an instance-level attention mechanism are used.

LWL [40] uses meta-learning to learn a target model of the

object of interest. The target model predicts an encoding of

the target mask, which is used by a decoder to produce seg-

mentation masks. All three approaches are state-of-the-art

VOS methods and achieve excellent and very similar per-

formance numbers on DAVIS and YouTube-VOS.

The TAO-VOS training set only consists of 500 se-

quences which is still much smaller than YouTube-VOS

with 3,471 sequences. Hence, we initialize from YouTube-

VOS pre-training and use TAO-VOS for fine-tuning (see

supplemental material for implementation details).

The TAO-VOS validation set is only annotated at 1 frame

per second (FPS), while the video data is available at around

30 FPS. Similar to the evaluation protocol for YouTube-

VOS, an algorithm can either run only on the annotated

frames, or it can use all frames. Intuitively, tracking objects

at a higher frame-rate should be easier. For each method

we tried both variants and report the best of the two results.

Interestingly, we found that only LWL can benefit from the

higher frame rate, while STM and CFBI produces better re-

sults when run only on the annotated frames (see supple-

mental material for details).

Tab. 5 shows the results on TAO-VOS after fine-tuning,

and we also show the results of the original methods on the

validation sets of DAVIS 2017 and YouTube-VOS 2018 as

a reference. It can be noted that the absolute performance

on TAO-VOS is much lower than on DAVIS and YouTube-

VOS. Furthermore, all three methods perform very similar

on DAVIS and YouTube-VOS, while on TAO-VOS the re-

sult for LWL is significantly worse than the results of the

two other methods. These results show that TAO-VOS is

much more challenging than DAVIS and YouTube-VOS,

and that it can further reveal differences between methods

which were not visible on existing datasets. The best result

of 66.3 J&F is relatively low and leaves much room for

improvement by further methods, while the performance on

DAVIS and YouTube-VOS shows strong signs of saturating.

In Tab. 6, we analyze the effect of fine-tuning on the

TAO-VOS training set. It can be seen that all three meth-

ods benefit from fine-tuning with the largest improvement

of 3.6 percentage points achieved by LWL.

Fig. 4 shows qualitative results on two example se-

quences. It can be seen that both considered sequences are

3066



STM

CFBI

LWL

GT

STM

CFBI

LWL

GT

Figure 4. Qualitative results on the TAO-VOS validation set. Here we compare STM-VOS [27], CFBI [40], LWL [12], and the ground

truth (GT). For the two considered hard sequences from TAO-VOS, all considered VOS methods fail to segment the objects accurately

after some time.

very hard with many objects and that all three considered

methods lose track of all objects after some time. Again,

this highlights that TAO-VOS as a benchmark has strong

potential to enable further progress in VOS.

6. Conclusion

We started with the observation that the progress of VOS

is strongly driven by the availability of VOS datasets, and

that current VOS datasets are still relatively small and do not

cover diverse, long, and challenging enough videos. Sub-

sequently, we identified the high manual effort of dense

pixel-wise annotations as a major bottleneck for further

progress in VOS. Towards a solution, we show that dense

labels might not be necessary, and only bounding boxes

plus few or no segmentation annotations are enough to cre-

ate pseudo-labels from which VOS methods can learn al-

most as much as from costly dense annotations. As a proof

of concept, we labeled the TAO-VOS training set semi-

automatically with high quality. In contrast to VOS perfor-

mance saturating on current VOS benchmarks, the challeng-

ing TAO-VOS validation set reveals differences between

and shortcomings of state-of-the-art VOS methods. We

hope that our work inspires the creation of even larger VOS

datasets which can be labeled with less effort.
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