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Figure 1: Image Inpainting results by our method based on hypergraph convolution on spatial features. Each pair shows the input image

and predicted image by our method. White pixels represent the missing data that needs to completed. [Best viewed in color]

Abstract

Image inpainting is a non-trivial task in computer vi-

sion due to multiple possibilities for filling the missing data,

which may be dependent on the global information of the

image. Most of the existing approaches use the attention

mechanism to learn the global context of the image. This

attention mechanism produces semantically plausible but

blurry results because of incapability to capture the global

context. In this paper, we introduce hypergraph convolution

on spatial features to learn the complex relationship among

the data. We introduce a trainable mechanism to connect

nodes using hyperedges for hypergraph convolution. To the

best of our knowledge, hypergraph convolution have never

been used on spatial features for any image-to-image tasks

in computer vision. Further, we introduce gated convolu-

tion in the discriminator to enforce local consistency in the

predicted image. The experiments on Places2, CelebA-HQ,

Paris Street View, and Facades datasets, show that our ap-

proach achieves state-of-the-art results.

1. Introduction

Image inpainting is the task of filling the missing regions

such that modifications in the image are semantically plau-

sible and can be further used in real-world applications such

as restoring damaged or corrupted parts, removing distract-

ing features from images, and completing occluded regions.

There have been many learning and non-learning methods

proposed in the past few decades. However, due to its in-

herent equivocalness and complexity in the natural images,

image inpainting remains a challenging task.

To create a semantically plausible and realistic image,

generally there are two requirements, (a) global semantic

structure, and (b) fine detailed texture around the holes.

Capturing of global semantic structure is non-trivial as

a trained model can be easily biased towards producing

blurred content. Current image inpainting methods can be

broadly divided into two categories: 1. content or texture

copying approaches [8, 8, 11], and 2. generative networks

based approaches [34, 47, 57].

The first method, content or texture copying, borrows the

content or textures from the non-hole pixels to fill the miss-
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ing regions. An example is total variations (TV) [46, 40]

based approaches, which exploit the smoothness property in

the image to fill in the missing regions. The patch matching

approach borrows content from the surroundings to fill the

missing regions. Patch Match algorithms [8, 3, 11, 12, 17]

iteratively fill the missing pixels by searching the similar

patches from the non-holes pixels in the image. These meth-

ods can effectively fill even the high-frequency missing con-

tent, however, are unable to identify the global semantic

structure of the image producing improbable results.

Generative networks are being used in many computer

vision tasks such as Image super-resolution [4, 37], image

de-blurring [60, 41], image colorization [6, 56] etc. The

generative network based approaches [39, 20, 42, 51, 53, 54,

34, 52] use these generative networks to predict the missing

region in an image. These approaches learn to model dis-

tribution for the missing region conditioned on the image’s

available surrounding regions. In [20], the idea of using

global and local discriminators to improve the local consis-

tency of the completed image was proposed. These meth-

ods worked well when there are similar images in the train-

ing and test sets. However, these methods may not able to

produce satisfying results for a totally different test image.

Moreover, these methods produced artifacts for large irregu-

lar holes. In [42], a patch swap mechanism between the Im-

age2Feature network and Feature2Image network was used.

This helped in combining the copying and deep learning ap-

proaches to map the uncompleted image with the completed

images. [51, 53, 54] used novel contextual attention mech-

anisms to borrow the patches from a distant location.

Inspired by the hyperrealism art genre of painting, which

resembles the high-resolution images, we propose a novel

image inpainting method using the hypergraphs structure.

The proposed hypergraph structure enables the network to

find matching features from the background to fill in the

missing regions. We use a two-stage network (coarse and

refine network) for image inpainting. Firstly, the coarse

network roughly fills the missing region and then the re-

fine network uses this coarse output to produce finer results.

We introduce a novel data-dependent method for develop-

ing incidence matrix for hypergraph convolution. To the

best of our knowledge, this is one of the first works to pro-

pose use of hypergraph convolution networks on spatial fea-

tures for any image to image tasks in computer vision. We

also show that our proposed method obtains substantially

better results for both center and irregular mask for image

inpainting. The proposed hypergraphs convolutional layer

can easily be used for the other computer vision tasks such

as image super-resolution, image de-blurring, to get a global

context in the image. Further we introduce gated convolu-

tion in discriminator to enforce the local consistency in the

predicted image. Our major contributions can be summa-

rized as,

• We propose a novel Image inpainting network using

hypergraphs to produce globally semantic completed

images.

• We propose a trainable method to compute data-

dependent incidence matrix for hypergraph convolu-

tions.

• We introduce gated convolution instead of regular con-

volutions in the discriminator, enabling it to enforce

local consistency in the completed image.

Further, we train our network using a simple yet effective

incremental strategy, which enables completion of the ir-

regular holes. We also test our network on four publicly

available datasets and show that our method performs sig-

nificantly better than the previous state-of-the-art-methods.

2. Related Work

Free Form Image Inpainting: One of the major prob-

lem with CNNs for image inpainting is that they provide

equal weight to each spatial pixel in the image and hence

are unable to discriminate between the hole pixels and non-

hole pixels. To go around this problem, [34] introduced a

partial convolution that would allow different weightage for

the hole and non-hole pixels. They applied a convolutional

operation only on the hole pixels and then followed it by a

rule-based update of the mask for the following layers. In

[52], the authors improved upon the idea of masked con-

volutions by introducing gated convolutions. Instead of the

rule-based update of the mask, they introduced a trainable

approach to find the mask values, where the masks are cal-

culated using convolution operation and then multiplied by

the spatial features to assign different weights for hole and

non-hole pixels. In this work, we build upon this gated con-

volution framework to propose our method.

Graph Neural Networks (GNN): Recently there has

been a growing interest [16, 30, 26] to extend the deep

learning approaches for the graph-related data. The con-

ventional CNNs can be seen as a special case of graph data

in which each spatial pixel is connected by its surrounding

pixels. Graph neural networks can increase the network’s

overall receptive field and hence enforce global consistency

in the predictions [35]. Despite the significant improvement

in these methods, there has been a limited use of GNNs in

image inpainting. GNNs have been used in some of the

related fields such as image super-resolution [59], seman-

tic segmentation [31, 55], image de-noising [44, 45] etc.

[59] models the correlation between the cross-scale simi-

lar patches as a graph and introduce and patch aggregation

module to build the high-resolution image from the low-

resolution counterpart. In [44, 45], the authors present a

non-local aggregation block that uses a graph neural net-

work for aggregating the features from far away pixels. To
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Figure 2: Overview of our proposed hypergraph convolution on

the spatial features. First, we compute the incidence matrix H

using the information gathered from the input features and then

we compute the hypergraph convolution using the calculated inci-

dence matrix as given by Eq - (5).

build the graph, they find the distance between the spatial

features and chooses k-nearest neighbors. In [31], the au-

thors introduce a method for finding the similarity matrix

for the graph, which is formed using each spatial pixel as

vertex, using a data-dependent technique. They further use

it in a pyramid based structure for the task of semantic seg-

mentation. We extend this technique for the hypergraph

neural networks to model a much more complex relation

between the pixels using hyperedges, connecting more than

two nodes using a single edge.

GNNs are efficient and can easily handle the long-range

contextual information in the image, but they cannot ac-

curately represent the non-pair relations among the data.

Hypergraphs are a more generalized version of the graph

in which a hyperedge can connect any number of vertices.

Recently many researchers are using hypergraphs to rep-

resent their data in the deep learning approaches [50, 25].

In [13], the authors proposed hypergraph neural network

(HGNN) which introduces spectral convolution on hyper-

graphs, using the regularization framework introduced in

[58]. In [2], the authors introduce a hypergraph attention

module. The hypergraph attention module further exerts an

attention mechanism to learn the dynamic connections of

hyperedges. Both of the previous methods cannot handle

the dynamic structure of the hypergraphs. [22] introduces

an idea of dynamic hypergraph construction, using the k-

NN clustering method. This method is able to manage the

dynamic nature of the input data, but it limits the number

of nodes that can be connected. We propose a hypergraph

inspired image inpainting method which can learn the hy-

pergraph structure from the input data.

3. Methodology

We start the method discussion with brief introduction

to spectral convolution on hypergraphs and then present the

details oftrainable hypergraph module (Figure 2). Later, we

discuss details of the inpainting network.

3.1. Hypergraph Convolution

Hypergraphs structure is used in many computer vision

tasks to model the high-order constraints on the data which

cannot be accommodated in the conventional graph struc-

ture. Unlike the pairwise connections in graphs, hypergraph

contains hyperedge which can connect two or more ver-

tices. A hypergraph is defined as G = (V,E,W), where

V = {v1, . . . , vN} is the set of vertices, E = {e1, . . . , eM}
represents the set of hyperedges, and W ∈ R

M×M is a

diagonal matrix containing the weight of each edge. The

hypergraph G can be represented by the incidence matrix

H ∈ R
N×M . For a vertex v ∈ V , and an edge e ∈ E the

incidence matrix is defined as,

h(v, e) =

{

1 if v ∈ e

0 if v 6∈ e
(1)

For a given hypergraph G, the vertex degree, D ∈ R
N×N ,

and hyperedge degree B ∈ R
M×M are defined as Dii =

∑M
e=1

WeeHie, and Bee =
∑N

i=1
Hie respectively,

Next, the incidence matrix H , vertex degree D, and

hyperedge degree B, are used to compute the normal-

ized hypergraph Laplacian matrix ∆ ∈ R
N×N as, ∆ =

I−D
−1/2

HB
−1

H
T
D

−1/2. It is a symmetric positive

semi-definite matrix [58] and the eigen decomposition

∆ = ΦΛΦ
T can be used to get the complete set of the

orthonormal eigenvectors Φ = {φ1, . . . , φN} and a diag-

onal matrix Λ = diag(λ1, . . . , λN ) containing the corre-

sponding non-negative eigenvalues. We can define the hy-

pergraph Fourier Transform, x̂ = Φ
T
x, which transforms a

signal x = (x1, . . . , xN ) into the spectral domain spanned

by the basis of Φ, also known as Fourier basis. Generaliz-

ing the convolutional theorem into structured space of hy-

pergraphs, the convolution on the signal x ∈ R
N can be

defined as:

g ⊛ x = Φg(Λ)ΦTx (2)

where g(Λ) = diag(g(λ1), . . . , λN ) is a function of the

Fourier coefficients [13]. However, to compute the con-

volution on the signal x it would be required to compute

the eigenvectors of the Laplacian matrix. So, Defferrand et

al. [9] parameterized g(Λ) with truncated chebyshev poly-

nomials up to Kth order, hence defining the convolutional
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Figure 3: Overview of our proposed network for Image inpainting. The Coarse network roughly completes the missing holes. Later, the

hypergraph convolution based Refine network generates the final high quality completed image.

operation on the hypergraph signal as,

g ⊛ x =

K
∑

k=0

θkTk(∆)x (3)

where θk is a vector of chebyshev polynomial coefficients,

and Tk is the chebyshev polynomial. In Eq - (3), we ex-

cluded the calculation of eigenvectors of the Laplacian ma-

trix. We can further simplify the formulation by limiting

K = 1. In [28], it is approximated λmax ≈ 2 because of

the scale adaptability of neural networks. Therefore, our

convolutional operation on the hypergraph signal becomes,

g ⊛ x ≈ θD−1/2
HWB

−1
H

T
D

−1/2x (4)

where θ is the only chebyshev coefficient left after taking

K = 1 chebyshev polynomials.

For a given hypergraph signal X l ∈ R
N×Cl , where Cl

is the dimension of the feature vector of input at layer l,

we can generalize the convolution operation in multi-layer

hypergraph convolutional network as,

X
l+1 = σ(D−1/2

HWB
−1

H
T
D

−1/2
X

l
Θ) (5)

where Θ ∈ R
Cl×Cl+1 is the learnable parameter, and σ is

the non-linear activation function.

In Eq - (5), the incidence matrix H encodes the hyper-

graph structure, which is further used to propagate informa-

tion among the hypergraph nodes. Hence, it can be easily

seen that better hyperedges’ connections would lead to bet-

ter information sharing among the nodes, further improving

the completed image. Currently, the formation of these in-

cidence matrices is limited to non-trainable methods.

3.2. Hypergraphs Convolution on spatial features

To overcome the limited receptive field of CNN archi-

tectures, recent studies transform the spatial feature maps

into the graph-based structure and perform graph convo-

lution to capture the global relationship between the data

[5, 32, 33]. It can be easily observed that simple graphs are

a special case of hypergraphs where each hyperedge con-

nects only two node. These simple graph can easily rep-

resent the pair-wise relationship among data but it is diffi-

cult to represent the complex relationship among the spa-

tial features of the image because of which we use hyper-

graphs instead of graphs. To transform the spatial features

F l ∈ R
h××w×c into the graph-like structure, we consider

each spatial feature as a node having a feature vector of di-

mension c, X l ∈ R
hw×c.

In the recent studies [13, 2, 49], for the visual classifica-

tion problem, the incidence matrix H is formed using the

euclidean distance between features of the images [13, 49].

To better capture the image’s intra-spatial structure, we pro-

pose an improved incidence matrix that can learn to cap-

ture long-term intra-spatial dependencies. Instead of the

euclidean distance between the spatial features, we use the

cross correlation of the spatial features to calculate each

node’s contribution in each hyperedge. The incidence ma-

trix H contains the information regarding each node’s con-

tribution in each hyperedge and it is expressed as,

H = Ψ(X)Λ(X)Ψ(X)TΩ(X) (6)

where Ψ(X) ∈ R
N×Ĉ , is the linear embedding of the in-
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CelebA-HQ Places2

% Metrics PICNet[57] GMCNN[47] DeepFill[52] SN[51] Ours PICNet[57] GMCNN[47] DeepFill[52] Ours

0
.1

-0
.2

PSNR ↑ 30.29 30.98 31.21 30.16 33.34 29.6 30.35 29.87 32.21

SSIM ↑ 0.971 0.977 0.9744 0.969 0.985 0.953 0.964 0.960 0.974

FID ↓ 6.223 6.487 3.786 7.143 2.177 13.269 8.687 9.567 6.465

L1 ↓ 2.004 1.9193 1.622 2.203 0.683 1.340 1.192 1.240 0.745

L2 ↓ 0.234 0.203 0.187 0.235 0.124 0.309 0.273 0.306 0.184

0
.2

-0
.3

PSNR ↑ 28.10 28.84 28.52 28.55 30.23 26.54 27.35 26.89 29.13

SSIM ↑ 0.951 0.961 0.955 0.954 0.970 0.911 0.932 0.924 0.950

FID ↓ 8.343 8.931 6.013 9.342 4.026 21.496 14.250 15.007 11.175

L1 ↓ 2.508 2.303 2.179 2.560 1.250 2.230 1.938 2.030 1.390

L2 ↓ 0.375 0.329 0.339 0.339 0.240 0.603 0.523 0.588 0.357

0
.3

-0
.4

PSNR ↑ 26.38 26.80 26.62 27.00 28.22 24.50 25.37 24.93 27.17

SSIM ↑ 0.927 0.941 0.933 0.934 0.954 0.862 0.897 0.885 0.923

FID ↓ 10.334 15.840 8.650 11.930 5.991 29.340 19.900 21.566 16.116

L1 ↓ 3.070 2.819 2.784 3.047 1.834 3.190 2.710 2.850 2.048

L2 ↓ 0.551 0.524 0.516 0.476 0.374 0.963 0.804 0.902 0.545

0
.4

-0
.5

PSNR ↑ 24.92 24.49 25.08 25.39 26.69 22.95 23.79 23.40 25.68

SSIM ↑ 0.898 0.906 0.906 0.903 0.935 0.806 0.853 0.838 0.890

FID ↓ 13.015 33.358 11.410 15.960 7.942 37.399 25.589 27.624 21.211

L1 ↓ 3.730 3.588 3.469 3.827 2.454 4.218 3.574 3.750 2.750

L2 ↓ 0.773 0.914 0.738 0.690 0.530 1.360 1.148 1.260 0.760

0
.5

-0
.6

PSNR ↑ 23.47 21.33 23.67 22.90 25.27 21.51 22.37 22.08 24.35

SSIM ↑ 0.86 0.842 0.873 0.838 0.911 0.742 0.802 0.785 0.851

FID ↓ 16.13 64.449 14.852 25.440 10.087 45.630 33.239 34.387 28.237

L1 ↓ 4.529 5.120 4.270 5.530 3.146 5.380 4.559 4.746 3.530

L2 ↓ 1.074 2.008 1.010 1.245 0.730 1.900 1.580 1.710 1.030

Table 1: Quantitative comparison of our method with state-of-the-art methods on CelebA-HQ and Places2 datasets wrt different hole

percentages. (↑ Higher is better, ↓ Lower is better)

put features followed by a non-linear activation function (in

our case ReLU function), and Ĉ is the dimension of the

feature vector after the linear embedding, Λ(X) ∈ R
Ĉ×Ĉ

is a diagonal matrix, which helps in learning a better dis-

tance metric among the nodes for the incidence matrix H ,

and Ω(X) ∈ R
N×M helps to determine the contribution of

each node for each hyperedge, and m is the number of hy-

peredges in the hypergraph. All Ψ(X), Λ(X), and Ω are

data-dependent matrices. Ψ(X) is implemented by 1 × 1
convolution on the input features, Λ(X) is implemented by

channel-wise global average pooling followed by a 1 × 1
convolution as used in [19], and Ω(X) is used to capture

the global relationship of the features to develop better hy-

peredges (implemented using s× s filter, we keep s = 7).

We compute the incidence matrix H l as shown in the

(Figure-2), and it can be formulated as,

H
l = Ψ(X l)Λ(X l)Ψ(X l)TΩ(X l)

Ψ(X l) = conv(X l,W l
Ψ)

Λ(X l) = diag(conv(X̂ l,W l
Λ))

Ω(X l) = conv(X l,W l
Ω)

(7)

where X̂ l ∈ R
1×1×Ĉ is the feature map produced after

global pooling of the input features, W l
Ψ, W l

Λ and W l
Ω are

the learnable parameters for the linear embedding. To avoid

the negative values in the incidence matrix H , which could

lead to imaginary values in the degree matrices, we use the

absolute values in the incidence matrix. Then we formulate

our hypergraph convolution layer on spatial features as,

X
l+1 = σ(∆X

l
Θ) (8)

where Θ ∈ R
Cl×Cl+1 is the learnable parameters, σ is

the non-linear activation, (we use Exponential Linear Unit

(ELU) [7]), X l are the input features and Xl+1 are the out-

put features.

3.3. Inpainting Network Architecture

The network architecture of our proposed method is

given in (Figure-3). We use a two-stage coarse-to-fine net-

work architecture. The coarse network roughly fills the

missing region, which is naively blended with the input im-

age, then refine network predicts the finer results with sharp

edges. In the refine network, we use the hypergraph layer

with high-level feature maps to increase the receptive field

of our network and obtain distant global information of the

image. We use dilated convolutions [20] for our coarse and

refine network to further expand our network’s receptive

field. We also used gated convolutions [52] to improve our
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Figure 4: Qualitative Comparison on the CelebA-HQ dataset. From left to right a) Ground Truth, b) Input Image, c) Pluralistic (PICNet)

[57], d) GMCNN [47], e) DeepFill-V2 [52], f) Shift-Net (SN) [51], g) Ours. All the images are scaled to the size 256× 256.

performance on an irregular mask which can be defined as,

Gating = Conv(Wg, I)

Features = Conv(Wf , I)

O = φ(Features)⊙ σ(Gating)

(9)

where Wg and Wf are two different learnable parame-

ters for convolution operation, σ is the sigmoid activation

function, and φ is a non-linear activation function, such as

ReLU, ELU, and LeakyReLU. We also remove batch nor-

malization from all our convolutional layers as they can de-

teriorate the color coherency of the completed image [20].

The architecture of the discriminator used is our method

similar to the PatchGAN [21]. We remove all the batch

normalization layers and replace all the convolution layers

with the gated convolution using which enforces local con-

sistency in the completed image. We provide the discrimi-

nator with both mask and completed/original image.

3.4. Loss Functions

Given an input image Iin with holes, and a binary mask

R (1 for holes), our network predicts Icoarse, and Irefine
from the coarse and refine network respectively. For the

given ground truth Igt, we train our network on the combi-

nation of losses consisting of content loss, adversarial loss,

perceptual loss, and edge-loss.

To force the pixel level consistency we use the L1 loss on

both coarse Icoarse and refine Irefine outputs. We define

content loss as,

Lhole = ||R⊙ (Irefine − Igt)||1

+
1

2
||R⊙ (Icoarse − Igt)||1

Lvalid = ||(1−R)⊙ (Irefine − Igt)||1

+
1

2
||(1−R)⊙ (Icoarse − Igt)||1

(10)

where Lhole is the loss for the hole pixels values, and Lvalid

is the loss for the non-pixels values.

The adversarial loss has been shown to be effective to gen-

erate realistic and globally consistent images [15, 29, 36].

The adversarial loss can be formulated as a min-max prob-

lem,

LGAN = max
D

min
G

E[log(D(Igt, R))]

+E[log(1−D(G(Iin), R)]
(11)

where G is our image inpainting network which predicts the

final completed image Irefine, and D is the Discriminator.

Perceptual loss has been used in many applications such as

image super-resolution [4, 37], image deblurring [60, 41],

and style transfer [23, 14]. For a given input x, let φl(x)
denote the high-dimension features of lth activation layer
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Figure 5: Qualitative Comparison on the Places2 dataset. From left to right a) Ground Truth, b) Input Image, c) Pluralistic (PICNet) [57],

d) GMCNN [47], e) DeepFill-V2 [52], f) Ours. All the images are scaled to the size 256× 256

of the pre-trained network, then the perceptual loss can be

defined as,

Lp =
∑

l

||φl(G(Iin))− φl(Igt)||1 (12)

We compute perceptual loss for final prediction Irefine, and

Icomp, where Icomp is the final prediction but the non-hole

pixels directly set to ground-truth [34].

To maintain the edges in the predicted images, we use the

edge-preserving loss [38]. It can be defined as,

Ledge = ||E(Irefine)− E(Igt)||1 (13)

where E(·) is the sobel filter. So our total loss Ltotal can be

written as,

Ltotal =λholeLhole + λvalidLvalid + λadvLadv

+ λpLp + λedgeLedge

(14)

where λhole, λvalid, λadv, λp and λedge are the weights to

balance the hole, valid, adversarial, perceptual and edge loss

respectively.

3.5. Incremental Training

Training the deep learning approach for image inpaint-

ing on a random mask is an arduous task because of the

random hole size in the testing phase. To handle this is-

sue, we introduce a simple yet effective training technique

for image inpainting. Initially, we start training our train-

ing with a very small hole percentage. Therefore initially,

the network can learn to output the non-hole pixels accu-

rately. Then gradually, we increase the hole percentage so

that the network can learn a better mapping for large holes.

Specifically, we train our network for K iterations and then

increase the hole size.

4. Experiments

4.1. Implementation Details

During training, we linearly scale the image’s values in

the range [0, 1]. We trained our model on NVIDIA 1080Ti

GPU with the image resolution of 256 × 256 with a batch

size of 1. We use Adams optimization [27] with β1 = 0.9,

and β2 = 0.999 and the initial learning rate of 1 × 10−4

decreasing by a factor of 0.96 after each epoch.1

4.2. Datasets

We evaluate our proposed network on four publicly

available datasets, including CelebA-HQ [24], Paris Street

View [10], Facades Dataset [43], and ten scenes in Places2

dataset [1]. The CelebA-HQ dataset contains 30, 000 im-

ages of faces, we randomly sample 28, 000 images for train-

ing and 2, 000 images for testing. There are 14, 900 images

for training and 100 images testing in the Paris Street View

Dataset. The Facades Datasets contains 400 training im-

ages, 100 validation images, and 106 testing images(For

Facades Dataset we fine-tune the model trained on Paris

1The code is available at https://github.com/

GouravWadhwa/Hypergraphs-Image-Inpainting
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Figure 6: Comparison of different variants of our proposed

method on CelebA-HQ dataset. From left to right a) Ground Truth

(GT), b) Input Image, c) w/o hypergraph attention and w/o gated

convolution in discriminator, d) w/o gated convolution in discrim-

inator, e) w/o hypergraph attention, and f) Original method.

Street View dataset). Places365-Standard Dataset contains

1.6 million training images from 365 scenes. We choose

ten different scenes including canyon, field road, field-

cultivated, field-urban, synagogue-outdoor, tundra, valley,

canal-natural, and canal-urban. Each category contains

5, 000 training images, 100 validation images, and 900 test-

ing images. We also use data augmentation, such as flipping

and rotating for the Places2 and Paris Street View datasets.

To evaluate our results, we train our model both on the

center-fixed hole and random hole. We remove 25% of the

center pixels for the center-fixed hole, and for the random

hole, we simulate spots, tears, scratches, and manual eras-

ing with brushes.

4.3. Comparison with Existing Work

We compare our method against the existing works,

including multi-column image inpainting (GMCNN)[47],

DeepFill [52], Pluralistic Image Inpainting (PICNet) [57]

(As PICNet can generate multiple results we choose the

best result based on the discriminator scores for fair com-

parison), and Shift-Net (SN) [51], for both centre masks,

and irregular masks.

Quantitative Comparison: As mentioned by [53], there

is no good numeric method for evaluating the image in-

painting results because of the existence of many plausible

results for the same image and mask. Nevertheless, we re-

port, in Table-1, our evaluation results in terms of l1 error,

l2 error, PSNR, MS-SSIM [48], and Frechet Inception Dis-

tance (FID) [18] on the validation set of places2 and testing

set CelebA-HQ datasets. In the table, we compare different

approaches on random mask of different hole percentages

for the both datasets. As shown in the table, our method

outperforms all the existence methods in terms of l1 loss, l2
loss, PSNR, MS-SSIM, and FID.

Qualitative Comparison: Figure-4, and Figure-5 shows

the comparison between our method and the other existing

methods on CelebA-HQ and Places2 datasets respectively.

We observe that our method produce much more semanti-

cally plausible and globally consistent results even for for

much larger mask region. Earlier methods performs good

en enough for small mask percentage but there performance

deteriorates as the mask size increases. Especially, GM-

CNN, and DeepFill-V2 produces severe artifacts when the

hole size increases beyond 50%. The outputs of Shift-Net

(SN) algorithm does not produce color consistent outputs.

PICNet produces semantically plausible and clear results

but the outputs produced are not globally consistent, this is

because PICNet of the discriminator which constraints the

the network to produce clearer image but looses the struc-

tural consistency of the image and hence produces artifacts

in the predicted image. Our method is able to produce much

more plausible and realistic outputs because of the hyper-

graphs, which helps the generator to learn the global context

of the image, and the gated convolutions used in discrimina-

tor helps the generator learn the local contents of the image.

4.4. Ablation Study

We further perform experiments on CelebA-HQ dataset

to study the effects of different components of our intro-

duced methodology. In figure-6, we show the comparison

between different variants of our method, including a) w/o

hypergraph attention mechanism with normal convolution

in discriminator b) Replacing gated convolution with nor-

mal convolution in the discriminator, and c) w/o hypergraph

attention mechanism. Using normal convolution in discrim-

inator affects the local consistency of the image and pro-

duces artifacts in the completed image. Not using hyper-

graph attention mechanism disturbs the global color consis-

tency of the completed image because hypergraph convolu-

tion provides the global structure of the image.

5. Conclusion

In this paper, we proposed a Hypergraph convolution

based image inpainting technique, where the hypergraph

incidence matrix H , is data-dependent and enables us to

use a trainable mechanism to connect nodes using hyper-

edges. Using hypergraphs helps the generator to get the

global context of the image. We also propose the use of

gated convolution in discriminator which helps the discrim-

inator enforce a local consistency in the image. Our pro-

posed method produces a final image which is semantically

plausible and globally consistent. Our experimental results

indicate that our method gets better performance than any

of the state-of-the-art methods and improves the quality of

the completed image. Further, we can easily extend the idea

of hypergraph convolution on spatial features in any other

application to learn the global context of the image.
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