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Figure 1: Several examples of synthesised face images produced by our model. We select four groups of images which are

arranged according to gender and age. The highlighted features in the text above are from the text annotations provided by the

CelebA database [14]. In addition to good rendering accuracy of the specified features, the images show significant variation

in terms of unspecified features.

Abstract

Text-to-Face (TTF) synthesis is a challenging task with

great potential for diverse computer vision applications.

Compared to Text-to-Image (TTI) synthesis tasks, the tex-

tual description of faces can be much more complicated and

detailed due to the variety of facial attributes and the pars-

ing of high dimensional abstract natural language. In this

paper, we propose a Text-to-Face model that not only pro-

duces images in high resolution (1024×1024) with text-to-

image consistency, but also outputs multiple diverse faces to

cover a wide range of unspecified facial features in a nat-

ural way. By fine-tuning the multi-label classifier and im-

age encoder, our model obtains the adjustment vectors and

image embeddings which are used to transform the input

noise vector sampled from the normal distribution. After-

wards, the transformed noise vector is fed into a pre-trained

high-resolution image generator to produce a set of faces

with the desired facial attributes. We refer to our model as

TTF-HD. Experimental results show that TTF-HD gener-

ates high-quality synthesised faces from free-form text de-

scriptions with state-of-the-art performance.
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1. Introduction

With the advent of Generative Adversarial Networks

(GAN) [5], image generation has made huge strides in terms

of both image quality and diversity. However, the orig-

inal GAN model [5] cannot generate images tailored to

meet design specifications. To this end, many conditional

GAN models have been proposed to fit different task sce-

narios [7, 25, 17, 22, 21, 19, 24]. Among these works,

Text-to-Image (TTI) synthesis is an important, yet less stud-

ied, topic. TTI refers to generating a photo-realistic image

which matches a given text description. As an inverse im-

age captioning task, TTI aims to establish an interpretable

mapping between image space and the text semantic space.

TTI has huge potential and can be used in many applications

including photo editing and computer-aided design. How-

ever, natural language contains high dimensional informa-

tion which is often less specific but also much more abstract

than images. Therefore, this research problem represents a

considerable challenge.

Just like TTI synthesis, the sub-topic of Text-to-Face

(TTF) synthesis has immense practical value in areas such

as criminal investigation and also biometric research. For

example, police often need professional artists to sketch

likenesses of suspects based solely on the descriptions of

eyewitnesses. This task is time-consuming, requires great

skill and often results in inferior images. Many police may

not have access to such professional artists. However, with

a well-trained Text-to-Face model, we could quickly pro-

duce a wide variety of high-quality photo-realistic pictures

based simply on the descriptions of eyewitnesses. More-

over, TTF can be used to address the emerging issues of

data scarcity arising from the growing ethical concerns re-

garding informed consent for the use of faces scraped from

the internet in modern biometrics research.

A major challenge of the TTF task is that the linkage

between face images and their text descriptions are much

looser than for, say, the bird and flower images commonly

used in TTI research. A few sentences of description are

hardly adequate to cover all the variations of human facial

features. Also, for the same face image, different people

may use quite different descriptions. This increases the

challenge of finding satisfactory mappings between these

descriptions and the facial features. Therefore, in addition

to the aforementioned two criteria, a TTF model should

have the ability to produce a group of images with high

variation conditioned on the same text description. In a

real-world application, a witness could choose one image

among several possible images which they believe is clos-

est the suspect. Image diversity is also extremely important

for biometric researchers to obtain enough photos of rare

ethnicities and demographics when synthesising large ethi-

cal face datasets that are exempt from the issue of informed

consent.

We propose a GAN model which includes a novel TTF

framework satisfying: 1) high image quality; 2) improved

consistency of synthesised images and their text descrip-

tions; and 3) the ability to generate a group of widely dif-

fering face images from the same text description.

More specifically, we propose a pre-trained BERT [3]

multi-label model for natural language processing. This

model outputs sparse text embeddings of length 40. We

then fine-tune a pre-trained MobileNets [6] model using

CelebA’s [14] training data where the images have paired

labels. Next, we predict labels from the input images. Then

we structure a feature space with 40 orthogonal axes based

on the noise vectors and the predicted labels. After this op-

eration, the input noise vectors can be moved along spec-

ified adjustment directions to render output images which

exhibit the desired features. Last, but certainly not least, we

use the state-of-the-art image generator, StyleGAN2 [12],

which maps the noise vectors into a feature disentangled la-

tent space, to generate high-resolution images. As Fig. 1

shows, the synthesised images match the features of the de-

scription while exhibiting both good variation and excellent

image quality.

1.1. Motivation and Ethical Considerations

There are emerging ethical concerns in the face research

community including 1) scraping faces from the internet

without user consent; 2) constructing face datasets with

significant racial bias where some minorities are often ne-

glected; and 3) offensive slurs from the meta-data associ-

ated with real people’s faces being harvested from the in-

ternet. As a pioneering work targeting at resolving some of

these ethical issues, our research starts by resolving the is-

sue of violating user consent first and, to some extent, helps

combat the racial bias problem by providing the ability to

generated synthetic images of large numbers of desired eth-

nicities conditioned by text descriptions.

This work is a part of the Ethical Database of Interactive

Training Heads (EDITH) project which has been reviewed

by the Office of Research Ethics and is deemed to be outside

the scope of ethics review under the National Statement on

Ethical Conduct in Human Research and University policy

due to the synthetic nature of the data.

1.2. Contributions

Our work has the following main contributions.

• Proposes a novel TTF-HD framework comprising a

multi-label text classifier, an image label encoder, and

a feature-disentangled image generator to generate

high-quality faces with a wide range of variation.

• Adds a novel 40-label orthogonal coordinate system to

guide the trajectory of the input noise vector.
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• Uses state-of-the-art StyleGAN2 [12] as the genera-

tor to map the manipulated noise vectors into the dis-

entangled feature space to generate 1024×1024 high-

resolution images.

This paper is continued as follow. In Section 2, we re-

view the important works in TTI, TTF, and models of the

generators. In Section 3, we describe our proposed frame-

work in detail. In Section 4, experimental results are pre-

sented both qualitatively and quantitatively and an ablation

study is conducted to show the importance of the vector ma-

nipulating operations. In Section 5, we conclude our work

by summarising our contributions and the limitations of our

approach.

2. Related Works

2.1. Text­to­Image Synthesis

In the area of TTI, Reel et al. [17] first proposed to take

advantage of GAN, which includes a text encoder and an

image generator and they simply concatenated the text em-

bedding to the noise vector as input. Unfortunately, this

model failed to establish good mappings between the key-

words and the corresponding image features. Moreover, due

to the final results being directly generated from the con-

catenated vectors, the image quality was so poor that im-

ages were easily spotted as a fake. To address these two

issues, StackGAN [22] proposed to generate images hier-

archically by utilising two pairs of generators and discrim-

inators. Later, Xu et al. proposed AttnGAN [21]. By in-

troducing the attention mechanism, this model successfully

matched keywords with the corresponding image features.

Their interpolation experimental results indicated that the

model could correctly render the image features according

to the selected keywords. For example, by changing the de-

scription from “blue bird” to “red bird”, the image features

can be rendered accordingly. This model works remarkably

well in translating bird and flower descriptions. However,

in these cases, the descriptions are mostly just one sentence.

If the descriptions are longer, the efficacy of text encoding

deteriorates because the attention map becomes harder to

train.

2.2. Text­to­Face Synthesis

Compared to the number of works in TTI, the published

works in TTF are far fewer. The main reason is that a face

description has a much weaker connection to facial features

compared to that of, say, bird or flower images. Typically,

the descriptions of birds and flowers are primarily about the

colour of the feathers or petals. Descriptions of faces can be

much more complicated with gender, age, ethnicity, pose,

and other important facial attributes. Moreover, most of

the TTI models are trained on Oxford-102 [16], CUB [20],

and COCO [13] which are not face image datasets. When

dealing with faces, the only face dataset that is suitable is

Face2text [4] which has only five thousand pairs of samples

— this not large enough to train a satisfactory model.

With all of the challenges mentioned above, there are

still several inspiring works engaging in Text-to-Face syn-

thesis. In a project named T2F [8], Akanimax proposed to

encode the text descriptions into a summary vector using

the LSTM network. ProGAN [10] was adopted as the gen-

erator of the model. Unfortunately, the final output images

exhibited poor image quality. Later, the author improved

his work, which he named T2F 2.0, by replacing ProGAN

with MSG-GAN [9]. As a result, both image quality and

image-text consistency improved considerably, but the out-

put showed low variation with regard to facial appearance.

To address the data scarcity issue, O.R. Nasir et al. [15]

proposed to utilise the labels of CelebA [14] to produce

structured pseudo-text descriptions automatically. In this

way, the samples in the dataset are paired with sentences

which contain positive feature names separated by conjunc-

tions and punctuation. The results are 64×64 pixel images

showing a certain degree of variation in appearance. The

best output image quality so far is from Chen et al. [2]

which also adopted the model structure of AttnGAN [21].

Therefore, this work has the same issues with text encoding

mentioned previously.

2.3. Feature­Disentangled Latent Space

Conventionally, the generator will produce random im-

ages from noise vectors sampled from a normal distribution.

However, we desire to control the rendering of the images in

response to the feature labels. To do this, Chen et al. [1] pro-

posed to disentangle the desired features, by maximising the

mutual information between the latent code c of the desired

features and the noise vector x. In his experiments, he intro-

duced a variation distribution Q(c|x) to approach P (c|x).
Finally, the latent code indicates that it has managed to learn

interpretable information by changing the value in a certain

dimension. However, the latent code in this work has only

3 or 4 dimensions; we require 40 features, which is much

more complicated. Later, Karras et al. [11] established a

novel style-based generator architecture, named StyleGAN,

which does not take the noise vector as input like the previ-

ous works. The input vector is mapped into an intermediate

latent space through a non-linear network before being fed

into the generator network. The non-linear network consists

of eight fully connected layers. A benefit for such a setting

is that the latent space does not have to support sampling

according to any fixed distribution [11]. In other words, we

have more freedom to combine the desired features.

3. Proposed Method

Our proposed model, named TTF-HD, comprises a

multi-label classifier T , image encoder E, and a genera-
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Figure 2: TTF-HD diagram. The text is fed into the multi-label classifier T which then outputs a text vector ltrg that

represents 40 facial attributes. The image generator G firstly synthesises an image from a random noise vector z. Then the

image encoder E outputs the image embeddings lorg . The differentiated embedding ldiff is used to manipulate the original

noise vector from z to ẑ. Finally, the generator synthesises an image with the desired features from ẑ.

tor G is shown in Fig. 2. Details will be discussed in the

following subsections.

3.1. Multi­Label Text Classification

To conduct the TTF task, it is of vital importance to have

sufficient facial attribute labels to fully describe a face. We

propose to use the CelebA [14] dataset which includes 40

facial attribute labels for each face. To map the free-form

natural language descriptions to the 40 facial attributes, we

propose to fine-tune a multi-label text classifier T to obtain

text embeddings of length 40. Note that the keywords in the

descriptions are the same words or synonyms of text labels

in the CelebA dataset. Some labels might be considered

offensive to some people, but we need to use these labels

so we can compare our approach to the work of others —

we truly do not wish to cause offence even to synthesized

people.

With these considerations, we adopt the state-of-the-art

natural language processing model, Bidirectional Trans-

former (BERT) [3]. In light of the fact that this is a 40-

class classification task, we choose to use the large net-

work of the BERT model as it has better performance on

high-dimensional training data. Some features have differ-

ent names for their opposites attributes. For example, when

training the model T , the feature “age” could be represented

by either “young” or “old”. However, there is no “Age” la-

bel in the CelebA dataset [14] but only “Young”. Therefore,

in practice, “young” might be represented by a value close

to 1 and “old” might be close to 0 in the real classification

results. If a feature is not specified, it is set to 0. This pro-

cess is shown in Fig. 3. Finally, the classifier outputs a text

vector of length 40 for each description.

Figure 3: A possible classification result of the text classi-

fier T .

Note that one advantage of our text classifier compared

to the earlier text encoders is that there is no restriction on

the length of text descriptions. In previous works, the text

is mostly crammed into one or two sentences. For face de-

scriptions, the length is generally much longer than for bird

and flower descriptions, which makes traditional text en-

coders inappropriate.

3.2. Image Multi­Label Embeddings

In the proposed framework, an image encoder E is re-

quired to predict the feature labels of the generated images.

To do this, we fine-tune a MobileNet model [6] with the

samples of CelebA [14]. The reason for choosing Mo-

bileNet is that it is a light-weight network model that has
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a good trade-off between accuracy and speed. With this

model, we can obtain the image embeddings which have

the same length as the text vectors of the images generated

from the noise vectors.

3.3. Feature Axes

After training the image encoder, now we can find the re-

lationship between the noise vectors and the predicted fea-

ture labels by logistic regression. The length of the noise

vectors is 512 (x ∈ R
512) and the length of thefeature vec-

tors is 40 (y ∈ R
40). Therefore, we obtain:

y = x ·B (1)

where B is the matrix of dimension 512×40 to be solved.

This matrix needs to be orthogonalised because we must

disentangle all the attributes so that the noise vectors can

move along a certain feature axis without affecting the oth-

ers. By the Gram-Schmidt process, the projection operator

is:

proj
u
(v) =

〈v,u〉
〈v,v〉u (2)

where v is the axis to be orthogonalised and u is the refer-

ence axis. Then, we obtain:

uk = vk −
k−1
∑

j=1

proj
uj
(vk),

wk =
uk

‖uk‖
, (k = 1, 2, ...40) .

(3)

In (3), the matrix W = [w1,w2, ...wk] is normalised so

that W is unitary.

After these steps, we obtain the feature axes which are

used to guide the update direction of the input noise vectors

to obtain the desired features in the output images.

3.4. Noise Vector Manipulation

Manipulating the noise vectors is vital to our work be-

cause this determines whether the output images will have

the described features as the text corpus. In the model di-

agram Fig. 2, this is the process of changing the random

noise vector from z to ẑ by (4) where l is a column vector

which determines the direction and magnitude of the move-

ment along the feature axes.

ẑ = z +W · l (4)

To ensure that the model will produce an image with the

desired features no matter where the noise vectors are lo-

cated in the latent space, we introduce four operations.

Differentiation. As shown in Fig. 2, the text classifier

embedding output is denoted ltrg and the predicted em-

bedding from the initial random vector is given by lorg =

E(G(z)). Intuitively, we can use ltrg to guide the move-

ment of noise vectors along the feature axes. However, the

value range of ltrg is [0, 1]. This means that the model can-

not render features in the opposite direction, say, young ver-

sus old, because there are no labels corresponding to the

opposite values. To solve this, we use differentiated embed-

dings ldiff to guide the feature editing obtained by (5)

ldiff = ltrg − lorg. (5)

In this way, the noise vectors can be moved in both pos-

itive and negative directions along the feature axes because

the value range of the differentiated embeddings is [−1, 1].
For the features which have a similar probability value in

both the text embeddings and the image embeddings, their

probability value is cancelled out and they will not be ren-

dered repeatedly in the output images. This operation is

shown in Fig. 2. For each feature, according to its proba-

bility level in ltrg and lorg , the movement direction can be

positive, negative or neutral.

Note that to minimize interference of the unspecified fea-

tures in the text descriptions, we do not apply the differen-

tiation operation to such features. Instead, we keep their

value as zero in the differentiated embeddings.

Nonlinear Reweighting: In the differentiated embed-

dings, the labels with values approaching -1 or 1 are the

specified features where the text descriptions are specified

in either a positive or negative way. Apart from these labels,

there may be some other labels whose values are between

-1 and 1 which tend to interfere with the desired feature

rendering. Therefore, we need to emphasize the specified

features. To do this, we scale the differentiated embeddings

range slightly from [−1, 1] to
[

−π
3
, π
3

]

. Then we compute

the tan(.) of the mapped differentiated embeddings. As a

result, values approaching the ends of the range will get a

higher weighting. In our case, since tan(pi/3) =
√
3, the

reweighed value range is now
[

−
√
3,
√
3
]

.

Normalization: As the noise vectors are sampled from

a normal distribution, they have a higher probability to be

sampled near the origin where the probability density is

high. However, the more steps we move the vectors along

different feature axes, the larger the distance becomes be-

tween these vectors and the origin, which will lead to more

artefacts in the generated images. That is why we need

to renormalise the vectors after each movement along the

axes. This distance can be denoted as L1 distance. There-

fore, for the noise vector X = [x1,x2, ...xn], we get

X ′ = [x′

1
,x′

2
, ...,x′

n] with (6)

‖x‖
1
=

N=512
∑

i=1

|xi|

x
′

i =
xi

‖x‖
1

(i = 1, 2, ..., 512)
(6)

3384



Figure 4: Images produced with single-sentence input. With fewer specified labels in the text, the model generates samples

with higher variation.

Feature lock: To make the face morphing process more

stable, we have a feature lock step each time we move the

vectors along a certain axis. In other words, the model only

uses the axes along which the vectors have been moved

as the basis axes to disentangle the following feature axis.

While for other axes of unspecified attributes in the textual

descriptions, the movement direction and step size along

such axes are not fixed to ensure diversity in the generated

images. In this way, noise vectors are locked only in terms

of the features mentioned in the descriptions.

3.5. High Resolution Generator

The generator G we use is a pre-trained model of Style-

GAN2 [12]. On the basis of mapping the noise vectors

which are sampled from the normal distribution to the in-

termediate latent space, StyleGAN2 improves the small

artefacts by revisiting the structure of the network. With

this generator, not only can the model synthesise high-

resolution images, but it can also render the desired features

from the manipulated input vectors.

4. Experiments and Evaluation

Dataset: The dataset we use is CelebA [14] which con-

tains over 200k face images. For each sample, there is a

paired one-shot label vector whose length is 40. In addi-

tion, there is another paired text description corpus set in

which every description has up to 10 sentences. There may

be some redundant sentences in some of them, but every

description includes all the features the paired label vector

indicates. We use this dataset to fine-tune the pre-trained

multi-label text classifier and the pre-trained image encoder.

Experimental setting: In our evaluation experiments,

we randomly choose 100 text descriptions. With each of

them, the model will randomly generate 10 images. There-

fore, the test set has 1000 images in total. As the experi-

ments show, there will be significant image morphing when

the noise vector moves twice along certain feature disen-

tangled axis. Thus, we set the step size as 1.2, which multi-

plies the reweighted output of the differentiated vector. This

guarantees a final weight which is used to move along the

axis of around 2 (
√
3× 1.2).

4.1. Qualitative Evaluation

Image quality: Fig. 1 also shows the paired descriptions

in each group. We can see that most of the generated images

are correctly rendered with the specified features.

Image diversity. To show the proposed method has

great feature generalisation capacity, we conduct the image

synthesis conditioned on the single-sentence description. In

other words, apart from the key features that the sentences

describe, the model should diversify the other facial features

in the output. As Fig. 4 shows, for each single-sentence de-

scription, the proposed model produces images with high

diversity.
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Figure 5: Image morphing via GAN of each group in the ablation study. (A) group with all operations applied (the default

for TTF-HD); (B) group with reweighting, differentiation, and normalisation operations; (C) group with reweighting, differ-

entiation operations; (D) group with the reweighting operation; and (E) group with no operations applied. We fix the noise

vector input of each group. The figure shows the GAN morphing process from the randomly generated image on the left

column to the final output on the right column.

4.2. Quantitative Evaluation

In this section, we apply three metrics to evaluate the

above three criteria respectively. They are Inception Score

(IS) [18] which is used in many previous works, Learned

Perceptual Image Patch Similarity (LPIPS) [23] which is for

evaluating the diversity of the generated images, and Cosine

Similarity which is widely used to evaluate the similarity of

two chunks of a corpus in natural language processing. Due

to the lack of the source code for most of the works in the

TTF area such as T2F 2.0 [8], we compare our experimen-

tal results with the TTF implementation of AttnGAN [21]

which has produced the best results so far.

Table 1 shows the evaluation results of different mod-

els. We see the proposed TTF-HD method outperforms the

state-of-the-art method AttnGAN [21] in terms of both im-

age quality and Text-to-Image similarity.

Table 1: Evaluation results of different models

Methods IS CS* LPIPS

TTF-HD (ours) 1.117±0.127 0.664 0.583±0.002

AttnGAN 1.062±0.051 0.511 ——

*Maximum for each group.

4.3. Ablation Study

In Section 3, we propose four operations to manipulate

the noise vector to get the desired features. In this subsec-

tion, we conduct the ablation study and discuss the effects

of the different operations applied.

To conduct the ablation study, we have 5 experiment set-

tings. We choose one face description and produce 100 ran-

dom images under each experimental setting respectively.

Then, we use the above three metrics to evaluate the effect
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of different operations.

Fig. 5 shows the GAN morphing process of the gener-

ated images. We can see that with all the proposed four ma-

nipulating operations, Group A can obtain an output with

all desired features. While for other groups, the final im-

ages all suffer from artefacts on the rendering of the face

and the background. This is because, with too many feature

axis adjustment steps, the noise vector has been moved to

a low-density region of the latent space distribution, which

leads to the mode collapse problem.

Table 2: Ablation study evaluation results

Exp. Evaluation Metrics

Settings IS CS* LPIPS

Group A 1.122±0.043 0.754 0.634±0.005

Group B 1.116±0.080 0.739 0.608±0.005

Group C 1.187±0.062 0.762 0.603±0.005

Group D 1.101±0.095 0.683 0.521±0.006

Group E 1.102±0.033 0.706 0.532±0.005

*Maximum for each group

Table 2 shows the quantitative evaluation metrics on dif-

ferent groups of TTF-HD. We can see that Group A has the

best diversity score as well as the second-best performance

in terms of both IS and CS score. This suggests that apply-

ing all of the proposed operations leads to a good trade-off

between image quality, text-to-face similarity and diversity.

5. Conclusion

In this paper, we set three main goals in the text-to-face

image synthesis task: 1) high image resolution; 2) good

text-to-image consistency; and 3) high image diversity. To

this end, we propose a model, named TTF-HD, compris-

ing a multi-label text classifier, an image encoder, a high-

resolution image generator, and feature-disentangled axes.

From both qualitative and quantitative evaluative compar-

isons, we see that the generated images exhibit good image

quality, text-to-image similarity, and image diversity.

However, the model is still not entirely robust. There

are always some images in the batch that are far more con-

sistent with the text descriptions. This is possibly caused

by insufficient accuracy of the text classifier and image en-

coder due simply to the lack of training data. In addition,

features in the latent space are still not well disentangled, so

that when you are moving the noise vector along one fea-

ture axis, other features which are highly correlated with it

may also change. These issues must be addressed in future

research.
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