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Abstract

Predicting the future paths of an agent’s neighbors accu-

rately and in a timely manner is central to the autonomous

applications for collision avoidance. Conventional ap-

proaches, e.g., LSTM-based models, take considerable com-

putational costs in the prediction, especially for the long

sequence prediction. To support more efficient and accu-

rate trajectory predictions, we propose a novel CNN-based

spatial-temporal graph framework GraphTCN, which mod-

els the spatial interactions as social graphs and captures

the spatio-temporal interactions with a modified temporal

convolutional network. In contrast to conventional mod-

els, both the spatial and temporal modeling of our model

are computed within each local time window. Therefore, it

can be executed in parallel for much higher efficiency, and

meanwhile with accuracy comparable to best-performing

approaches. Experimental results confirm that our model

achieves better performance in terms of both efficiency and

accuracy as compared with state-of-the-art models on vari-

ous trajectory prediction benchmark datasets.

1. Introduction

Trajectory prediction is a fundamental and challenging

task, which needs to forecast the future path of the agents in

autonomous applications, such as autonomous vehicles, so-

cially compliant robots, agents in simulators, to navigate in

a shared environment. With multi-agent interaction in these

applications, the agents are required to respond timely and

precisely to the environment for collision avoidance. There-

fore, the ability of the agents to predict the future paths of

their neighbors in an efficient and accurate manner is thus

much needed. Although recent works [25, 33, 17, 28] have

achieved great improvement in modeling complex social in-

teractions among agents to generate accurate future paths,

trajectory prediction is still a challenging task, where the

deployment of the prediction models in real-world applica-
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Figure 1: The illustration of trajectory prediction in a

crowd. The solid blue lines are the observed trajectories,

and the dash blue lines indicate the plausible future path.

The influence levels α between two agents are different

based on their relative movement trends, e.g., αij and αji

between agent i, and agent j are different.

tions is mostly restricted by its high computational cost and

long inference time. For example, some small robots are

only equipped with limited computing devices that can not

afford the high inference cost with existing solutions.

In particular, the trajectory prediction is typically mod-

eled in two dimensions, i.e., the temporal dimension and

the spatial dimension, which is illustrated in Fig. 1. The

temporal dimension models the historical movement dy-

namics for each agent. Most of the state-of-the-art ap-

proaches [1, 12, 25, 17, 19, 34] have focused on Recurrent

Neural Networks (RNNs), to capture such sequence dynam-

ics since RNNs are designed for sequence modeling. How-

ever, besides the training difficulties of gradient vanishing

and exploding [30] in modeling long sequential data, both

training and inference of RNN models are notoriously slow

compared with their feed-forward counterparts, e.g., Con-

volutional Neural Networks (CNNs). This is largely due to

the fact that each hidden state of RNNs is dependent on the

previous inputs and hidden states. As a consequence, the

prediction of RNNs is produced sequentially, and thus not

parallelizable.

The spatial dimension models the human-human interac-

tion, i.e., interactions between the agent and its neighbors.
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There are mainly three categories of methods proposed

to capture the spatial interaction, including the distance-

based [1, 12, 25], attention-based [33, 7, 42, 19] and graph-

based [17, 21, 51, 28] approaches. Distance-based ap-

proaches introduce a social pooling layer to summarize the

crowd interactions, while the attention-based approaches in-

stead dynamically generate the importance of neighbors us-

ing soft attention. The graph-based approaches model the

agents’ representation with a graph and utilize graph neural

network, e.g., GCN [20, 51, 28] or GAT [41], to capture the

spatial interaction features of agents, which is empirically

more intuitive and effective in modeling complex social in-

teractions. However, existing graph-based approaches are

mostly based on the simple aggregation of neighbor fea-

tures or their absolute geometric distance, which neglects

the relative relation between agents in the spatial modeling.

To improve effectiveness and efficiency, we propose

a novel Graph-based Temporal Convolutional Network

(GraphTCN), to capture the spatial and temporal interac-

tion for trajectory prediction. In the temporal dimension,

different from RNN-based methods, we adopt a modified

gated convolutional network (TCN) to capture the temporal

dynamics for each agent. The gated highway mechanism

introduced to CNNs dynamically regulate the information

flow by focusing on more salient features, and the feed-

forward nature of CNN makes it more tractable in training

and parallelizable for much higher efficiency both in train-

ing and inference. In the spatial dimension, we propose an

edge feature based graph attention network (EFGAT) with

skip connections and the gate mechanism for each time step

to model the spatial interaction between the agents. Specif-

ically, nodes in the graph represent agents, and edges be-

tween agents denote their relative spatial relation. EFGAT

learns the adjacency matrix, i.e., the spatial interaction, of

the graph adaptively. Together, the spatial and temporal

modules of GraphTCN support more effective and efficient

modeling of the interactions within each time step between

agents and across the time steps for each and every agent.

We summarize our main contributions as follows:

• We propose an edge feature based graph attention net-

work (EFGAT), which introduces the relative spatial

relation as prior knowledge, to capture the spatial in-

teraction adaptively with attention.

• We propose to model the temporal interactions with

a gated convolutional network (TCN), which empiri-

cally proves to be more efficient and effective.

• Our spatial-temporal framework achieves better per-

formance compared with best-performing approaches.

Specifically, we reduce the average displacement error

by 19.4% and final displacement error by 13.6% with

5 times less predicted paths, and achieves up to 5.22x

wall-clock time speedup over existing solutions.

We organize this paper as follows: in Section 2, we intro-

duce the background and discuss related works in detail.

Our GraphTCN framework is introduced in Section 3. Then

in Section 4, results of GraphTCN measured in both accu-

racy and efficiency are compared with state-of-the-art ap-

proaches. Finally, Section 5 concludes the paper.

2. Related Work

Human-Human Interactions. Research in the crowd in-

teraction model can be traced back to the Social Force

model [14], which adopts the nonlinearly coupled Langevin

equations to represent the attractive and repulsive forces for

human movement in the crowed scenarios. Similar hand-

crafted approaches[39, 2, 44] have proved successful in

crowd simulation [16, 32], crowd behavior detection [27],

and trajectory prediction [47]. Recent works instead in-

vestigate deep learning techniques to capture the interac-

tion between agents and neighbors. The distance-based

approaches [1, 12, 26] either adopt the grid-based pool-

ing or symmetric function to aggregate the hidden states

from neighbors or encode the geometric relation between

the agents. Different from the distance-based methods,

attention-based approaches [33, 42, 7, 51] provide better

crowd modeling since they differentiate the importance of

neighbors by soft attention or gating mechanisms. More

recent works [17, 21, 28] adopts graph-based networks to

learn the social interaction by aggregating neighborhood

features adaptively with the adjacency matrix, which pro-

vides an effective way to represent the pedestrian’s topology

in a shared space. Social-STGCNN [28] captures the spatial

relation by introducing a kernel function on the weighted

adjacency matrix; STGAT [17, 21] adopts GAT directly on

the LSTM hidden states to capture the spatial interaction

between pedestrians. However, Social-STGCNN only fo-

cuses on distance features between agents, and STGAT sim-

ple aggregates neighbor features. EGNN [9] incorporates

the edge feature into the graph attention mechanism to ex-

ploit richer graph information. However, EGNN neglects

the relative relation between pedestrians. We propose to

model the pedestrian interactions with a novel edge feature

based graph network, which integrates the relative distance

feature into graph attention to learn an adaptive adjacency

matrix for the most salient interaction information.

Pattern-based Sequence Prediction. Sequence prediction

refers to the problem of predicting the future sequence us-

ing historical information. Recently, pattern-based meth-

ods prevails for many sequence prediction tasks, e.g., speed

recognition [40, 4, 11], activity recognition [6, 18], and

natural language processing [3, 37, 8]. In particular, tra-

jectory prediction can be formulated as a sequence predic-

tion task, which uses historical movement patterns of the

agent to predict the future path. Most trajectory predic-

tion methods adopt recurrent neural networks (RNNs), e.g.,
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Long Short-Term Memory (LSTM) networks [15], to cap-

ture the temporal movement. However, RNN-based mod-

els suffer from gradient vanishing and exploding in training

and focus more on recent inputs during prediction, espe-

cially for long input sequences. Many sequence prediction

works [40, 45] instead adopt convolutional neural networks

(CNNs). The convolutional networks can effectively cap-

ture long-term dependency and greatly improve prediction

efficiency. The superiority of CNN-based methods can be

largely attributed to the convolutional operation, which is

independent of preceding time-steps and thus can process

in parallel. The recent work [29] proposes a compact CNN

model to capture the temporal information, and the results

confirm that the CNN-based model can yield competitive

performance in trajectory prediction. However, it fails to

model the spatial interaction between pedestrians. In this

work, we propose to capture the spatial interaction with EF-

GAT and introduce gated convolutional networks to better

capture the temporal dynamics.

Graph Networks for Trajectory Prediction. Many

studies adopt spatial-temporal graph neural networks

(STGNNs) for the sequence prediction task, such as action

recognition [48, 35], taxi demand prediction [50], and traf-

fic prediction [49]. Specifically, the sequence can be for-

mulated as a sequence of graphs of nodes and edges, where

nodes correspond to agents and edges denote their interac-

tions. The sequence can then be effectively modeled with

the spatial-temporal graph network. Likewise, the trajectory

prediction task can be modeled with the spatial-temporal

graph network [42, 43, 17, 24, 28]. In particular, the pre-

diction task needs to be modeled in two dimensions, i.e.,

the spatial dimension and the temporal dimension. The spa-

tial dimension models the interaction between the agent and

its neighbors, and the temporal dimension models the his-

torical trajectory for each agent. Specifically, each node in

the graph represents one pedestrian of a scene, and each

edge between two nodes captures the interaction between

the two corresponding pedestrians. For example, social at-

tention [42] models each node with the location of the agent,

and edge with the distance between pedestrians, where the

spatial relation is modeled with an attention module and

then the temporal with RNNs. Similarly, [43] constructs

the STGNN with Edge RNN and Node RNN based on the

location. STGAT [17] adopts GAT to capture the spatial

interaction by assigning different importance to neighbors

and adopts extra LSTMs to capture the temporal informa-

tion. The major limitation of these methods lies in captur-

ing the spatial interaction along the temporal dimension.

Notably, the future path of an agent is not only depen-

dent on the current position but meanwhile the neighbors’.

However, the information of such spatial interaction may

be lost during the aggregation of the node features along

the temporal dimension using RNN-based models. Differ-

ent from RNN-based methods, Social-STGCNN [28] and

Graph WaveNet [45] adopts CNNs to alleviate parameter

inefficiency and demonstrate the capability of CNNs in the

temporal modeling of long sequences. In this paper, we

propose an enhanced temporal convolutional network to in-

tegrate both the temporal dynamics of the agent and the spa-

tial interactions.

3. GraphTCN

The goal of trajectory prediction is to predict the future

paths of all agents that are present in a scene. Naturally,

the future path of an agent depends on its historical trajec-

tory, i.e., the temporal interaction, and is influenced by the

trajectories of neighboring agents, i.e., the spatial interac-

tion. Therefore, the trajectory prediction model needs to

take into account both features when modeling the spatial

and temporal interactions for the prediction.

Problem Formulation Formally, the trajectory prediction

can be defined as follows: given N pedestrians observed in a

scene with Tobs steps, the position of a single pedestrian i ∈
{1, . . . , N} at the time step t ∈ {1, . . . , Tobs} is denoted as

Xt
i = (xt

i, y
t
i). Therefore, the observation positions of the

pedestrian Xi can be represented as X1:Tobs

i = X1
i , X2

i ,...,

XTobs

i . The goal of trajectory prediction is then to predict

all the future positions Ŷ t
i (t ∈ {Tobs+1, . . . , Tpred}) con-

currently.

3.1. Overall Framework

As illustrated in Fig. 2(a), GraphTCN comprises three

key modules, including the edge feature graph attention

(EFGAT) module, temporal convolutional (TCN) module,

and a decoder. First, we embed the absolute positions and

relative positions of each pedestrian into a fixed-length hid-

den space and feed these trajectories features into the EF-

GAT module. The residual learning mechanism and skip

connections [13] are incorporated into the network to fa-

cilitate the gradient backpropagation and encourage the in-

termediate feature reusage. The TCN module is a feed-

forward one-dimensional convolutional network with a gat-

ing activation unit [40] for capturing the most salient fea-

tures. Finally, the decoder module produces future trajecto-

ries of all pedestrians. We elaborate on the details of each

module of GraphTCN in the following sections.

3.2. EFGAT Module for Spatial Interaction

The EFGAT module shown in Fig. 2(b) is designed to en-

code the spatial interaction between pedestrians with graph

attentional layers and graph residual connections. For-

mally, pedestrians within the same time step can be formu-

lated as a directed graph G = (Vt, Et), where each node

vti ∈ Vt, i ∈ {1, . . . , N} corresponds to the i-th pedestrian,

and the weighted edge
(

vti , v
t
j

)

∈ Et represents the human-

human interaction from pedestrian i to j. The adjacency
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Figure 2: (a) The overview of GraphTCN, where EFGAT captures the spatial interaction between agents for each time step

and is based on the historical trajectory embedding. TCN further captures the temporal interaction across time steps. The

decoder module then produces multiple socially acceptable trajectories for all the agents simultaneously. (b) EFGAT captures

the spatial salient information with graph attentional layers (GAL) and skip connections.

matrix At ∈ R
N×N of G thus represents the spatial rela-

tionships between pedestrians.
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Figure 3: An illustration of the graph attentional layer with

5 nodes employed by our EFGAT module. The attention

αt
ij between node i and its neighbors is learned from their

embedding features and relative spatial relation Ât
ij .

We represent the spatial relation of nodes as an asym-

metric, non-negative matrix in this task since the influence

between the agents should be different based on their rela-

tive movement behavior. Therefore, instead of constructing

graphs with undirected spatial distance, we introduce rela-

tive spatial location as prior edge feature knowledge of the

adjacency matrix:

Ât
ij = φs

(

xt
i − xt

j , y
t
i − ytj ;Ws

)

(1)

where φs(·) embeds the relative distance features to a higher

dimension F1 with a linear transformation, and Ws is the

embedding weight. We feed the learnable edge weights

and node features into graph attentional layers illustrated

in Fig. 3 to capture the spatial interaction:

αt
ij =

exp
(

σ
(

W1ĥ
t
i +W2ĥ

t
j + Ât

ij

))

∑

k∈Ni
exp

(

σ
(

W1ĥ
t
i +W2ĥ

t
k + Ât

ij

)) (2)

where ĥt
i ∈ R

F1 is the node input feature for pedestrian

i at time step t, F1 is the dimension of node features, Ni

is the set of neighbors for node i in the graph, σ(·) is the

LeakyReLU activation, and W1, W2 are learnable weights.

In this way, αt
ij gives the importance weight of neighbor

j to pedestrian i dynamically via the self-attention mecha-

nism. The gating function empirically proves to be effective

in controlling the signal bypassing [40, 46, 5]. We there-

fore adopt the gated activation unit to dynamically regulate

the information flow and select salient features:

gti = g
(

Whĥ
t
i + bh

)

⊙
(

Whĥ
t
i + bh

)

(3)

where g(·) is the tanh activation function, Wh is the affine

transformation parameters, bh is the bias, and ⊙ denotes

the element-wise multiplication. This can be understood as

a multiplicative skip connection which facilitates gradients

flow through layers [5]. To stabilize the self-attention pro-

cess [41, 45], we adopt the multi-head attention mechanism:

ht
i =

Kn

k=1

σ





∑

j∈Ni

αt
kijg

t
j



+R(ĥt
i;Wr) (4)
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where Wr is the learnable parameters,
f

denotes concate-

nation, and K is the number of attention heads. R(·) de-

notes the graph residual term [40, 41, 45]. We name the

proposed multi-head graph attention layers as GAL, which

can be stacked multiple times for better modeling spatial

relation (e.g., twice as in Fig. 2(b)). Subsequently, we can

obtain final node representations of h = {h1, h2, . . . , hN},

where hi ∈ R
Tobs×(K·F1) captures the aggregated spatial

interaction between pedestrian i and all the neighbors at

each time step. Therefore, the EFGAT module can learn

a self-adaptive adjacency matrix that captures the relative

importance for different pedestrians.

3.3. TCN for Spatial and Temporal Interaction
Modeling

The movement pattern of a pedestrian is greatly influ-

enced by the historical trajectory and the moving patterns

of neighboring pedestrians. We therefore propose to cap-

ture the spatial and temporal interaction between pedestri-

ans using a modified temporal convolution network (TCN),

which is illustrated in Fig. 4.
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Figure 4: (a) An illustration of TCN with a stack of 3 con-

volution layers of kernel size 3. The input hin (i.e., h(0))

contains the spatial information captured by the preceding

EFGAT modules. The output of TCN ~h is collected by con-

catenating hout (i.e., h(L)) across time. (b) The gating func-

tion in each of the TCN layers to control the bypass signals.

The network shown in Fig. 4(a) can be regarded as a

short-term and long-term encoder, where lower convolution

layers focus on local short-term interactions, while in higher

layers, long-term interactions are captured with a larger re-

ceptive field. For example, if the kernel size of the TCN is k,

the receptive field size in the l-th layer is (k−1)·l+1, which

increases linearly ascending layers. Therefore, the top layer

of TCN captures interactions within a longer time span.

Since the order of the input is important in the sequence

prediction task, we therefore adopt the left padding of size

k − 1 instead of symmetric padding for the convolution,

where each convolution output convolves over the input of

the corresponding time step and the preceding k − 1 time

steps. The output size of each convolution then remains the

same as the input. In each layer of TCN 4 in Fig.(b), the

gated activation unit utilizes two non-linear functions to dy-

namically regulate the information flow formed as:

h
(l+1) = g

(

W
(l)
g ∗ h(l)

)

⊙ σ
(

W
(l)
f ∗ h(l)

)

(5)

where h
(0) is the output h from the EFGAT modules,

h
(l) ∈ R

N×Tobs×F2 , Wg and Wf are the learnable 1D-

convolution parameters, and σ(·) denotes the sigmoid func-

tion. The final output of the TCN module can be denoted

as ~h ∈ R
N×Tobs×F2 . In this way, the embedding vector ~hi

captures all the spatial-temporal interaction between the i-

th pedestrian and its neighbors. We note that TCN can han-

dle much longer input sequences with the dilated convolu-

tion [40], which is more efficient than RNN-based methods.

3.4. Future Trajectory Prediction

In real-world applications, given the historical trajectory,

there are multiple plausible paths of future movements. We

also model such uncertainty of the final movement in our

decoder module for the trajectory prediction.

Following STGAT [17], the decoder module produces

multiple socially acceptable trajectories by introducing a

shared random noise z ∈ R
Tobs×F3 , which is concate-

nated with the spatial-temporal embedding ~h, as part of

the decoder input. Specifically, the input of the decoder

can be denoted as h̃ ∈ R
N×Tobs×(F2+F3). We adopt a

canonical MLP layer to generate the relative future loca-

tions ∆Ŷ ∈ R
N×Tpred×2 and denote the architecture with

such an MLP decoder as GraphTCN.

The predicted relative location ∆Ŷ is the relative posi-

tion to the origin for all the pedestrians. We then convert

relative positions to absolute positions Ŷ and adopt the va-

riety loss as the loss function for training, which computes

the minimum ADE loss among the M plausible trajectories:

LADE(Ŷ ) =

∑N

i=1

∑Tpred

t=1

∥

∥

∥Ŷ t
i − Y t

i

∥

∥

∥

2

NTpred

(6)

Lvariety = min
m

(

LADE

(

Ŷ (m)
))

(7)

where Y is the ground truth, Ŷ (1), . . . , Ŷ (M) are the M

plausible trajectories predicted. Although this loss function

may lead to a diluted probability density function [38], we

empirically find that it facilitates better predictions of mul-

tiple future trajectories.

We further integrate the deep generative strategy [36, 19,

26] adopted widely in multimodal prediction to enhance

the decoder of our GraphTCN. Specifically, during train-

ing, we concatenate
−→
h with the ground-truth future trajec-

tories encoded by an MLP layer, and then further encode

the two features with an MLP to produce µ and σ for the
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noise distribution ẑ = N (µ,σ), ẑ ∈ R
N×F4 following

CVAE [36, 26]. Note that ẑ is randomly sampled from dis-

tribution N (0, I) during inference. For the final relative lo-

cation prediction, we again concatenate ẑ with ~h and feed

them into an MLP layer to produce ∆Ŷ . We further in-

troduce the KL divergence regularization term [10, 22] to

stabilize the training process:

L = λ1Lvariety + λ2DKL(N (µ,σ)‖N (0, I)) (8)

GraphTCN with such a decoder is denoted as GraphTCN-G

in the following experiments.

4. Experiments

In this section, we evaluate our GraphTCN on two world

coordinates trajectory prediction datasets, i.e., ETH [31]

and UCY [23], and compare the performance of GraphTCN

with state-of-the-art approaches.

4.1. Datasets and Evaluation Metrics

ETH and UCY datasets comprise five outdoor environ-

ments that are recorded from a fixed top-view. The ETH

dataset includes ETH and Hotel, and the UCY dataset con-

sists of UNIV, ZARA1, and ZARA2. In these datasets,

pedestrians exhibit complex behaviors, including nonlinear

trajectories, moving from different directions, walking to-

gether, walking unpredictably, avoiding collisions, stand-

ing, etc. The crowd density of a single scene in each en-

vironment varies from 0 to 51 pedestrians per frame. All

datasets are records at 25 frames per second (FPS), and the

pedestrian trajectory is extracted at every 2.5 FPS.

We use two metrics to evaluate model performance: Av-

erage Displacement Error (ADE) defined in Equation 6,

which is the average Euclidean distance between the pre-

dicted trajectory and the ground truth over all prediction

time steps, and Final Displacement Error (FDE), which is

the Euclidean distance between the predict position and the

ground truth position at the final time step Tpred.

The model is trained with the leave-one-out policy [1, 12,

42, 17]. We produced 4 samples for the next 4.8 seconds (12

timesteps) based on 3.2 seconds (8 timesteps) observations.

4.2. Implementation Details

We train with Adam optimizer in 50 epochs with a learn-

ing rate of 0.0001. The node feature embedding size is set

to 64. The EFGAT module comprises two graph attention

layers with attention heads K = 2, 1, and a output dimension

F1 = 16, 32 for the first and second GAL respectively. F2

is also set to 16, and the noise z has a dimension of F3 = 4.

For the GraphTCN-G decoder, the ground truth trajectory

during training is encoded into a dimension of 64 for F4.

M is set to 4 and 20 for predicting 4 and 20 sample paths.

All the LeakyReLU in our model has a negative slope of

0.2. λ1 is set to 1, and λ2 is set to 0.5 for the first 15 epochs

and 0.2 for the rest epochs for GraphTCN-G.

4.3. Baselines

We compare our framework with the baselines and four

state-of-the-art approaches: LSTM adopts the vanilla LSTM

encoder-decoder model to predict the sequence of every sin-

gle pedestrian. Social LSTM [1] builds on top of LSTM

and introduces a social pooling layer to capture the spa-

tial interaction between pedestrians. CNN [29] adopts the

CNNs to predict the sequence. SR-LSTM [51] obtains the

spatial influence by iteratively refining the LSTM hidden

states through the gate and attention mechanism. Social

GAN [12] improves over Social LSTM with socially gener-

ative GAN to generate multiple plausible trajectories. Tra-

jectron [19] utilizes LSTM to capture the spatial and tem-

poral relations and incorporates CVAE [36] to generate the

distributions of future paths. SoPhie [33] introduces the so-

cial and physical attention mechanisms to an LSTM based

GAN model. Social-STGCNN [28] is one of the SOTA ap-

proaches that utilizes CNNs to extract spatio-temporal fea-

tures. STGAT [17] is one of the SOTA approaches which

adopts vanilla GAT to model the spatial interactions and

LSTMs to capture temporal interaction.

4.4. Quantitative Results

The results in Table 1 show that GraphTCN achieves

consistently better performance compared with existing

models on these benchmark datasets. Our model gener-

ates multiple trajectories at once for future trajectories. We

can notice that GraphTCN achieves better prediction per-

formance than other baselines with only four predictions

instead of 20 as in most baselines, e.g., STGAT [17], with

an ADE of 0.36 and an FDE of 0.72 on average. These re-

sults confirm that our GraphTCN yields competitive results

even with less generated paths compared with previous ap-

proaches in terms of prediction accuracy, especially on the

more complex dataset UNIV, ZARA1, and ZARA2.

Ablation Study. We evaluate each module of GraphTCN

through ablation studies in Table 2. w/o EGNN refers to

the model without the spatial module. vanilla GAT refers

to the model with GAT as the spatial module while ig-

noring the relative relation between pedestrians in spatial

modeling. GraphTCN-G refers to the model which inte-

grates VAE for multi-modal future path prediction. The

result demonstrates that introducing graph neural networks

(GNN) into the framework can reduce ADE and FDE, and

adding edge relative relation to GNN leads to further im-

provement. However, these spatial interactions can only im-

prove performance mildly. We further scrutinize the dataset

and attribute these findings to the fact that pedestrians sel-

dom change their path suddenly to avoid their neighbors.
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Method ETH HOTEL UNIV ZARA1 ZARA2 AVG

LSTM∗ [1] 1.09 / 2.41 0.86 / 1.91 0.61 / 1.31 0.41 / 0.88 0.52 / 1.11 0.70 / 1.52

Social-LSTM∗ [1] 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54

CNN∗ [29] 1.04 / 2.07 0.59 / 1.27 0.57 / 1.21 0.43 / 0.90 0.34 / 0.75 0.59 / 1.22

SR-LSTM∗ [51] 0.63 / 1.25 0.37 / 0.74 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94

Social-GAN [12] 0.81 / 1.52 0.72 / 1.61 0.60 / 1.26 0.34 / 0.69 0.42 / 0.84 0.58 / 1.18

Trajectron [19] 0.59 / 1.14 0.35 / 0.66 0.54 / 1.13 0.43 / 0.83 0.43 / 0.85 0.56 / 1.14

SoPhie [33] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15

Social-STGCNN [28] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75

STGAT [17] 0.65 / 1.12 0.35 / 0.66 0.52 / 1.10 0.34 / 0.69 0.29 / 0.60 0.43 / 0.83

GraphTCN (M = 4) 0.59 / 1.12 0.27 / 0.52 0.42 / 0.87 0.30 / 0.62 0.23 / 0.48 0.36 / 0.72

GraphTCN (M = 20) 0.39 / 0.71 0.21 / 0.44 0.33 / 0.66 0.21 / 0.42 0.17 / 0.43 0.26 / 0.51

GraphTCN-G (M = 4) 0.60 / 1.21 0.27 / 0.52 0.41 / 0.84 0.28 / 0.58 0.22 / 0.47 0.36 / 0.72

GraphTCN-G (M = 20) 0.39 / 0.75 0.18 / 0.33 0.30 / 0.60 0.20 / 0.39 0.16 / 0.32 0.25 / 0.48

Table 1: Quantitative results of GraphTCN compared with baseline approaches. Evaluation metrics are reported in ADE /

FDE in meters (the lower numerical result is better). The ∗ mark denotes the deterministic model, and the rest of the baseline

approaches are stochastic models with M = 20 prediction samples.

Method M = 4 M = 20

w/o EGNN 0.38 / 0.78 0.28 / 0.54

vanilla GAT 0.37 / 0.74 0.27 / 0.54

GraphTCN 0.36 / 0.72 0.26 / 0.51

GraphTCN-G 0.36 / 0.72 0.25 / 0.48

Table 2: Ablation studies of GraphTCN.

As a consequence, the temporal features already contain

part of the spatial interactions for the prediction. Therefore,

spatial information is less critical in the prediction. Mean-

while, compared with RNN-based approaches, GraphTCN

can model the whole observed sequence better without los-

ing important temporal information.

Inference Speed. We compare the inference speed of

GraphTCN with state-of-the-art methods, including So-

cial GAN [12], SR-LSTM [51], Social-STGCNN [28] and

STGAT [17]. Table 31 reports the model inference time

and the speedup factor compared with the Social GAN in

wall-clock second. As can be observed from the results,

GraphTCN achieves much faster inference compared with

these baseline approaches. In particular, GraphTCN takes

0.00067 second inference time to generate 4 samples, which

is 42.82 times and 5.22 times faster than Social-GAN and

the most similar prior approach STGAT respectively.

4.5. Qualitative Analysis

We investigate the prediction results of our GraphTCN

by visualizing and comparing the predicted trajectories

1For a fair comparison, the reported time includes the data processing

time since some approaches require extra time to construct the graph dur-

ing inference. Note that we use the corresponding official implementations

and settings for each model, and the batch size is one in the evaluation.

Inference Time Speed-up

Social-GAN [12] 0.02869 1×
Social-STGCNN [28] 0.00861 3.33 ×

STGAT [17] 0.00350 8.20 ×
Trajectron [19] 0.00081 35.42 ×

GraphTCN (M=4) 0.00066 43.47 ×
GraphTCN-G (M=4) 0.00067 42.82 ×

GraphTCN-G (M=20) 0.00075 38.25 ×

Table 3: The inference time and speedup of GraphTCN

compared with baseline methods. The inference time is the

average of the total inference steps per pedestrians. The re-

sults are reported on an Intel Core i9-9880H Processor.

with the best-performing approach STGAT in Fig. 5. We

choose three different scenarios in which the complex in-

teractions take place. The complex interactions include

pedestrian standing, pedestrian merging, pedestrian follow-

ing and pedestrian avoidance.

In Fig. 5, we can observe that GraphTCN achieves

better performance on: firstly, direction and speed,

from Fig. 5(a)(b), we find that trajectories generated by

GraphTCN follow the same direction as the ground truth,

while predictions of STGAT deviate from the path notice-

ably. In Fig. 5(a), one pedestrian moves in an unexpected di-

rection, and GraphTCN generates an acceptable prediction

accordingly. Besides, GraphTCN generates plausible short

trajectories to the stationary pedestrian and the pedestrian

who moves slowly. Secondly, collision-free future paths,

Fig. 5(b)(c) show that STGAT may fail to make satisfactory

predictions when pedestrians come from different groups,

while GraphTCN generates better prediction in scenarios

where one pedestrian meets another group. In Fig. 5(b),
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Figure 5: Comparison of our GraphTCN (M=4) and

STGAT predictions with ground truth trajectories. To better

illustrate the results, only part of the pedestrian trajectories

are presented. The solid red line, solid blue line, and dashed

yellow line denote the observed trajectory, ground truth fu-

ture trajectory, and predicted trajectory, respectively.

GraphTCN can successfully produce predictions avoiding

future collisions when the pedestrian moves in the same di-

rection from an angle. Further, GraphTCN produces so-

cially acceptable predictions even in the more complex sce-

nario in Fig. 5(c) when the pedestrian departs for the oppo-

site directions or walks towards the same direction.

(a) (b) (c)

Figure 6: Illustration of EFGAT attention weights. The

solid green/red line is the trajectory, and the arrow indicates

the trajectory direction. The circle color shows the attention

at each time step, and the circle size corresponds to the at-

tention weight. The green trajectory without circles denotes

the target pedestrian.

Social attention. In Fig. 6, we illustrate the learned at-

tention weights by the EGAT module. The results show

that our model can capture the relative importance of the

target’s neighbors, and the attention weights between two

pedestrians vary along the path. Further, the attention

weight from pedestrian i to pedestrian j and pedestrian j

to pedestrian i is different, which is not considered in ex-

isting approaches [17, 21, 51, 28]. Less attention weight:

in Fig. 6(a), the stationary pedestrian has less impact on its

moving neighbors, and the model assigns small importance

to the pedestrians far away from the target. More significant

influence: our model assigns a higher attention weight to the

pedestrian moving toward the target in Fig. 6(a), moving

ahead or moving in the rear while having a higher velocity

in Fig. 6(b), and moving from the opposite directions be-

fore meeting the target Fig. 6(c). These cases demonstrate

that reasonable attention weights are successfully assigned

to the target pedestrian’s neighbors according to all pedes-

trian movement patterns in the scene.

(a) GraphTCN (b) GraphTCN-G (c) STGAT

Figure 7: Visualizations of diverse predicted trajectories.

(a) and (b) show four trajectories produced by GraphTCN

and GraphTCN-G, and (c) shows the 20 trajectories gener-

ated by STGAT.

Diverse trajectory predictions. Fig. 7 is the visualization

of diverse predictions. The result shows that GraphTCN can

generate the prediction closer to the ground truth even with

a smaller number of samples and can make good predic-

tions for the pedestrian, who have relatively unexpected be-

haviors. In this scenario, one pedestrian has the intention to

change its direction from the observation, and GraphTCN

can generate both the normal and unexpected predictions

for it. And for other pedestrians who have a more con-

sistent observation, the model produces future paths with

normal behaviors. Further, from Fig. 7(b) and (c), the pre-

diction area of GraphTCN is much smaller and precise than

STGAT with 20 predicted trajectories.

5. Conclusion

In this paper, we proposed GraphTCN for trajectory pre-

diction, which captures the spatial and temporal interaction

between pedestrians effectively by integrating EFGAT to

model their spatial interactions, and TCN to model both the

spatial and temporal interactions. The proposed GraphTCN

is completely based on feed-forward networks, which is

more tractable during training, and achieves better predic-

tion accuracy and higher inference speed compared with ex-

isting RNN-based solutions. Experimental results confirm

that our GraphTCN outperforms state-of-the-art approaches

on various benchmark datasets.
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