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Abstract

Training conditional generative adversarial networks

(GANs) has been remaining as a challenging task, though

standard GANs have developed substantially and gained

huge successes in recent years. In this paper, we propose

a novel conditional GAN architecture with a mirrored aux-

iliary classifier (MAC-GAN) in its discriminator for the pur-

pose of label conditioning. Unlike existing works, our mir-

rored auxiliary classifier contains both a real and a fake

node for each specific class to distinguish real samples from

generated samples that are assigned into the same category

by previous models. Comparing with previous auxiliary

classifier-based conditional GANs, our MAC-GAN learns

a fast converging model for high-quality image generation,

taking benefits from its robust, newly designed auxiliary

classifier. Experiments on multiple benchmark datasets il-

lustrate that our proposed model improves the quality of

image synthesis compared with state-of-the-art approaches.

Moreover, much better classification performance can be

achieved with the mirrored auxiliary classifier, which can

in turn promote the use of MAC-GAN in various transfer

learning tasks.

1. Introduction

Generative adversarial networks (GANs) [8, 20, 25, 38,

23, 21], as one of the most interesting topics of deep learn-

ing [14, 15, 30, 34, 10, 41, 43, 6], have gained tremendous

attention and developed substantially in recent years. Un-

like other kinds of generative models with explicitly prob-

ability density functions such as PixelCNN and PixelRNN

[39, 26, 32] and Variational Autoencoders (VAE) [12, 35],

GANs can generate high-quality samples with implicit den-

sities. Generally, GANs synthesize images via a two-player

(a generator and a discriminator) min-max game: the gen-

erator takes as input latent variables and generates samples

that can fool the discriminator to the largest extent; the dis-

criminator learns to distinguish fake samples generated by

the generator from real samples. The two players continu-

ously compete and evolve until an equilibrium is reached in

the end.

In general, standard GANs are only capable of generat-

ing images that fall into random classes because the relation

between the input latent variables and image labels is in-

tractable. Therefore, the conditional generative adversarial

network [20, 25, 44], which incorporates the label informa-

tion during training, is designed for allowing the generated

images to have a certain type. The auxiliary classifier GAN

(AC-GAN) [25] is one of the most successful variants of

conditional GAN. Besides predicting the image source (real

or fake), it introduces an extra classifier in the discriminator

to predict class labels as well (Fig. 1(left)). It has been val-

idated that AC-GAN is capable of generating high-quality

images with large resolution. Moreover, another important

advantage of AC-GAN is that the trained auxiliary classifier

can be further used in classification transfer learning tasks

to acquire better performance.

However, training AC-GAN is quite challenging because

new constraints are introduced by the auxiliary classifier.

When training the discriminator, both real and fake samples

are fed into the neural network in each iteration. Usually,

there exist large gaps between the generator distribution

(fake samples) and the target distribution (real samples), es-

pecially at early training stages. This issue makes AC-GAN

difficult to train and converge because both real and fake

samples are assigned to the same class and confuse the clas-

sifier. To mitigate this problem, fast converging GAN (FC-

GAN) [17] proposes to introduce an extra ‘fake’ class in

the auxiliary classifier and all generated images are catego-

rized into this class rather than assigning them to a specific

class label (Fig. 1(middle)). By doing so, the convergence

of the auxiliary classifier is boosted. However, there is still

room for improvement of FC-GAN. As the neural networks

evolve, the generator distribution and the target distribution

get closer and closer. The ‘fake class’ that handles all fake

samples, which are usually with multimodal distributions,

becomes a barrier that prevents the auxiliary classifier from

getting converged well (see Section 5 for detailed analysis).
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Figure 1. The architectures of AC-GAN (left), FC-GAN (middle), and the proposed MAC-GAN (right).

The deterioration of the classification performance further

affects the generated image quality.

To resolve the above issues, we propose a novel condi-

tional GAN architecture with a mirrored auxiliary classi-

fier (MAC-GAN), which in its discriminator contains both

a real and a fake class for each category to distinguish real

images from generated images that fall into the same cate-

gory (Fig. 1(right)). In this way, real samples and generated

samples of the same category, which are usually with differ-

ent distributions, are categorized into two separate classes

in the classifier. Therefore, the discriminator can con-

verge fast and well. We evaluate the proposed MAC-GAN

on three widely used benchmark datasets, namely, MNIST

[16], CIFAR-10 [13], and ILSVRC-2012 (ImageNet) [7].

Extensive experimental results and analyses demonstrate

that MAC-GAN can generate high-quality, large resolution

images compared with recent state-of-the-art works. Fur-

thermore, we believe that the resulting robust classifier with

high classification accuracy can also be used in transfer

learning tasks.

The rest of this paper is organized as follows. A brief lit-

erature review is presented in Section 2. The details of the

proposed MAC-GAN is described in Section 3. Experimen-

tal configurations and results are presented and analyzed in

Section 4. Section 5 discusses the effectiveness of the pro-

posed model and points out some future directions that can

be extended from this study. Finally, Section 6 concludes

the paper.

2. Related works

2.1. Generative adversarial networks.

GAN was first introduced by Ian Goodfellow in [8] and

has become the most popular generative framework in re-

cent years. Although the vanilla GAN is hard to train

and can only model distributions of samples from simple

datasets and generate low-resolution images in the early

years, a huge amount of improvements on GAN’s architec-

tures [28], loss functions [2, 36], and training strategies [24]

have been proposed. DCGAN [28] extends the vanilla GAN

with convolutional neural networks and provides a series of

detailed hyperparameters and achieves remarkable perfor-

mance with the LSUN [45] and ImageNet-1k datasets. In

[2], the wasserstein distance is used as the metric for the

measurement of the similarity between the generated and

the real samples and the performance is significantly im-

proved. GAN has also been widely implemented in various

areas of applications, including image synthesis [25, 17],

text to image generation [47], domain adaptation [33, 3],

biomedical imaging [27, 40], and high-resolution face gen-

eration [49, 18, 48].

2.2. Conditional extension of GANs.

Conditional GANs [20, 29, 25, 17] are built on the basis

of GANs, which incorporates class labels for class condi-

tional image generation [22]. CGAN [20] is the first pro-

posed conditional GAN model in which class labels are

embedded to the input latent variables or the feature maps

of some middle layers of the generator. Therefore, images

with certain types can be generated.

Rather than concatenating class labels with latent vari-

ables, AC-GAN [25, 11] introduces an auxiliary classifier in

the discriminator to predict class labels, allowing the gen-

erated images to have a certain type. Although AC-GAN

can generate high-quality images with large resolution, the

auxiliary classifier makes AC-GAN difficult to train. This is

because both the real and fake data of a certain type, which

are usually with different distributions, are assigned to the
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same class and confuse the discriminator. To deal with this

problem, fast-converging GAN (FC-GAN) [17] proposes to

add an extra ‘fake’ class in the auxiliary classifier. All gen-

erated samples are assigned to the ‘fake’ class rather than a

specific label. By doing so, the discriminator’s loss can con-

verge much faster. However, as the generator distribution

and target distribution get closer and closer, FC-GAN usu-

ally has difficulties in converging to the equilibrium. This is

because the generated samples exhibit multimodal distribu-

tions as the sample quality get better but are assigned to the

same ‘fake’ class. To resolve the above issues, our MAC-

GAN introduces a real class and a fake class for each label

in the auxiliary classifier. As a result, all samples (real and

fake) can be properly handled by the discriminator. High-

quality images can be generated, benefiting from the fast

converging discriminator with a robust classifier.

Several other types of conditional GAN framework

are also proposed recently. For example, [22] improves

cGAN with an inner projection module in the discrimina-

tor. SAGAN [46] introduces a self-attention mechanism for

the conditional image generation. Since we focus on im-

proving the performance of auxiliary classifier-based con-

ditional GANs, these works are beyond the scope of our

study.

3. Methodology

In this section, we first briefly introduce necessary pre-

liminaries of GANs and then describe the rationale of our

proposed MAC-GAN. The architecture design of the gen-

erator and the discriminator is presented in the experiment

setup section.

3.1. Preliminaries

A standard GAN consists of two neural networks, a gen-

erator G and a discriminator D, which are parameterized by

θg and θd, respectively. The training process of a standard

GAN can be considered as a two-player min-max game.

The generator takes a latent variable z as the input and gen-

erates an image G(z) that tries to mislead the discriminator

into recognizing it as a real sample. The discriminator is

trained to distinguish real samples from generated samples.

GAN’s objective function can be formulated as Eq. (1).

LGAN = E
x∼pr(x) log [D(x)] + E

z∼pz(z) log [1−D(G(z)] ,
(1)

where pr(x) and pz(z) are the prior distributions of real

samples x and latent variables z, respectively. In the rest of

the paper, we omit the subscripts of E for notational sim-

plicity.

cGAN [20] is the first conditional extension of GAN,

which naively concatenating class label information with

both the inputs of the generator (latent variables) and the

discriminator (images). Therefore, samples conditioned by

class labels are generated without any change of GAN’s ob-

jective function. Rather than embedding labels as part of the

inputs, AC-GAN [25, 17] introduces an auxiliary classifier

for the purpose of class prediction. As a result, the discrim-

inator outputs two probabilities over class and source (real

or fake). The objective function is correspondingly mod-

ified by combining the classification loss (also known as

auxiliary classifier loss) and source loss (also known as ad-

versarial loss). FC-GAN works in similar way, except that

an extra ‘fake’ class is introduced in the auxiliary classifier

to boost the convergence of the discriminator.

3.2. The proposed MACGAN

As mentioned previously, both AC-GAN and FC-GAN

have difficulties in their loss convergence. We propose

MAC-GAN, an improved version of AC-GAN and FC-

GAN, to solve this problem. The architecture of the pro-

posed MAC-GAN is presented in Fig. 1(right). The aux-

iliary classifier in MAC-GAN represents a probability dis-

tribution over 2N class labels, where N is the number of

classes of the original dataset. Specifically, the classifier

contains both a fake node and a real node for each class. In

this way, samples with the same class label but from differ-

ent sources (i.e., real or fake) are categorized into two dif-

ferent classes. Let xr and x
f denote the real samples from

the original dataset and the fake samples from the genera-

tor, P (s|x) and P (c|x) denote the distributions over sources

and class labels, respectively. We define the objective func-

tions of MAC-GAN as follows.

Source loss. Similarly as the standard GAN, for the source

loss, the generator is optimized to generate images that fool

the discriminator (Eq. (2)).

LG
s = −E

[

logP (s = real|xf )
]

. (2)

The discriminator aims to distinguish real images from gen-

erated images, which is defined as Eq. (3).

LD
s = −E [logP (s = real|xr)]− E

[

logP (s = fake|xf )
]

.

(3)

Classification loss. Suppose the auxiliary classifier repre-

sents a distribution over 2N nodes:

[

C
r,Cf

]

=
[

cr1, c
r
2, · · · , c

r
N , c

f
1 , c

f
2 , · · · , c

f
N

]

,

where N is the number of classes, c
r/f
i (i = 1, 2, · · · , N)

represent class labels for the real and fake samples. For the

classification loss, the discriminator is trained to assign each

real sample to the correct real class and each generated sam-

ple to the correct fake class, respectively, which is defined

as Eq. (4).

LD
c = −E [logP (C = cri |x

r)]− E

[

logP (C = c
f
i |x

f )
]

.

(4)
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Figure 2. The architectures of the proposed MAC-GAN’s genera-

tor and discriminator.

On the other hand, the generator is trained to maximize the

probability to assign each generated image to the correct

real class rather than its corresponding fake class. The loss

function of the generator is formulated as Eq. (5).

LG
c = −E

[

logP (C = cri |x
f )
]

. (5)

Finally, we combine the source loss and classification

loss of both the generator and the discriminator to get MAC-

GAN’s objective functions, i.e., LG = LG
s + LG

c , LD =
LD
s + LD

c .

4. Experimental results

We first describe our implementation details of the pro-

posed MAC-GAN, including the datasets used for train-

ing, network architecture design and hyperparameter se-

lection. Then we thoroughly evaluate the performance of

our proposed MAC-GAN by comparing it with other well-

known auxiliary classifier-based conditional GAN models,

i.e., AC-GAN and FC-GAN from several perspectives.

4.1. Setup

Dataset. We use three widely used benchmark dataset for

image classification to evaluate the performance of our pro-

posed MAC-GAN, i.e., MNIST [16], CIFAR-10 [13], and

ILSVRC-2012 (ImageNet) [7]. The MNIST dataset con-

tains 60,000 training samples and 10,000 test samples of

handwritten digits from 0 to 9. All the images has a fixed

resolution of 28x28. The CIFAR-10 has a training set of

50,000 images and a test set of 10,000 images of 10 dif-

ferent classes. The resolution of the images is 32x32. The

ILSVRC-2012 (ImageNet) dataset is a large-scale dataset

with more than a million training samples of 1,000 classes.

The validation set contains 50,000 images with 50 sam-

ples for each class. In our experiments, all the samples are

cropped to a fixed image size of 224x224 before feeding

into the neural network. More specifically, training samples

are randomly cropped for the purpose of data augmentation,

and test samples are center cropped.

For MNIST and CIFAR-10 we use all the training sam-

ples to train a single model and use the whole test set to test

the performance of the auxiliary classifier. For ILSVRC-

2012, we follow the strategy in [25], i.e., training multiple

models on images of 10 classes and ensemble them together

to reduce the variability and improve the performance.

Network architecture. In our study, we focus on the

lightweight implementations of conditional GANs, which

have benefits such as reductions of power consumption and

fast inference [9, 42]. The detailed architecture of the pro-

posed MAC-GAN is shown in Fig. 2. For the MNIST and

CIFAR-10 dataset, we implement a discriminator with four

convolutional layers, followed by a fully connected layer. A

leaky ReLU (with a negative slope of 0.3) activation and a

dropout (with a probability of 0.3) layer are used after all of

the convolutional layers. For the generator, we first sample

the latent variable z with a dimension of 100 from a uniform

distribution [−1, 1] and embed the label information c with

the latent variable. Two dense layers are first implemented

to extend the dimensions and the output are reshaped into a

4-dimensional tensor followed by two deconvolutional lay-

ers and a convolutional layer. ReLU is used as the activation

function except for the last layer after which the tanh activa-

tion is used. For the ILSVRC-2012 dataset, the architecture

is similar except that we add two more convolutional and

deconvolutional layers in the discriminator and generator,

respectively. This is because the resolution of the samples

from the ILSVRC-2012 dataset is much larger than those in

the MNIST and CIFAR-10 datasets. To achieve fair com-

parison, we use the same architectures as described above

for AC-GAN and FC-GAN, except for the output layer of

the discriminator.

Training details. We train both the generator and the dis-

criminator for 100 epochs for the MNIST dataset, and 600

epochs for the CIFAR-10 and ILSVRC-2012 dataset, with

a batch size of 100, respectively. We use the Adam opti-

mizer (β1 = 0.5, β2 = 0.999) for both the generator and the

discriminator, with a learning rate of 0.00002 for all three

datasets. The Python deep learning library Keras [5] with

Tensorflow [1] as the backend is used to conduct the exper-

iments.

Evaluation strategy. We compare MAC-GAN with other

state-of-the-art auxiliary classifier-based conditional GAN

implementations, namely, AC-GAN and FC-GAN. The per-

formance is evaluated and compared qualitatively from the

perspective of visual fidelity, and quantitatively from the

perspective of parzen window estimates, inception score,

and Frechet Inception Distance (FID) score. Furthermore,

we also evaluate the classification performance with the

auxiliary classifiers of all the above models.
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samples than AC-GAN. The sample quality of MAC-GAN is the best among all three models.
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Figure 4. Loss curves over epochs of the generators and discriminators of AC, FC, and MAC-GAN with the MNIST and CIFAR-10 datasets.

4.2. Performance with MNIST and CIFAR10

4.2.1 Visual fidelity and loss curves

Visual fidelity is the most intuitive metric to evaluate the

performance of image generation. In Fig. 3 we present

the generated images at different training stages of AC-

GAN, FC-GAN, and MAC-GAN, respectively. We observe

that both FC-GAN and MAC-GAN generate recognizable

samples much earlier than AC-GAN. For example, after

10 epochs training with MNIST, both MAC-GAN and FC-

GAN can generate relatively clear images while AC-GAN

cannot. After the training is done, the samples generated

by MAC-GAN present the best visual fidelity with both the

MNIST and the CIFAR-10 datasets compared with the other

two models. Samples from MAC-GAN are clear and with

substantial diversity, but those from the other two models

are more or less blur, with artifacts.

We further analyze the performance by plotting the loss

curves of the generator and the discriminator over training

epochs. As shown in Fig. 4, our proposed MAC-GAN con-

verges better and faster as compared with AC-GAN and

FC-GAN. More specifically, for the MNIST dataset, MAC-

GAN’s generator and discriminator converges to the Nash

equilibrium after around 15 epochs. On the other hand, it

takes about 25 epochs for AC-GAN to get converged. With

the datasets of MNIST and CIFAR-10, both MAC-GAN

and AC-GAN converge closer enough to the Nash equilib-

rium. However, FC-GAN cannot achieve comparable per-

formance on loss convergence, which is consistent with our

analysis in the previous sections.

These results qualitatively indicate that the proposed

MAC-GAN achieves comparable performance of conver-

gence speed as FC-GAN, and the best performance on vi-

sual fidelity among all three models. The effectiveness of

MAC-GAN is because it takes both the advantage of faster

convergence from FC-GAN and better convergence from

AC-GAN.

4.2.2 Quantitative measurement of performance

We use three popular quantitative metrics to evaluate the

image generation performance of MAC-GAN, i.e., parzen

window estimate, inception score and Frechet Inception

Distance (FID) score.

Parzen window estimate is used as an alternative to ap-

proximate GAN’s exact likelihood, which is originally in-

tractable [4]. We follow the procedure introduced by the
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Dataset Criterion Epoch
Methods

AC-GAN FC-GAN MAC-GAN Validation set

MNIST

Parzen window

10 −109.9± 1.81 85.3± 1.73 55.8± 1.86

238.8± 2.14
20 75.6± 1.74 156.1± 1.54 159.3± 1.44

50 141.8± 1.51 165.2± 1.48 166.3± 1.43

100 154.2± 1.44 159.7± 1.46 165.2± 1.41

Inception score

10 1.17± 0.09 1.68± 0.15 1.87± 0.15

2.14± 0.03
20 1.79± 0.21 1.74± 0.13 1.91± 0.10

50 1.84± 0.16 1.82± 0.14 1.97± 0.13

100 1.97± 0.13 1.99± 0.15 2.06± 0.16

CIFAR-10

Parzen window

50 571.0± 5.30 576.6± 5.39 510.3± 5.32

752.9± 4.83
100 580.4± 5.26 624.6± 5.43 654.8± 4.98

300 615.1± 5.56 615.4± 5.38 684.9± 4.96

600 611.9± 5.49 640.0± 5.26 693.4± 4.98

Inception score

50 2.76± 0.09 4.21± 0.07 2.58± 0.08

11.05± 0.34
100 3.10± 0.08 5.01± 0.15 4.05± 0.12
300 3.69± 0.10 5.29± 0.08 5.19± 0.19
600 4.22± 0.12 5.57± 0.22 5.81± 0.18

FID

50 92.86 70.66 100.60

7.96
100 83.22 62.41 58.33

300 67.84 47.26 43.47

600 64.37 39.56 35.50
Table 1. Quantitative measurements of the generated images by AC-GAN, FC-GAN, and the proposed MAC-GAN with the MNIST and

CIFAR-10 datasets.
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Figure 5. Loss curves over epochs of the generators and discriminators of AC, FC, and MAC-GAN with the ILSVRC-2012 dataset.

initial implementation of GAN [8] for parzen window esti-

mates. We first fit a Gaussian parzen window to the sam-

ples from the validation set to obtain the σ parameter of the

Gaussian distribution, with 10-fold cross validation. Then

we use the selected σ to obtain the parzen window estimates

with randomly generated samples from the generator. The

results are listed in Table 1. Besides the measurements of

the generated samples, we also provide the scores calcu-

lated with the test/validation set as a reference, which can

be considered as the performance upper bounds. During the

training process on both datasets, MAC-GAN generates im-

ages with higher scores compared with AC-GAN and FC-

GAN. For example, the parzen window estimate of MAC-

GAN with MNIST is 165.2 after convergence, while the

scores of AC-GAN and FC-GAN are only 154.2 and 159.7,

respectively. After training for 300 epochs on the CIFAR-

10 dataset, the parzen window estimate of MAC-GAN gets

quickly saturated to 684.9, which is 11.3% higher than AC-

GAN and FC-GAN.

Inception score [37], which is with a high correlation

with human’s subjective judgment of image quality [31],

is another widely used approach to measure GAN’s per-

formance. Here we follow the procedure in [31, 25] for

the calculation of inception score. From the results pre-

sented in Table 1 we observe that for the MNIST dataset,

MAC-GAN performs better at all stages of the training pro-

cess. After the training process is completed, the incep-

tion score of the images generated by MAC-GAN is 2.06,

which is only 3.7% less than the score obtained with the

validation set. On the other hand, AC-GAN and FC-GAN

only achieve inception scores that are 7.0% and 7.9% less

than the score obtained with the validation set, respectively.

For the CIFAR-10 dataset, FC-GAN performs slightly bet-

ter than MAC-GAN at the early stages. The reason behind

this phenomenon may be that samples from the CIFAR-10

dataset are with much more variability, it is easier for FC-

GAN’s auxiliary classifier to get converged at early stages

because all of the low quality, similar-looking, fake sam-

ples are assigned to a single fake class. However, as the

quality of the generated images get improved gradually,

MAC-GAN performs the best finally, which is more essen-

tial compared with the results at early stages. After training

2571



Dataset Criterion Epoch
Methods

AC-GAN FC-GAN MAC-GAN Validation set

ILSVRC-2012

Parzen window

100 284.9± 8.09 377.6± 8.57 440.9± 8.67

879.4± 6.98200 332.6± 9.88 501.2± 9.17 520.7± 8.65

500 397.5± 8.37 523.7± 6.08 531.1± 8.48

Inception score

100 3.80± 0.13 3.83± 0.10 3.93± 0.07

15.38± 0.59200 4.72± 0.14 4.10± 0.12 4.41± 0.10
500 10.50± 0.27 10.94± 0.23 11.09± 0.23

Table 2. Quantitative measurements (parzen window estimate and inception score) of the generated images by AC-GAN, FC-GAN, and

the proposed MAC-GAN with the ILSVRC-2012 dataset.
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Figure 6. Training accuracy with the auxiliary classifiers in the discriminators.

all the models for 600 epochs, the inception score obtained

with MAC-GAN (5.81) significantly outperforms those ob-

tained with AC-GAN (4.22) and FC-GAN (5.57).

To further evaluate the generated sample quality, we in-

troduce the FID score for the comparison on CIFAR-10.

FID is another popular metric that computes the distance

between feature vectors calculated for real and fake sam-

ples. Similar to other measurements, it can be observed

that the FID scores of the samples generated by MAC-

GAN are lower than the samples obtained with AC and

FC-GAN, which indicates that MAC-GAN generates im-

ages with smaller distances compared with the real images.

4.3. Performance comparison with large scale
dataset (ILSVRC2012)

To further evaluate the performance of MAC-GAN, we

conduct experiments with the large scale dataset ILSVRC-

2012. Fig. 5 shows that MAC-GAN achieves better con-

vergence compared with AC-GAN and FC-GAN for both

the generator and the discriminator. It is worth mentioning

that compared with the MNIST and CIFAR-10 datasets, all

three models cannot completely converge to the Nash equi-

librium with ILSVRC-2012. This is because ILSVRC-2012

contains millions of training samples with much larger res-

olution and diversity, and training a GAN with ILSVRC-

2012 is a much more challenging task. Even though, the

loss of MAC-GAN still reduces to a relatively lower value

in a shorter period of time compared with AC and FC-GAN.

We also quantitatively measure the parzen window es-

timate and the inception score of MAC-GAN at different

training stages with ILSVRC-2012 (Table 2). For parzen

window estimate, MAC-GAN obtains a score of 440.9 after

Dataset
Methods

AC-GAN FC-GAN MAC-GAN

MNIST 99.04% 98.19% 98.60%

CIFAR-10 78.50% 69.32% 77.60%

ILSVRC-2012 71.60% 38.40% 71.80%
Table 3. Test accuracy of the auxiliary classifiers.

training for only 100 epochs, while the scores of AC-GAN

and FC-GAN are only 284.9 and 377.6, respectively. After

500 epochs, the parzen window estimate of MAC-GAN is

531.1, which is the best among all three models. For in-

ception score, MAC-GAN achieves a score of 11.09 after

training the model for 500 epochs, while the scores of the

other two models are less than 11. These results validate the

effectiveness of MAC-GAN on ILSVRC-2012.

4.4. Performance of the auxiliary classifiers

Since our proposed MAC-GAN focuses on the improve-

ment of the auxiliary classifier, we further analyze the clas-

sifier’s performance by plotting the classification accuracy

during the training process. The results are shown in Fig. 6.

We observe that the classification performance of FC-GAN

is better at the early stages. During this time, for AC-GAN,

the distribution of the images from each class is highly dis-

turbed by the low quality generated images. Therefore, it

does not work well. As the generator’s performance gets

better and better, the generated samples become to benefit

AC-GAN’s auxiliary classifier but perturb FC-GAN’s clas-

sifier, especially the extra ‘fake’ class. MAC-GAN takes ad-

vantage of both AC-GAN and FC-GAN at different training

stages and therefore achieves outstanding performance.

We further evaluate the trained auxiliary classifier with

the test (validation) sets of the three datasets and the results
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Figure 7. Distribution of generated and real MNIST samples with t-SNE visualization.

are presented in Table 3. We can see that for the MNIST and

CIFAR-10 datasets, MAC-GAN’s classifier achieves com-

parable performance with AC-GAN, which is much better

than FC-GAN. For the ILSVRC-2012 dataset, a test ac-

curacy of 71.80% is achieved by MAC-GAN’s classifier,

which is the best among all three models. These results val-

idate the effectiveness of our modified auxiliary classifier.

We believe better performance can be obtained in transfer

learning tasks by using MAC-GAN’s auxiliary classifier.

5. Discussion and future work

To justify the effectiveness of MAC-GAN for the mit-

igation of the multi-modal issue during the training of

auxiliary-based conditional GANs, we visualize both the

real training samples and generated samples at different

training stages via t-SNE [19] (Fig. 7, using the samples of

digits 0 and 1 in MNIST for illustration). It can be observed

that at the beginning, fake samples from different classes are

clustered together, which indicates that FC-GAN will work

better at early training stages (Fig. 7(a)). However, dur-

ing most of the time, fake and real samples from different

categories are separated from each other with clear margins

(Fig. 7(b,c)), which explains that MAC-GAN outperforms

other approaches by assigning real and fake samples of each

class to an individual node, respectively. By assigning ei-

ther all the fake samples to a single ‘fake’ class (FC-GAN),

or the real and fake samples that belong to the same cate-

gory to a single class (AC-GAN) harms the performance of

the auxiliary classifier. At the end of the training, real and

fake samples from the same class mixed with each other,

indicating AC-GAN’s loss is more reasonable. However,

since the generator has almost converged at this time, there

is little impact on the sample quality.

We use several fake and real samples of from MNIST to

have a further understanding of the effectiveness of MAC-

GAN (Fig. 8). For each image, we present the top-5 predic-

tions of the auxiliary classifier. We see that MAC-GAN and

AC-GAN always make correct predictions while FC-GAN

tends to mix up the images’ true classes with the extra ‘fake’

class. This is because generated samples with a multimodal

distribution are assigned to a single class, and prevent FC-

GAN’s classification loss from getting converged. In con-

trast, MAC-GAN resolves this issue by adding an fake node
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Figure 8. Top 5 predictions of AC, FC, and MAC-GAN’s auxiliary

classifier on real and fake samples. R: real class, F: fake class.

for each class and achieves comparable performance as AC-

GAN, but with a much faster convergence speed.

Our future work will focus on the following aspects. (1)

From theoretical analysis and experiment results we find

that AC-GAN, FC-GAN, and our proposed MAC-GAN ex-

hibit their advantage at different training stages. FC-GAN

works better than the other two at the early stages, but

MAC-GAN catches up later. Therefore, an intuitive as-

sumption is that, if we can build a conditional GAN that

fuses the objective functions of these three models, a faster

and more robust generative model would be achieved. (2)

Since MAC-GAN’s auxiliary classifier contains both a real

node and a fake node for each class label, which function-

ally includes the other part of the discriminator, i.e., the

real/fake prediction. There is reason to believe that the ad-

versarial loss can be removed while maintaining the perfor-

mance of the discriminator, which could help to stabilize

the GAN’s training. (3) We will also focus on using MAC-

GAN for other challenging computer vision tasks.

6. Conclusion

In this paper, we proposed mirrored auxiliary classifier

GAN (MAC-GAN), which is a conditional GAN model

with a newly designed auxiliary classifier. The classifier

contains both a real and a fake class for each label to prop-

erly handle all the real and fake samples. By doing so, the

generative model can get converged fast and well, which

benefits greatly from the robust mirrored auxiliary classi-

fier. Extensive experiment results and evaluations validated

that MAC-GAN can achieve state-of-the-art image genera-

tion performance.
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