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Abstract

Radar is usually more robust than the camera in se-

vere driving scenarios, e.g., weak/strong lighting and bad

weather. However, unlike RGB images captured by a cam-

era, the semantic information from the radar signals is no-

ticeably difficult to extract. In this paper, we propose a

deep radar object detection network (RODNet), to effec-

tively detect objects purely from the carefully processed

radar frequency data in the format of range-azimuth fre-

quency heatmaps (RAMaps). Three different 3D autoen-

coder based architectures are introduced to predict ob-

ject confidence distribution from each snippet of the input

RAMaps. The final detection results are then calculated us-

ing our post-processing method, called location-based non-

maximum suppression (L-NMS). Instead of using burden-

some human-labeled ground truth, we train the RODNet

using the annotations generated automatically by a novel

3D localization method using a camera-radar fusion (CRF)

strategy. To train and evaluate our method, we build a

new dataset – CRUW, containing synchronized videos and

RAMaps in various driving scenarios. After intensive ex-

periments, our RODNet shows favorable object detection

performance without the presence of the camera.

1. Introduction

In autonomous or assisted driving, a camera can usu-

ally give us good semantic understandings of visual scenes.

However, it is not a robust sensor under severe driving

conditions, such as weak/strong lighting and bad weather,

which lead to little/high exposure or blur/occluded images.

Radar, on the other hand, is relatively more reliable in most

harsh environments, e.g., dark, rain, fog, etc. Frequency

modulated continuous wave (FMCW) radar, which oper-

ates in the millimeter-wave (MMW) band (30-300GHz) that

is lower than visible light, thus, has the following proper-
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Figure 1: The proposed cross-modal supervision pipeline.

Teacher’s pipeline first detects and 3D localizes the objects from

the RGB images, combined with the detected peaks from the cor-

responding RAMaps by the proposed camera-radar fusion (CRF)

algorithm. Student’s pipeline learns to detect objects with radar

data (RAMaps) as the input only.

ties: 1) great capability to penetrate through fog, smoke,

and dust; 2) accurate range detection ability due to the huge

bandwidth and high working frequency.

Typically, there are two kinds of data representations for

the FMCW radar, i.e., radar frequency (RF) data and radar

points. The RF data are generated from the raw radar sig-

nals using a series of fast Fourier transforms (FFTs), and the

radar points are then derived from these RF data through

peak detection [33]. Although the radar points can be di-

rectly used as the input of the LiDAR point cloud based

methods, the radar points are usually much sparser, e.g., less

than 5 points on a nearby car, than the point cloud from a

LiDAR [9], so that it is not enough to accomplish the ob-

ject detection task. Whereas, the RF data can maintain the

rich Doppler information and surface texture so as to have

the capability of understanding the semantic meaning of a

certain object. Thus, in this work, we consider the RF data
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in the range-azimuth coordinates, named RAMaps.

In this paper, we propose a radar object detection

method, cross-supervised by a camera-radar fusion algo-

rithm, that can accurately detect objects purely with the

radar signal input. More specifically, we propose a novel

radar object detection pipeline, which consists of two parts:

teacher and student. The teacher estimates object classes

and 3D locations by a reliable probabilistic-driven camera-

radar fusion (CRF) strategy to automatically provide an-

notations for the student. The student takes radar reflec-

tion range-azimuth heatmaps (RAMaps) as the input and

predicts the object confidence maps (ConfMaps). From

the ConfMaps, object classes and locations are inferred

using our post-processing method, called location-based

non-maximum suppression (L-NMS). The aforementioned

pipeline is shown in Figure 1. As for the network architec-

ture of the RODNet, we implement 3D convolutional au-

toencoder networks based on [44] and [29]. Considering

different temporal lengths needed for distinguishing differ-

ent objects, we also propose temporal inception convolution

layers, inspired by spatial inception [37], in our RODNet.

We train and evaluate the RODNet using our self-

collected dataset, called CRUW, which contains about 400K

camera-radar synchronized frames with various driving sce-

narios. Our CRUW dataset is, to the best of our knowledge,

the first dataset containing synchronized stereo RGB im-

ages and RF data for autonomous driving applications. To

evaluate the performance of our proposed RODNet, with-

out the definition of bounding boxes widely used in image-

based object detection on RAMaps, we introduce an evalu-

ation method to evaluate the radar object detection perfor-

mance in the radar range-azimuth coordinates. With inten-

sive experiments, our RODNet can achieve about 83.76%
average precision (AP) and 85.62% average recall (AR)

solely based on radar input in various scenarios whether ob-

jects are visible or not in cameras.

Overall, our main contributions1 are the following:

• A novel and accurate radar object detection network,

called RODNet, for robust object detection in various

driving scenarios, without camera or LiDAR.

• A camera-radar fusion (CRF) cross-modal supervision

framework for training the RODNet without laborious

and inconsistent human labeling.

• A new dataset, named CRUW, is collected, containing

synchronized camera and radar data, which is valuable

for camera-radar cross-modal research.

• A new evaluation method for radar object detection

tasks is proposed and justified for its effectiveness.

1The CRUW dataset and code are available at: https://www.

cruwdataset.org/

The rest of this paper is organized as follows. Related

works for camera and radar data learning are presented in

Section 2. The proposed cross-modal supervision frame-

work is introduced in Section 3, with training and inference

of our RODNet being explained in Section 4. In Section 5,

we introduce our self-collected CRUW dataset. Then, the

implementation details, evaluation metrics, and experimen-

tal results are shown in Section 6. Finally, we conclude our

work in Section 7.

2. Related Works

2.1. Learning of Vision Data

Image-based object detection [32, 16, 31, 24] is aimed

to detect every object with its class and precise bounding

box location from RGB images, which is fundamental and

crucial for camera-based autonomous driving. Then, most

tracking algorithms focus on exploiting the association be-

tween the detected objects in consecutive frames, the so-

called tracking-by-detection framework [8, 42, 38, 40, 18,

10, 43, 19]. Among them, the TrackletNet Tracker (TNT)

[40] is an effective and robust tracker to perform multiple

object tracking (MOT) of the detected objects with a static

or moving camera. Once the same objects among several

consecutive images are associated, the missing and erro-

neous detections can be recovered or corrected, resulting

in better subsequent 3D localization performance.

Object 3D localization has attracted many interests in au-

tonomous and safety driving community [35, 36, 27, 28, 6].

One idea is to localize vehicles by estimating their 3D struc-

tures using a CNN, e.g., 3D bounding boxes [27] and 3D

keypoints [28, 6, 22]. Then, they deform a pre-defined

3D vehicle model to fit the 2D projection, resulting in

accurate vehicle locations. Another idea [35, 36], how-

ever, tries to develop a real-time monocular structure-from-

motion (SfM) system, taking into account the SfM cues and

object cues. Although these kinds of works achieve favor-

able performance in object 3D localization, they only work

for vehicles since only the vehicle structure information is

considered. To address this limitation, an accurate and ro-

bust object 3D localization system, based on the detected

and tracked bounding boxes of objects, is proposed in [41],

claiming that the system works for most common moving

objects in the road scenes, such as cars, pedestrians, and cy-

clists. Thus, we decide to take this 3D localization system

as our camera annotation method.

2.2. Learning of Radar Data

Significant research in radar object classification has

demonstrated its feasibility as a good alternative when cam-

eras fail to provide good results [17, 5, 13, 23, 11]. With

handcrafted feature extraction, Heuel, et al. [17] classify ob-

jects using a support vector machine (SVM) to distinguish
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cars and pedestrians. While, Angelov et al. [5] use neu-

ral networks to extract features from the short-time Fourier

transform (STFT) heatmap. However, the above methods

only focus on classification tasks, that assume only one ob-

ject has been appropriately identified in the scene and not

applicable to the complex driving scenarios. Recently, a

radar object detection method is proposed in [14], which

combines a statistical detection algorithm CFAR [33] with

a neural network classifier VGG16 [34]. But it would easily

give many false positives, i.e., obstacles detected as objects.

Besides, the laborious human annotations required by this

method are usually impossible to obtain.

Recently, the concept of cross-modal learning has been

discussed in machine learning community [21, 39, 30, 20].

This concept is trying to transfer or fuse the information

between two different modalities in order to help train the

neural networks. Specifically, RF-Pose [44] introduces

the cross-modal supervision idea into wireless signals to

achieve human pose estimation based on WiFi range ra-

dio signals. As the human annotations for wireless sig-

nals are difficult to obtain, RF-Pose uses a computer vi-

sion technique, i.e., OpenPose [12], to generate annotations

for training from the camera. However, radar object de-

tection is more challenging: 1) Feature extraction for ob-

ject detection (especially for classification) is more difficult

than human joint detection, which could just classify dif-

ferent joints by their relative locations without considering

object surface texture or velocity information; 2) The typi-

cal FMCW radars on the vehicles have much less resolution

than the sensors used in RF-Pose. As for autonomous driv-

ing, [26] proposes a vehicle detection method using LiDAR

information for cross-modal learning. However, our work

is different from theirs: 1) they only consider vehicles as

the target object class, while we detect pedestrians, cyclists,

and cars; 2) the scenario of their dataset, mostly highway

without noisy obstacles, is easier for radar object detection,

while we are dealing with various traffic scenarios.

3. Cross-Modal Supervision

3.1. Radar Signal Processing and Properties

In this work, we use a common range-azimuth heatmap

representation, named RAMap, to represent our radar signal

reflections. RAMap can be described as a bird’s-eye view

(BEV) representation, where the x-axis shows azimuth (an-

gle) and the y-axis shows range (distance). For an FMCW

radar, it transmits continuous chirps and receives the re-

flected echoes from the obstacles. After the echoes are re-

ceived and processed, we implement the fast Fourier trans-

form (FFT) on the samples to estimate the range of the re-

flections. A low-pass filter (LPF) is utilized to remove the

high-frequency noise across all chirps. After the LPF, we

conduct a second FFT on the samples along different re-

ceiver antennas to estimate the azimuth angle of the reflec-

tions and obtain the final RAMaps. After transforming into

RAMaps, the radar data become a similar format as image

sequences, which can be directly processed by an image-

based CNN.

Moreover, RF data also has the following special prop-

erties to be handled for object detection task.

• Rich motion information. According to the princi-

ple of the radio signal, rich motion information is in-

cluded. The speed and its law of variation over time

consist of surface texture movement details, etc. For

example, the motion information of a non-rigid body,

like a pedestrian, is usually random, while for a rigid

body, like a car, it should be more consistent. To

utilize this motion information, multiple consecutive

radar frames need to be considered as the input.

• Inconsistent resolution. Radar usually has high-

resolution in range but low-resolution in azimuth due

to the limitation of radar specifications, like the num-

ber of antennas, and the distance between them.

• Different representation. Radar data are usually rep-

resented as complex numbers containing frequency

and phase information. This kind of data is unusual

to be modeled by a typical neural network.

3.2. Camera­Only (CO) Supervision

The annotations for the radar are in the radar range-

azimuth coordinates (similar to those of the BEV of a cam-

era). To recover the 3D information from 2D images, we

take advantage of a recent work on an effective and ro-

bust system for visual object 3D localization based on a

monocular camera [41]. Even though stereo cameras can

also be used for object 3D localization, however, high com-

putational cost and sensitivity to camera setup configura-

tions (e.g., baseline) result in the limitation of the stereo

camera localization system. The proposed system takes a

CNN inferred depth map as the input, incorporating adap-

tive ground plane estimation and multi-object tracking re-

sults, to effectively estimate object classes and 3D locations

relative to the camera.

However, the above camera-only system may not be ac-

curate enough after transforming to the radar range-azimuth

coordinates because: 1) The systematic bias in the camera-

radar sensor system that the peaks in the RF images may

not be consistent with the 3D geometric center of the object;

2) Cameras’ performance can be easily affected by lighting

or weather conditions. Since we do have the radar infor-

mation available, camera-radar cross calibration and super-

vision should be used. Therefore, an even more accurate

self-annotation method, based on camera-radar fusion, is

required for training the RODNet.
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3.3. Camera­Radar Fusion (CRF) Supervision

The camera-only annotation can be improved by radar,

which has a plausible capability of distance estimation. The

CFAR algorithm [33] is commonly used in signal process-

ing community to detect peaks from RAMaps. As shown

in Fig. 1, a number of peaks are detected from the input

RAMaps. However, these peaks cannot be directly used as

the supervision because 1) CFAR cannot provide the object

classes for the peaks; 2) CFAR usually gives a large number

of false positives. Thus, these radar peaks are fused with the

above CO supervision using an effective CRF strategy.

First, the CO annotations are projected from 3D camera

coordinates to radar range-azimuth coordinates by the sen-

sor system calibration. After the coordinates between cam-

era and radar are aligned, a probabilistic CRF algorithm is

developed. The basic idea of this algorithm is to generate

two probability maps for camera and radar locations sep-

arately, and then fuse them by element-wise product. The

probability map for camera locations with object class cls
is generated by

Pc
(cls)(x) = maxi

{

N
(

1
2π
√

|Σc
i(cls)

|
exp

{

− 1
2 (x− µc

i )
⊤(Σc

i(cls))
−1(x− µc

i )
}

)}

,

µc
i =

[

ρci
θci

]

,Σc
i(cls) =

[
(

dis(cls)/ci
)2

0
0 δ(cls)

]

. (1)

Here, di is the object depth, s(cls) is the scale constant, ci is

the depth confidence, and δ(cls) is the typical azimuth error

for camera localization. N (·) represents the normalization

operation for each object’s probability map. Similarly, the

probability map for radar locations is generated by

Pr(x) = maxj

{

N
(

1

2π
√

|Σr
j
|
exp

{

− 1
2 (x− µr

j)
⊤(Σr

j)
−1(x− µr

j)
}

)}

,

µr
j =

[

ρrj
θrj

]

,Σr
j =

[

δrj 0
0 ǫ(θrj )

]

. (2)

Here, δrj is the radar’s range resolution, and ǫ(·) is the

radar’s azimuth resolution. Then, an element-wise product

is used to obtain the fused probability map for each class,

PCRF
(cls) (x) = Pc

(cls)(x) ∗ Pr(x). (3)

Finally, the fused annotations are derived from the fused

probability maps PCRF by peak detection.

3.4. ConfMap Generation

After objects are accurately localized in the radar range-

azimuth coordinates, the annotations need to be transformed

into a proper representation that is compatible with our

RODNet. Considering the idea in [12] that defines the hu-

man joint heatmap to represent joint locations, we define the

confidence map (ConfMap) in range-azimuth coordinates to

represent object locations. One set of ConfMaps has mul-

tiple channels, where each channel represents one specific
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Figure 2: The architectures of our three RODNet models.

class label. The value at the pixel in the cls-th channel rep-

resents the probability of an object with class cls existing at

that range-azimuth location. Thus, we use Gaussian distri-

butions to set the ConfMap values around the object loca-

tions, whose mean is the object location, and the variance is

related to the object class and scale information.

4. Radar Object Detection

4.1. RODNet Architecture

The three different network architectures for the ROD-

Net are shown in Figure 2, named 3D Convolution-

Deconvolution (RODNet-CDC), 3D stacked hourglass

(RODNet-HG), and 3D stacked hourglass with temporal in-

ception (RODNet-HGwI), respectively. RODNet-CDC is a

shallow 3D CNN network that squeeze the features in both

spatial and temporal domains to better extract temporal in-

formation. While the RODNet-HG is adopted from [29],

but we replace 2D convolution layers with 3D convolution

layers and adjust the parameters for our task. As for the

RODNet-HGwI, we replace the 3D convolution layers in

each hourglass by the temporal inception layers [37] with

different temporal kernel scales (5, 9, 13) to extract differ-

ent lengths of temporal features from the RAMaps.

Overall, our RODNet is fed with a snippet of RAMaps

R with dimension (CRF , τ, w, h) and predicts ConfMaps

D̂ with dimension (Ccls, τ, w, h), where CRF is the num-

ber of channels in each RAMap, referring [44], where real

and imaginary values are treated as two different channels,

i.e., CRF = 2; τ represents the snippet length; Ccls is the
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number of object classes; w and h are width and height of

RAMaps or ConfMaps respectively. Thus, RODNet pre-

dicts separate ConfMaps for individual radar frames. With

systematically derived CRF annotations, we train our ROD-

Net using binary cross entropy loss,

ℓ = −
∑

cls

∑

i,j

D
cls
i,j log D̂cls

i,j +
(

1−D
cls
i,j

)

log
(

1− D̂
cls
i,j

)

.

(4)

Here, D represents the ConfMaps generated from camera

annotations, D̂ represents the ConfMaps prediction, (i, j)
represents the pixel indices, and cls is the class label.

4.2. L­NMS: Identify Detections from ConfMaps

To obtain the final detections from ConfMaps, a post-

processing step is still required. Here, we adopt the idea

of non-maximum suppression (NMS), which is frequently

used in image-based object detection to remove the redun-

dant bounding boxes from the detectors. Here, NMS uses

intersection over union (IoU) as the criterion to determine

if a bounding box should be removed. However, there is no

bounding box definition in our problem. Thus, inspired by

object keypoint similarity (OKS) defined for human pose

evaluation in COCO dataset [25], we define a new metric,

called object location similarity (OLS), to take the role of

IoU, which describes the relationship between two detec-

tions considering their distance, classes and scale informa-

tion on ConfMaps. More specifically,

OLS = exp

{ −d2

2(sκcls)2

}

, (5)

where d is the distance (in meters) between the two points

on RAMap, s is the object distance from the sensors, rep-

resenting object scale information, and κcls is a per-class

constant which represents the error tolerance for class cls,

which can be determined by the object average size of the

corresponding class. Moreover, we empirically tune κc to

make OLS distributed reasonably between 0 and 1. Here,

we try to interpret OLS as a definition of Gaussian prob-

ability, where distance d acts as bias and (sκcls)
2 acts as

variance. Therefore, OLS is a distance metric in a similarity

manner, which also considers object sizes and distances, so

that more reasonable than other traditional distance metrics,

such as Euclidean distance, Mahalanobis distance, etc. This

OLS metric is also used to match detections and ground

truth for evaluation purpose, mentioned in Section 6.1.

After OLS is defined, we propose a location-based NMS

(L-NMS), whose procedure can be summarized as follows:

1) Get all the peaks in all C channels in ConfMaps within

a 3× 3 window as a peak set P = {pn}Nn=1.

2) Pick the peak p∗ ∈ P with the highest confidence and

remove it from the peak set. Calculate OLS with each

of the rest peaks pi, where pi 6= p∗.

(a) CRUW dataset collection (b) Different scenes in the dataset

Figure 3: Sensor platform and driving scenes in CRUW dataset.
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Figure 4: Illustration for our CRUW dataset distribution.

3) If OLS between p∗ and pi is greater than a threshold,

remove pi from the peak set.

4) Repeat Steps 2 and 3 until the peak set becomes empty.

Moreover, during the inference stage, we can send over-

lapped RAMap snippets into the RODNet, which provides

different ConfMaps predictions for a single radar frame.

Then, we merge these different ConfMaps together to ob-

tain the final ConfMaps results. This scheme can im-

prove the system’s robustness and can be considered as a

performance-speed trade-off, discussed in Section 6.2.

5. CRUW Dataset

Going through some existing autonomous driving

datasets [15, 3, 4, 9, 7], only nuScenes [9] and Oxford

RobotCar [7] consider radar. However, the format is 3D

radar points, which are usually sparse and without motion

and surface texture information that needed for our task. In

order to efficiently train and evaluate our RODNet using RF

data, we collect a new dataset – CRUW dataset. Our sen-

sor platform contains a pair of stereo cameras [1] and two

77GHz FMCW radar antenna arrays [2]. The sensors, as-

sembled and mounted together as shown in Figure 3 (a), are
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Figure 5: Example results from our RODNet. The first row shows the images and the second row is the corresponding Radar frames in

RAMap format. The ConfMaps predicted by the RODNet is shown in the third row, where the white dots represent the final detections

after post-processing. Different colors in the ConfMaps represent different detected object classes.

well-calibrated and synchronized. Even though our cross-

modal supervision requires just one monocular camera, the

stereo cameras are setup to provide some ground truth of

depth for object 3D localization performance validation.

The CRUW dataset contains more than 3 hours with 30

FPS (about 400K frames) of camera/radar data under dif-

ferent driving scenarios, including campus road, city street,

highway, parking lot, etc. Some sample visual data are

shown in Figure 3 (b). Besides, we also collect several

vision-fail scenarios where the image qualities are pretty

bad, i.e., dark, strong light, blur, etc. These data are only

used for testing to illustrate that our method can still be re-

liable when vision techniques fail.

The object distribution in CRUW is shown in Figure 4.

The statistics only consider the objects within the radar field

of view. There are about 260K objects in CRUW dataset in

total, including 92% training and 8% testing. The average

number of objects in each frame is similar between train-

ing and testing data. From each scenario, we randomly se-

lect several complete sequences as testing sequences, which

are not used for training. Thus, the training and testing

sequences are captured at different locations and different

time to show the generalization capability of the proposed

system. For the ground truth needed only for evaluation

purposes, we annotate 10% of the visible data and 100%
vision-fail data. The annotation is operated on RAMaps by

labeling the object classes and locations according to the

corresponding images and RAMap reflection magnitude.

6. Experiments

6.1. Evaluation Metrics

To evaluate the performance, we utilize our proposed

OLS (Eq. 5), replacing the role of IoU in image-level ob-

ject detection, to determine whether the detection result can

be matched with a ground truth. During the evaluation,

we first calculate OLS between each detection result and

ground truth in every frame. Then, we use different thresh-

olds from 0.5 to 0.9 with a step of 0.05, for OLS and calcu-

late the average precision (AP) and average recall (AR) for

all different OLS thresholds. Here, we use AP and AR to

represent the average values among different OLS thresh-

olds, and use APOLS and AROLS to represent the values at a

certain OLS threshold. Overall, we use AP and AR as our

main evaluation metrics for the radar object detection task.

6.2. Radar Object Detection Results

We train our RODNet using the training data with CRF

annotations in CRUW dataset. For testing, we perform in-

ference and evaluation on the human-annotated visible data.

The quantitative results are shown in Table 1. We compare

our results with the following radar-only baselines: 1) a de-

cision tree using handcrafted features from radar data [14];

2) a radar object classification network [5] appended af-

ter the CFAR detection algorithm; 3) radar object detection

method reported in [14]. To evaluate the performance un-

der different scenarios, we split the test set into three levels,

i.e., easy, medium, and hard. Among all the three compet-

ing methods, the AR performance for [14], [5] is relatively

stable in the three different test sets, but their APs vary a lot.

Especially, the APs drop from around 80% to 10% for easy

to hard testing sets. This is caused by a large number of

false positives detected by the traditional CFAR algorithm,

which would significantly decrease the precision. Compar-

ing with the baseline and competing methods, our ROD-

Net outperforms significantly on both AP and AR metrics,

achieving the best performance of 83.76% AP and 85.62%
AR with the RODNet-HGwI architecture and CRF supervi-
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Table 1: Radar object detection performance evaluated on CRUW dataset.

Methods
Overall Easy Medium Hard

AP AR AP AR AP AR AP AR

Decision Tree [14] 4.70 44.26 6.21 47.81 4.63 43.92 3.21 37.02
CFAR+ResNet [5] 40.49 60.56 78.92 85.26 11.00 33.02 6.84 36.65
CFAR+VGG-16 [14] 40.73 72.88 85.24 88.97 47.21 62.09 10.97 45.03
RODNet (Ours) 83.76 85.62 94.52 95.94 72.49 75.59 66.77 71.24

Table 2: Ablation studies on the performance improvement with different architectures and annotations.

Architectures Supervision AP AP0.5 AP0.7 AP0.9 AR AR0.5 AR0.7 AR0.9

RODNet-CDC
CO 52.62 78.21 54.66 18.92 63.95 84.13 68.76 30.71

CRF 74.29 78.42 76.06 64.58 77.85 80.05 78.93 71.72

RODNet-HG
CO 73.86 80.34 74.94 61.16 79.87 83.94 80.73 71.39

CRF 81.10 84.71 83.08 70.21 84.26 86.54 85.42 77.44

RODNet-HGwI
CO 77.75 82.88 79.93 61.88 81.11 85.13 82.78 68.63

CRF 83.76 87.99 86.00 70.88 85.62 88.79 87.37 76.26
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Figure 6: Performance of vision-based and our RODNet on

“Hard” testing set with different localization error tolerance. (V:

visible data; VF: vision-fail data)

Table 3: The mean localization error (standard deviation) of

CO/CRF annotations on CRUW dataset (in meters).

Supervision Pedestrian Cyclist Car

CO 0.69 (±0.77) 0.87 (±0.89) 1.57 (±1.12)
CRF 0.67 (±0.55) 0.82 (±0.59) 1.26 (±0.64)

sion. From now on, the RODNet discussed is referring to

RODNet-HGwI, unless specified.

Some qualitative results are shown in Figure 5, where we

can see that the RODNet can accurately localize and clas-

sify multiple objects in different scenarios. The examples

on the left of Figure 5 are the scenarios that are relatively

clean with fewer noises on the RAMaps, while the right

ones are more complex with different kinds of obstacles,

like trees, traffic sign, walls, etc. Especially, in the second

to the last example, we can see high reflections on the right

of the RAMap, which comes from the walls. The resulting

ConfMap shows that the RODNet does not recognize them

as any object, which is quite promising.

0 50 100 150 200 250 300 350 400

Inference Time (ms)

65

70

75

80

85

A
P

 (
%

)

RODNet-CDC

RODNet-HG

RODNet-HGwI

Real-time Not real-time

Figure 7: Performance-speed trade-off for the RODNet real-time

implementation.

6.3. Ablation Studies

First, AP and AR under different OLS thresholds are an-

alyzed in Table 2. Besides, we compare the teacher’s per-

formance on object 3D localization for both CO and CRF

annotations, shown in Table 3. The CRF annotations are

more accurate than CO annotations especially for the cars.

From Table 2 and 3, we can find that, with more robust CRF

annotations, the performance of our RODNet can increase

significantly for all the three architectures. In Figure 6, the

performance of teacher and student are compared on “Hard”

testing set. Our RODNet shows its superiority and robust-

ness on its localization performance.

Second, real-time implementation is important for au-

tonomous driving applications. As mentioned in Sec-

tion 4.2, we use different overlapping lengths during the in-

ference, running on an NVIDIA TITAN XP, and report the

time consumed in Figure 7. Here, we show the AP of three

building architectures for the RODNet, and use 100 ms as a

reasonable real-time threshold.
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(a) Examples showing RODNet’s strengths (b) Examples showing RODNet’s limitations

Figure 8: Examples illustrate strengths and limitations of our RODNet.
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Figure 9: RODNet fea-

ture visualization.

After the RODNet is well-

trained, we analyze the fea-

tures learned from the radar

data. In Figure 9, we show

two different kinds of feature

maps, i.e., the features after

the first convolution layer and

the features before the last

layer. These feature maps are

generated by cropping some

randomly chosen objects from

the original feature maps and

average them into one. From

the visualization, we notice

that the feature maps are sim-

ilar in the beginning, but they become more discriminative

at the end of the RODNet. Note that the visualized features

are pixel-wise averaged within each object class to better

represent the general class-level features.

6.4. Strengths and Limitations

RODNet Strengths. Some examples to illustrate the

RODNet’s advantages are shown in Figure 8 (a). First,

the RODNet has similar performance in some severe con-

ditions, like during the night, shown in the first example.

Moreover, the RODNet can handle some occlusion cases

when the camera usually fails. In the second example, two

pedestrians are nearly fully occluded in the image, but our

RODNet can still detect both of them. This is because they

are separate in the radar point of view. Last but not least,

the RODNet has a wider field of view (FoV) than vision

so that it can see more information. As shown in the third

example, there is only a small part of the car visible in the

camera view, which can hardly be detected from the camera

side, but the RODNet can successfully detect it.

RODNet Limitations. Some failure cases are shown in

Figure 8 (b). When two objects are very near, the RODNet

often fails to distinguish them due to the limited resolution

of radar. In the first example, the RAMap patterns of the

two pedestrians are intersected, so that our result only shows

one pedestrian detected. Another problem is, for huge ob-

jects like bus and train, the RODNet often detects it as mul-

tiple objects as shown in the second example. Lastly, the

RODNet is sometimes affected by noisy surroundings. In

the third example, there is no object in the view, but the

RODNet detects the obstacles as several cars. The last two

problems should be solved with a larger training dataset.

7. Conclusion

Object detection is crucial in autonomous driving and

many other areas. Computer vision society has been focus-

ing on this topic for decades and come up with many good

solutions. However, vision-based detection is still suffer-

ing from many severe conditions. This paper proposed a

brand-new and novel object detection method purely from

radar information, which is more robust than vision. The

proposed RODNet can accurately and robustly detect ob-

jects in various autonomous driving scenarios even during

the night or bad weather. Moreover, this paper presented

a new way to learn radar data using cross-modal supervi-

sion, which can potentially improve the role of radar in au-

tonomous driving applications.
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