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Abstract

Recently 3D scene understanding attracts attention for

many applications, however, annotating a vast amount of

3D data for training is usually expensive and time consum-

ing. To alleviate the needs of ground truth, we propose

a self-supervised schema to learn 4D spatio-temporal fea-

tures (i.e. 3 spatial dimensions plus 1 temporal dimension)

from dynamic point cloud data by predicting the temporal

order of sampled and shuffled point cloud clips. 3D sequen-

tial point cloud contains precious geometric and depth in-

formation to better recognize activities in 3D space com-

pared to videos. To learn the 4D spatio-temporal features,

we introduce 4D convolution neural networks to predict the

temporal order on a self-created large scale dataset, NTU-

PCLs, derived from the NTU-RGB+D dataset. The efficacy

of the learned 4D spatio-temporal features is verified on

two tasks: 1) Self-supervised 3D nearest neighbor retrieval;

and 2) Self-supervised representation learning transferred

for action recognition on a smaller 3D dataset. Our ex-

tensive experiments prove the effectiveness of the proposed

self-supervised learning method which achieves compara-

ble results w.r.t. the fully-supervised methods on action

recognition on MSRAction3D dataset.

1. Introduction

Understanding activities and motions in sequential 3D

data, i.e. dynamic 4D data including 3 spatial dimensions

and 1 time dimension, becomes more and more important in

many applications such as autonomous driving and AR/VR

techniques. Compared to images and videos, 4D data con-

tain more information and features to describe our world.

Recently, many deep learning methods were proposed to

directly process static 3D data for different computer vision

tasks, including VoxelNet[19], PointNet[23], PointNet++

[25], and DGCNN [36], etc. Compared to other grid data,

point clouds are captured from the raw sensor such as LI-

DAR, RGBD cameras or laser scanners and have better and
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Figure 1. Illustration of our self-supervised method for 4D dy-

namic feature learning. First row is the sampled clips from point

cloud sequences. Then in the second row, point cloud clips are

shuffled and input to the 4D CNN network to learn the dynamic

features of human action. Those features are further used to pre-

dict the correct permutations by the self-supervised manner learn-

ing.

more complete representation for the 3D information com-

pared to other data format.

Compared to static 3D data, it is crucial to explore dy-

namic 3D point clouds, especially for motion analysis and

action recognition tasks which heavily depend on long-

range temporal variations. A few methods were proposed to

tackle 4D dynamic data [4, 17, 18]. The grid-based meth-

ods [18, 4] conduct 3D/4D convolution on both spatial and

temporal dimensions. Liu et al. proposed a non-grid based

method MeteorNet [17] which directly processes the dy-

namic point cloud data and finds the meaningful neighbor

points along both spatial and temporal dimensions. How-

ever, these methods still heavily depend on point-wise an-

notated labels in training which require an immense amount

of effort to generate. To utilize raw sequential point cloud
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data without requiring ground truth labels, we introduce a

self-supervised learning approach to leverage the temporal

order prediction to learn 4D spatiotemporal features. Exist-

ing point cloud-based self-supervised methods [27, 11] fo-

cus on only the static point cloud feature learning. They at-

tempted to predict the spatial relationship for different point

cloud parts or combine with the 2D shape and pose predic-

tion. However, these methods might not be able to properly

handle dynamic sequential point cloud.

Inspired by video self-supervised method [37], as shown

in Figure 1, we first generate short point cloud clips from

sequential data and shuffle them into different orders. Then

a 4D CNN architecture is proposed to learn 4D spatiotem-

poral features by predicting the orders among these clips.

The learned features can serve as pre-trained information

for the transfer learning on other downstream tasks (e.g. ac-

tion recognition) with small scale datasets. With the learned

features by self-supervised schema from unannotated large

scale datasets, the 4D CNN network for the downstream

tasks with small datasets can be optimized and overcomes

overfitting problems.

Self-supervised learning usually requires a large scale

dataset to perform the pre-text task on it. However, most

existing 3D or 4D action recognition datasets are rela-

tively small-scale for the 3D action recognition task. Un-

like the ImageNet [6] dataset for images or Kinetic [3]

dataset for videos, there is no existing large-scale sequential

point cloud action recognition dataset for self-supervised

4D spatiotemporal feature learning. Therefore, we derive a

large scale sequential point cloud action recognition dataset

named NTU-PCLs from the NTU-RGB+D [28] dataset. Al-

though the NTU-RGB+D dataset contains both RGB and

depth images, they are not aligned and cannot be directly

used to obtain point cloud from the camera model. There-

fore, we form the large-scale sequential point cloud dataset

by registering the RGB and depth images based on the

skeleton data.

The contributions of the proposed method are summa-

rized as follows:

• We propose a self-supervised schema to learn 4D spa-

tiotemporal features from dynamic point cloud clips

by predicting their sequential orders without using any

ground-truth point-wise annotations. To the best of

our knowledge, this is the first work that explores self-

supervised learning on dynamic 3D point cloud data.

• The generalization of our proposed self-supervised

schema is evaluated on different networks including

MinkowskliNet [4] and MeteorNet [17] and can effec-

tively learn 4D spatiotemporal features from sequential

point cloud data.

• We derive a new large-scale dataset, NTU-PCLs, by

registering the color and depth images from the NTU-

RGB+D dataset, which serves as the training dataset

of the pre-text task.

• To evaluate the effectiveness of the learned 4D spa-

tiotemporal features, two downstream tasks are con-

ducted: 1) nearest neighbor retrieval and 2) action

recognition. Experiment results demonstrate signifi-

cant performance improvements compared to the mod-

els trained from scratch.

2. Related Work

2.1. 3D Action Recognition

Unlike 2D sequence-based action recognition, 3D action

recognition that takes advantage of rich structure data which

has the potential to improve the recognition accuracy with

less singularity, especially with the widely available struc-

ture sensor, such as, Kinect, Intel Realsense, ASUS Xtion

Pro, etc. Early studies mainly focused on aggregating 3D

skeleton detection models [39, 43] or motion models [33, 8]

to search in temporal and spatial alignment of action pat-

terns. However, these earlier work heavily relied on human

crafted features to conduct action recognition.

Recent deep learning-based methods for 3D action

recognition can directly take the raw RGB-D data or learned

3D model. Direct depth segmented sequence-based action

recognition has been tested to be a valid approach, which

relies on either human segmentation [26] or flow detection

[35]. Vieira et al. [32] first represented 3D data as an oc-

cupancy map which allows 3D learning by preserving both

spatial and temporal contextual information. You and Jiang

[41] proposed a volume-map representation called 4D map

as the input of a 3D CNN model which is robust to camera

views in the complex indoor environment.

2.2. Deep Learning on Sequential Point Cloud

The raw representation of point clouds is a set of 3D co-

ordinates. To understand the temporal embedding of a point

cloud sequence, directly employing a 3 channel data struc-

ture representation of x, y, z is a common practice [24, 29].

For a sequential point cloud, usually a 2D model generates

a feature vector output for each point cloud and stacks the

entire sequences’ output to aggregate a sequence feature for

task learning [16]. However, point cloud sequences tend to

be large, and which makes it difficult to directly learn from

a sequence of point cloud input.

Volume metric representation is one widely adopted ap-

proach to describe the spatial distribution of a point cloud

[10]. It has an advantage over the 3 channel approach by

preserving the 3D structure of the target [5]. Thus, it al-

lows further in-cooperating with a temporal model to learn

spatial point cloud data [41]. Another kind of similar grid-

based method such as FAF [18] proposed 3D convolution
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network structure that converts the input data to the bird’s

view representation and performs convolution over the spa-

tial and temporal dimension. 4D MinkNet [4] also proposes

a 4D convolutional network to learn the spatial-temporal

representation in the 7D hyper-space. Sparse convolution

and hybrid kernel are applied in this work to help the 4D

convolution.

Meanwhile, Graph convolution [30] was first proposed

to decouple 3D point clouds as voxel trees, thus alleviating

the burden of computation for the sequential point cloud.

[38] further proposed a 3D graph convolution model to di-

rectly learn from the 3D point cloud sequence, which al-

lows direct temporal inferring and decreases the convolu-

tion operation size. Recently MeteorNet [17] was proposed

to solve the sequential point cloud learning by directly input

the raw 4D point cloud data. They adopt the meter module

and aggregate the neighbor information by the chain-flow

grouping strategy, leading to the improvement over both

performance and efficiency when processing the sequential

data.

2.3. Self­Supervised Feature Learning

Deep CNNs in recent years have demonstrated impres-

sive performance on large-scale image-based, video-based,

and point cloud-based applications. However, the super-

vised training of these networks normally requires human-

annotated labels. Recently, self-supervised learning meth-

ods for videos are proposed to reduce the dependence on

data annotations. Ishan et al. and Basura et al. [20, 7] lever-

age the motion information to determine the distinguished

frames and predict whether the shuffled frames in correct

orders as a binary classification problem. [14] proposed an

order prediction network that takes shuffled frames as in-

put and leverages the learned features to sort the shuffled

sequences as a multi-class classification problem to pre-

dict the permutations. [2] integrated the deep reinforcement

learning method to sample the training images and then

predict the permutations. [37] proposed a self-supervised

video-based method that takes multiple video clips as input

and outputs the exact sorted clip order.

There is no existing self-supervised method that works

on the dynamic sequential point clouds. Previous self-

supervised point cloud methods focus on the static point

clouds [40, 11, 27, 42]. [40] proposed an autoencoder net-

work which learns the folding process to fold the 2D im-

ages to the 3D object point cloud. During this process,

more complete feature representations are learned by the

network. [11] combined the point cloud and images to

perform the self-supervised learning. It predicts the shape

and pose from a single image and learns the discriminative

2D projection with the predicted point cloud. [27] focused

on the raw point cloud data and trains the DGCNN [36]

network to predict the spatial location relation of different

point cloud parts. [42] proposed a ContrastNet in conjunc-

tion with the graph convolution network to predict whether

two segments of a point cloud are from the same object as

their pre-text task.

While all these methods focus on the static point cloud,

in this paper, we propose a self-supervised learning frame-

work to leverage the temporal order information of sequen-

tial point clouds and learn meaningful 4D spatiotemporal

features.

3. Methodology

3.1. Overview

Existing supervised 4D dynamic point cloud action

recognition methods based on ground truth labels [4, 17]

achieved good performance on small datasets. However,

these small datasets cannot take full use of the network

capacity especially for 3D/4D CNN networks which have

a huge amount of parameters. Currently there is no ex-

isting large scale 4D sequential point cloud dataset with

pixel-level annotations. Inspired by the [37] we propose a

self-supervised 4D dynamic feature learning method by pre-

dicting the temporal order from an unannotated large scale

dataset and then fine-tune the learned models to recognize

action recognition on small datasets with annotations.

Figure 2 demonstrates the pipeline of our proposed

self-supervised learning schema which contains three main

components: Tuple Clip Sampling (TCS), Feature Extrac-

tion (FE), and Recurrent Order Prediction (ROP). The TCS

follows a similar strategy as [37] which uniformly samples

and shuffles the point cloud clips comprised of several static

point clouds. In FE, we introduce and compare various

4D convolutional neural networks including 4D MinkNet

[4] and MeteorNet-cls [17]. For each clip of one tuple, a

4D CNN is trained to extract features from the input clip.

Weights are shared among all 4D CNNs which are used to

extract features for one tuple clip. In the following ROP

sub-network, we use LSTM and the fully connected layer

to further process the extracted features and predict the per-

mutations.

3.2. Tuple Clip Sampling

For a sequence with T frames of point clouds: S =
(S1, S2, ..., ST ), each frame (i.e. a set of point clouds) can

be represented as St = pti ∈ R
n×6, i = 1, 2, ..., n (n is

the number of points and 6 stands for the total feature di-

mensions for each point including the XY Z and RGB, the

RGB information comes from the registration of the 2D

RGB and depth image). Several continuous point cloud

frames form point cloud clips and we extract a total of N
clips from each point cloud sequence. Every pair of two

clips is not overlapped and has a total number of m interval

frames.
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Figure 2. The main pipeline of the proposed self-supervised 4D spatiotemporal feature learning from sequential point clouds. Through the

Tuple Clip Sampling network, the sampled and shuffled clips form a tuple of clips. Then the generated point cloud clips are input to the

feature extraction network to learn the 4D dynamic features, which will be further fed to a recurrent network to predict temporal order in a

self-supervised manner.

When considering the strategy of extracting the clips, we

follow the rules in [21] which make the task neither too sim-

ple nor too ambiguous. After the clips are sampled, they are

randomly shuffled to different permutations and input into

the network. The different permutations have already been

predefined according to the number of clips which should

be N !, so the target of the convolution is learning the multi-

class classification between those permutations to predict

the correct order of sampled clips. For example, in Figure

2, the three point cloud clips {a, b, c} are sampled from one

point cloud sequence. They are shuffled to different permu-

tations such as {b, a, c} and input the 4D CNN networks to

extract the dynamic features.

3.3. Feature Extraction

After preparing the shuffled data as input, the 4D con-

volution neural networks are trained to recognize the orders

with the given input clips. As shown in Figure 2, each clip is

processed by a weights-shared 4D CNN network. In this pa-

per, the 4D MinkNet [4] and MeteorNet [17] are adopted as

two types of our dynamic feature learning networks. In ad-

dition, we can compare the proposed self-supervised learn-

ing method with the grid-based method and non-grid based

method according to the experiments on the MinkNet and

MeteorNet.

4D MinkNet [4] The 4D MinkNet model is 4D dimen-

sional convolution neural network that directly processes
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Figure 3. The two types of 4D CNNs. (a) 4D MinkNet sparse convolution blocks which adopts the hybrid convolution kernel. ”× ” means

the hypercubic kernel and ”+” means the hypercross kernel. (b) Stacked Meteor Modules form the MeteorNet. Each Meteor Module

consists of multiple MLP layers.

the sequential data in a high dimensional space. To solve

the discrete problem for the point cloud data, it introduces

a sparse tensor and generalize sparse convolution network

as shown in Figure 3(a). Due to the cost of convolution in

the 4D space, the hybrid kernel and a trilateral-stationary

conditional random field are proposed to handle the prob-

lem. For the hybrid kernel, it combines the advantages of

the cross-shaped kernel and traditional cubic kernel so that

extracting both the spatial and temporal features. For the

trilateral-stationary CRF which aims to tackle the segmen-

tation loss inconsistency problem, it extends the traditional

CRF to the 7D hyper-space including the 3D space, 1D time

and 3D chromatic space.

MeteorNet [17] As shown in the right of Figure 3, Mete-

orNet module is proposed for the 4D sequential point cloud

tasks in a directly processing manner. Instead of suffer-

ing from the quantization loss, this module takes the point

cloud sequence as input, and output the learned features

with the aggregation information from the spatiotemporal

metric space. Meanwhile, they keep adopting the Multi-

layer Perceptron (MLP) and Max-pooling function which

are the same as PointNet++ [25] to train the network.

h(p
(t)
i ) = MAX

p
(t′)
j

∈N (p
(t)
i

)

{ζ(f
(t′)
j , f

(t)
i ,x

(t′)
j − x

(t)
i , t′ − t)},

(1)

where N represent the neighbours for the point p
(t)
i , p

(t′)
j

is neighbours of p
(t)
i , f

(t′)
j , f

(t)
i are the related features

for point respectively, such as RGB. ζ is the MLP layer

function. Here, two ways of grouping methods are in-

troduced to aggregate the neighbour’s feature information

and find a better N , direct grouping method and chain-flow

based grouping method. Direct grouping method just uses a

monotonically increased radius for the neighborhood range,

while chained-flow grouping method estimates point flow to

track the motion trajectories to improve effective and effi-

cient. Here, in order to compare the generalization capabil-

ity of different methods, we adopt the direct grouping based

method.

3.4. Recurrent Order prediction

The feature vectors generated by the feature extractor are

used to predict the temporal order of these clips. Unlike

the method in [20] which treated temporal order prediction

as a binary classification problem, we handle the temporal

order prediction as a multi-classes classification problem as

[37]. As mentioned before, all possible permutations have

already been pre-defined. For instance, if we take a total

of N point cloud clips as input, the network will output N !
probabilities and the order with the maximum probability

will be selected as the predicted order.

However, instead of simply using the several shuffled

and combination of fully-connected layers, the temporal or-

der is predicted recurrently. A recurrent structure is intro-

duced here to better capture the long term memory of 4D

sequential data and context information to improve the or-

der classification accuracy. RNN has been proved to be ca-

pable of learning meaningful feature representations from

sequential data. And long short term memory (LSTM) [9]

is introduced to solve the vanishing gradient problem in the

RNN model. It contains three additional gates in the hid-

den layer: the input gate, forget gate and output gate, which

helps to address the sequential context information.

ft = hθ(Ct), Gt = γ(Gt−1, ft), t = 1, 2, ..., N, (2)

where the Ct is the input point cloud clip which has N inde-

pendent point clouds obtained at t independent timestamps.

hθ is the convolution neural networks. ft ∈ R
1024 denotes

the output of the 4D CNN model which acts as the input

sequence feature of the LSTM. Gt is the current state of

the LSTM which is jointly computed based on input ft and

previous state Gt−1. γ is the non-linear function used in the

LSTM to model the recurrent context feature.

pi = exp(ζ(Gt))/

N∑

j=1

exp(ζ(Gt). (3)
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The hidden state Gt is further connected to the fully-

connected layers ζ to conduct the order classification and

the highest probability pi of the prediction is selected as the

predicted order.

3.5. Loss Function

The loss function is calculated as the cross entropy loss

between the predicted K! probabilities with the pre-defined

permutations to optimize the network hθ.

Lorder = −
1

K!

N∑

i=1

[qi log q̂i + (1− qi) log(1− q̂i))] ,

(4)

where qi is the prediction of different orders, q̂i is consid-

ered to be the ground truth of pre-defined permutations.

4. Experiment

4.1. Datasets

NTU-RGB+D NTU-RGB+D [28] is currently the largest

3D human action recognition dataset with 3D annotations.

It contains a total of 56,880 video action samples of 60 ac-

tion classes captured by three Microsoft Kinect V2 cameras

simultaneously from three different viewpoints. There are

4 different data modalities for each sample including RGB

video, depth map sequence, 3D skeletal data, and infrared

(IR) video.

New NTU-PCLs point cloud dataset Since the raw RGB

images and depth images in NTU-RGB+D dataset are not

aligned, where RGB frames with frame size 1,920×1,080

and depth frames are 512×424, we cannot obtain registered

3D point cloud sequences from the raw RGB-D videos.

In order to obtain color registered point cloud sequences

and encode 3D features for better temporal order learning,

we employ using quadratic relation to describe the spatial

alignment between depth frame and RGB frame. The RGB

to depth registration model is:

Du =c0,0 ∗ Sign((
Cu−C u0)

2) + c0,1 ∗ Sign((
Cv −C v0)

2)

+c0,2 ∗ (
Cu−C u0) + c0,3 ∗ (

Cv −C v0) + c0,4
Dv =c1,0 ∗ Sign((

Cu−C u0)
2) + c1,1 ∗ Sign((

Cv −C v0)
2)

+c1,2 ∗ (
Cu−C u0) + c1,3 ∗ (

Cv −C v0) + c1,4,
(5)

where (Du,D v) and (Cu,C v) denote the pixel coordinates

in a depth image and RGB image respectively. Sign() rep-

resents the sign value of the expression to keep the polarity

of a pixel relative to the center of RGB image. c0,i and

c1,i (i = 0, 1, 2, 3, 4) are the coefficients of the registration

model. We first learn the model using ’Linear Regression’

based on the body joints matching between depth and RGB

frames, and then register the RGB information to each depth

Table 1. Temporal order prediction by using MinkNet and Me-

teorNet as 4D encoder respectively, the results show the average

accuracy.

Traning Dataset 4D MinkNet (%) MeteorNet (%)

NTU-PCLs (train) 85.3 79.2

image using the learned parameters. The point cloud can

be obtained by back-projecting the RGB and depth infor-

mation to the 3D space using the pin-hole camera model.

In this manner, we can easily generate a 4D point cloud

dataset based on NTU-RGB+D dataset, which contains a

total of 56, 880 point cloud sequences of 60 human action

categories. The generated point cloud sequences are used to

extract the sampled and shuffled point cloud clips for tem-

poral order prediction.

MSRAction3D [15] This dataset is relatively small which

contains a total of 567 depth map sequences. There are 20

action types for 10 subjects such as high arm wave, hori-

zontal arm wave, hammer, hand catch, forward punch, high

throw, draw x, draw tick, draw circle, hand clap, two hand

wave, side boxing, bend, forward kick, side kick, jogging,

tennis swing, tennis serve, golf swing, pick up & throw.

Each subject performs each action 2 or 3 times. The spa-

tial size of depth sequences is 320×240. Following the way

in MeteorNet [17] processing the data, we obtain the 3D

point cloud sequences from the depth maps and use cross-

subject test setting [15] to split the training and testing data.

The nearest neighbor retrieval and action recognition exper-

iments are conducted on this dataset.

4.2. Implementation Details

The NTU-PCLs point cloud dataset is generated to train

the proposed self-supervised learning framework. The se-

quential point clouds of camera ID 1&2 (total of 50,000)

are used as self-supervised training set, 6,000 samples of

camera ID 3 are chosen as the verification training set while

other 888 samples of camera ID 3 are chosen as the verifi-

cation testing set (named as NTU-PCLs (val) for the follow-

ing experiments). For each point cloud sequence, we select

3 clips to predict the temporal order with the skip frames at

10. Each clip consists of 8 frames.

The 4D MinkNet is implemented by Minkowsi Engine

[4] in PyTorch [22]. The backbone which combines the

STResNetBase and ResNet50 is adopted as our 4D feature

extraction network for MinkNet. Batch normalization, relu

and max-pooling layers for sparse convolution are added to

the network. The output vector after 6 residual blocks is

fed in the recurrent network as inputs. The 4D MinkNet is

trained with SGD optimizer, 400,000 iterations and learning

rate of 0.001.

The MeteorNet [17] is implemented by adopting the di-

rect grouping strategy and monotonically increasing radius.
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Table 2. Comparative demonstration of clip retrieval accuracy over NTU-RGB+D dataset, we compare the average accuracy by increment

the size of retrieval.
Methods Top1 Top5 Top10 Top20 Top50

4D MinkNet [4] (scratch) 49.6 51.3 58.7 63.2 69.9

4D MinkNet [4] (Ours) 51.1 55.8 59.1 69.5 80.4

MeteorNet [17] (scratch) 42.5 49.9 55.6 64.8 71.3

MeteorNet [17] (Ours) 49.1 56.7 60.4 68.1 82.5

Table 3. Action recognition results on the NTU-PCLs (val) and MSRAaction 3D through transfer learning.

Method Input #of Frames
Accuracy (%)

MSRAaction 3D NTU-PCLs (val)

Vieria et al. [31] depth 20 78.20 -

Kiaser et al. [13] depth 18 81.43 -

Actionlet [34] groundtruth skeleton full 88.21 -

PointNet++ [25] static point cloud 1 61.61 63.10

4D MinkNet [4] (scratch)
point cloud sequences

8 75.62 85.60

4D MinkNet (Ours) 8 86.31 88.40

MeteorNet-cls [17] (scratch)
point cloud sequences

8 81.14 84.32

MeteorNet-cls (Ours) 8 85.40 86.75

One fully connected layer is appended after the set abstrac-

tion layer which is the last layer of Meteor Module to obtain

a 512 dimension feature vector for order prediction. This

network is trained with the Adam optimizer, 300 epochs and

learning rate of 0.05.

4.3. Temporal Order Prediction

In order to evaluate the effectiveness of the proposed

framework, we conduct a straightforward testing by pre-

dicting the temporal orders on NTU-PCLs (val) dataset. As

shown in Table 1, the average accuracy of two networks

are both higher than 79%, which shows our method is able

to leverage the long term memory information and predicts

the correct temporal order through learning the 4D dynamic

features.

4.4. Nearest Neighbor Retrieval

Neural network feature encoding has been proved to

achieve high accuracy for image retrieval task [1]. Here,

we attempt to retrieve similar action clips given a category-

known database. Unlike using a bag-of-words dictionary

[12] based on human-crafted features, we directly search

the closet k similar clips using a similar metric defined in

Eq. 6. Given two 3D point-cloud clips and the learned fea-

ture vectors f1 and f2, the similarity score is defined as:

s(f1, f2) =
1

||f1|| · ||f2||

n∑

i=0

f1(i) · f2(i) (6)

s(f1, f2) is the similarity score between two clips. For

each clip, the similarity score between itself and the known-

action dataset is calculated. Then, the k clips with the high-

est score are selected as the most similar k actions. Follow-

ing the similar setting in [37], we extract the features of the

last layer in the feature extraction network for both the test-

ing and training datasets. The clips in the testing data are

adopted to retrieval the training counterpart. The clips ex-

tracted from the NTU-RGB+D (val) dataset are used as the

query clips. Thereafter the similarity score is calculated be-

tween the NTU-RGB+D (val) dataset and the NTU-RGB+D

verification training dataset. Table 2 reports the accuracy of

the Topk (k = 1, 5, 10, 20, 50) results. It can be seen that

with our pre-trained model, both 4D MinkNet and Meteor-

Net are able to achieve higher performances compared to

the versions that are trained from scratch. Also, the qualita-

tive results are demonstrated in Figure 4. The center frame

is selected to represent the whole point cloud sequence. As

we can see, both the 4D MinkNet and MeteorNet can suc-

cessfully find the similar features in the training dataset.

4.5. Transfer Learning to Action Recognition

We further conduct the transfer learning to verify the

effectiveness of our proposed self-supervised method on

relatively small datasets. The experiments are tested on

MSRAction3D and a subset of NTU-PCLs dataset (the 3rd

camera viewpoint with 30 actions.) The 4D convolution

networks are first trained with our proposed self-supervised

learning method to predict the temporal order. The learned

models are employed as pretrained models and then fine-

tuned for 200 epochs on the two small scale datasets. The

action recognition accuracy is reported in the Table 3 us-

ing the average accuracy of sampled clips as the point cloud

sequence prediction accuracy.

On the MSRAaction 3D dataset, the action recogni-

tion accuracy for 4D MinkNet and MeteorNet trained from

scratch is 75.62% and 81.14% respectively. There might

some overfitting problem during the training process due

to the limited size of training data, especially for the 4D
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Query 4D MinkNet MeteorNet

Wear a shoe Wear a shoe Wear a shoe PickupWear a shoe

Wear jacket Wear jacket Wear jacket Cheer up Wear jacket

Figure 4. Demonstration of the Top2 results for nearest neighbor retrieval. The center frame is used to represent the point cloud sequence.

The first column represents query clips from the testing split, the middle two and last two columns show the results with 4D MinkNnet and

MeteorNet respectively. The actions in green color show the correct retrieval results while the red ones show the errors.

Table 4. The relation of action recognition accuracy and different

amount training data for the self-supervised learning on both the

NTU-PCLs (val) and MSRAaction 3D dataset. The performance

keeps increasing when the size of data becomes larger.

Amount of Data NTU-PCLs (val) MSRAaction 3D

0 85.60% 75.62%

10,000 86.51% 78.91%

20,000 87.22% 80.46%

40,000 88.19% 84.82%

All 88.40% 86.31%

MinkNet, which has an immense number of parameters.

However, after applying our pre-trained model obtained

from the self-supervised learning, the performance of 4D

MinkNet and MeteorNet are boosted to 86.3% and 85.40%.

For the NTU-PCLs (val) dataset, the 4D MinkNet and Me-

teorNet achieve 85.60% and 84.32% when training from

scratch. With the pretrained models, the performance has

been improved to 88.40% and 86.75% respectively. The ex-

periment results demonstrate the effectiveness of our pro-

posed self-supervised learning method on the 3D point se-

quences.

4.6. Ablation Study of Training Data Amount

In this section, we study the impact of different amounts

of training data on NTU-PCLs to the transfer learning.

Since the MeteorNet is not sensitive enough for the differ-

ent amounts of data because of the limited network capac-

ity, here we only report the ablation study of data amount

for the 4D MinkNet. The learned feature extraction models

are then used to perform the action recognition task on the

NTU-PCLs (val) and MSRAaction 3D datasets.

As shown in Table 4, with the increasing of the data

amount for self-supervised training, the performance of the

learned features for transfer learning keeps increasing and

achieves the highest accuracy when using all of the train-

ing data on both the NTU-PCLs (val) and MSRAaction 3D

datasets.

5. Conclusions

In this paper, we have proposed a self-supervised method

to learn the 4D dynamic features on the point cloud se-

quences by predicting the temporal order of clips. Besides,

we further introduce a recurrent model to learn the tem-

poral embeddings of point cloud clips, which has an ad-

vantage of inferring inter-relation between clips. To val-

idate the proposed method, we further created a new se-

quential point cloud dataset, namely NTU-PCL, based on

NTU-RGB+D data set by proposed an RGB to depth align-

ment model. We employ two different 4D CNN encoders

to conduct self-supervised learning and do comprehensive

ablation experiments to demonstrate the advantage of our

proposed method. Moreover, we introduce the action clip

retrieval using a 4D feature similarity metric to search the

nearest action on different data sets. Results show that our

self-supervised approach is capable of providing state-of-

art model initialization and infer the action similarity. The

further direction includes learning 3D point cloud flow us-

ing a 2D optical flow supervision, which is also in a self-

supervised manner.
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[12] Hervé Jégou and Ondřej Chum. Negative evidences

and co-occurences in image retrieval: The benefit of

pca and whitening. In European conference on com-

puter vision, pages 774–787. Springer, 2012.
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