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Abstract

Domain Adaptation (DA) targets at adapting a model

trained over the well-labeled source domain to the unla-

beled target domain lying in different distributions. Exist-

ing DA normally assumes the well-labeled source domain

is class-wise balanced, which means the size per source

class is relatively similar. However, in real-world appli-

cations, labeled samples for some categories in the source

domain could be extremely few due to the difficulty of data

collection and annotation, which leads to decreasing per-

formance over target domain on those few-shot categories.

To perform fair cross-domain adaptation and boost the per-

formance on these minority categories, we develop a novel

Generative Few-shot Cross-domain Adaptation (GFCA) al-

gorithm for fair cross-domain classification. Specifically,

generative feature augmentation is explored to synthesize

effective training data for few-shot source classes, while

effective cross-domain alignment aims to adapt knowledge

from source to facilitate the target learning. Experimental

results on two large cross-domain visual datasets demon-

strate the effectiveness of our proposed method on improv-

ing both few-shot and overall classification accuracy com-

paring with the state-of-the-art DA approaches.

1. Introduction

In recent years, deep learning has achieved significant

advances in various applications. In most real-world appli-

cations, the availability of large-scale labeled data is cru-

cial. However, manually collecting and annotating data are

extremely expensive and time consuming for every new do-

main. On the other hand, we can often access abundant

data with limited or even no labels. Domain adaptation

(DA) [25, 38] considers the problem of transferring a ma-

chine learning model from a source domain towards a dif-

ferent target domain, where data from different domains lie

in different distributions. By reducing both the marginal

and conditional mismatch in feature space between do-

mains, knowledge transfer from an external labeled, well-
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established source domain data to target domain can be

achieved. Existing DA methods generally deal with do-

main adaptation by assuming source classes are balanced.

However, in reality, labeled data from some categories may

be limited due to the difficulty of data collection and an-

notation, making data in source domain extremely imbal-

anced. We refer to this as Few-shot Cross-domain Adapta-

tion, where the classes with limited samples denote few-shot

classes while others represent normal classes. The few-shot

cross-domain adaptation problem raises concern when con-

sidering the fairness of the corresponding learning task as

the available training data is already contaminated by bias

towards classes with majority of samples [4]. Existing DA

methods can be roughly summarized into two categories:

discrepancy-based methods and adversarial-based methods

[38]. Discrepancy-based methods focus on diminishing the

domain shift through minimizing discrepancy metrics, such

as maximum mean discrepancy (MMD) [17, 34] and corre-

lation alignment (CORAL) loss [30, 31, 44]. More recently,

inspired by the idea of generative adversarial networks [9],

adversarial-based methods aiming to match feature distribu-

tions through adversarial training have attracted great atten-

tions [7, 16, 33]. Methods in both categories are designed

to reduce the cross-domain gap by aligning domain-wise

distributions explicitly, so that the model derived from the

source domain can be applied to the target domain directly.

Dealing with imbalanced data is commonly encountered

in real-world applications where some classes may have

very limited labeled training data. However, directly mini-

mizing the average error to fit the entire training data could

make learning techniques bias towards the majority popu-

lation and lead to higher distribution of errors and unfair

results in the minority population [4]. Moreover, the idea

of learning novel concepts from very few examples has

attracted much attention in few-shot learning approaches

[6, 26, 32, 41]. Among the existing approaches, data aug-

mentation is a straightforward method to boost the perfor-

mance on few-shot classes through synthesizing more data

in input space [12, 28, 39, 42] or in a learned feature space

[5, 36]. Generative models have been utilized to synthesize
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more training data for few-shot classes through capturing

the data variation from base classes [9, 23]. Moreover, ex-

tended from typical DA problem, methods have been pro-

posed to directly tackle the problem of imbalanced data in

DA [1, 22, 37]. Existing DA methods focus on sample re-

weighting [1], instance re-weighting with subspace learn-

ing [22], and class re-weighting with distribution adapta-

tion [37]. However, these methods did not fully utilize the

powerful generative models to directly augment samples for

underrepresented few-shot classes.

To this end, we propose a novel Generative Few-shot

Cross-domain Adaptation model (GFCA) to enhance the

adaptation ability from extremely imbalanced source do-

main for better and fairer target sample prediction. Specifi-

cally, we focus on generating effective auxiliary data for the

few-shot classes in the source domain to facilitate the clas-

sification accuracy for the under-represented classes. To the

best of our knowledge, this is the very pioneering work to

explore the few-shot cross-domain adaptation problem for

fair cross-domain classification. The main contributions of

our paper are summarized as follows:

• We incorporate the generative adversarial network in

training a DA network for both normal and few-shot

classes. Specifically, the generator attempts to syn-

thesize effective fake data at the learned feature space

to augment few-shot classes, while the discriminator

guides the data generation in order to adapt data vari-

ation in normal classes to generate data in few-shot

classes.

• We combine the generative adversarial network with

the DA network to train a general classifier for both

source and target domain. Specifically, we build a con-

ditional generative adversarial network to promote the

performance of the DA network on few-shot classes.

• We evaluate our proposed model on two cross-domain

visual benchmarks. Comparing with state-of-the-art

methods, our model achieves significant improvement

in both few-shot and overall classification accuracy,

which indicates fairer classification capability.

2. Related Work
In this section, since few-shot cross-domain adaptation is

still an open problem, we mainly review two research areas

that are related to the proposed model: data augmentation

and unsupervised DA.

2.1. Data Augmentation

Data augmentation is a straightforward approach to im-

prove the performance on few-shot classification. Gen-

erating data with enough intra-class variation in few-shot

classes is crucial to effective data augmentation. Hariha-

ran et al. [12] proposed techniques to ”hallucinate” addi-

tional training examples for few-shot classes by leveraging

the mode of variation in the normal classes. Hauberg et

al. [13] proposed to learn augmentation strategy on a per-

class basis, where a statistical model is built for transfor-

mations within a given class and used for augmenting the

dataset. DeVries and Taylor [5] proposed to augment data

in the learned feature space using simple transformations.

Recently, deep generative models [2, 9, 21, 23, 24] have

been exploited to synthesize data for few-shot classes by

capturing the intra-class variation in normal classes. Data

Augmentation GAN (DAGAN) [2] synthesizes new data by

adding noise to lower-dimensional representations of the

data learned through a generator network with an encoder

and a decoder. BAlancing GAN (BAGAN) [21] also utilizes

an autoencoder for data generation and learns useful fea-

tures from normal classes for few-shot data synthesis by ap-

plying class conditioning on the latent space in the autoen-

coder. However, the key difference between GFCA and ex-

isting works is that we utilize data generation in the feature

domain rather than in the image domain using deep gen-

erative models while simultaneously seeking DA between

source and target domains.

2.2. Unsupervised Domain Adaptation

Unsupervised DA aims to bridge the distribution dif-

ference between domains with unlabeled target domain

data. Recently, deep DA methods have been attract-

ing popularity by utilizing the power of deep neural net-

works. Discrepancy-based methods aim to diminish the

domain shift by minimizing certain discrepancy metrics

[15, 17, 31, 34, 44]. Deep Domain Confusion (DDC)

network [34] incorporates an additional loss based on the

MMD between the source and target representations at the

last fully-connected layer to jointly optimize for classifi-

cation and domain invariance. Extended from DDC, Do-

main Adaptation Network (DAN) [17] utilizes multiple ker-

nel MMD-based loss across domains on the last three task-

specific layers and achieves better performance. More re-

cently, Lee et al. [15] proposed Sliced Wasserstein Dis-

crepancy (SWD), which can be minimized between task-

specific classifiers to align the distributions across domains.

Saito et al. [27] presented MCD-DA to align distributions

across domains by exploiting task-specific decision bound-

aries. Xu et al. [40] introduced to adapt the feature norms

with larger-norm constraint for more informative and trans-

ferable computation across domains.

Inspired by generative adversarial networks [9],

adversarial-based methods utilize adversarial training

to align feature distributions across domains. Domain-

Adversarial Neural Network (DANN) [7] is one of the first

methods to learn domain-invariant representations through

adversarial learning between the domain classification and

feature representation. Tzeng et al. [33] proposed a unified

framework for unsupervised DA and further introduced

Adversarial Discriminative Domain Adaptation (ADDA)

by minimizing a GAN-based loss. Volpi et al. [36]
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Figure 1: Illustration of the few-shot cross-domain adaptation problem with GFCA. Source domain contains labeled data

of normal and few-shot classes without overlapping classes. Target domain contains unlabeled data sharing the same set

of classes as source domain. Representation learning trains effective ResNet-50 feature extractor using the labeled source

data to transfer the image into a feature space for both source and target domains. Generative data augmentation is used to

synthesize effective training samples from random noise vector z and one-hot label vector y by training source generator G(·).
Cross-domain adaptation seeks a general classifier C(·) for both source and target domain through effective cross-domain

alignment by training the adaptation network E(·).

combined feature augmentation with domain-invariance

enforcement for more effective domain adaptation, but did

not include mechanism to promote the underrepresented

classes in the training set. More recently, Cao et al. [3]

presented Partial Adversarial Domain Adaptation (PADA)

for more effective adaptation when source domain and

target domain do not share identical label space. Long et al.

[18] proposed Conditional Domain Adversarial Network

(CDAN) to utilized the discriminative information in

classifier predictions to help adversarial adaptation. Zhang

et al. [43] introduced the well-designed theory-induced

Margin Disparity Discrepancy (MDD) for adversarial

training in DA. In this paper, to demonstrate the necessity

of leveraging generative models for data augmentation, we

utilize the well-established DAN method for DA based on

the real source data, synthetic source data, and target data.

3. The Proposed Algorithm

3.1. Preliminary and Motivation

In the unsupervised DA problem, we are given a labeled

source domain and an unlabeled target domain. The source

domain contains ns data points from c classes: {Xs, Ys} =
{(xs,1, ys,1), ..., (xs,ns

, ys,ns
)}, where xs,i ∈ R

dx is the

feature vector with dx dimensions and ys,i ∈ R
c is the cor-

responding one-hot label vector. The target domain con-

tains nt data points: {Xt} = {xt,1, ..., xt,nt
}, in which

xt,i ∈ R
dx . Source and target domains are different in terms

of data distributions, but share consistent label information,

and the goal is to recognize the unlabeled target samples.

In Few-shot Cross-domain Adaptation problem, we fur-

ther assume that the labeled source domain data contains

two sets of data without overlap in classes: Normal Set

(i.e., normal classes) {Xsn, Ysn} with cn classes and Few-

Shot Set (i.e., few-shot classes) {Xsl, Ysl} with cl classes,

where {Xs, Ys} = {Xsn, Ysn}∪{Xsl, Ysl} and c = cn+cl.
In this problem, few-shot set contains far less number of

samples per class, and our goal is to achieve high classi-

fication performance in both normal classes and few-shot

classes on the unlabeled target samples.

In reality, labeled data from some classes may be limited

due to the difficulty of data collection and annotation. While

existing DA methods generally assume source classes to be

balanced, few-shot cross-domain adaptation is a challeng-

ing task because of extremely imbalanced source domain.

Few-shot classes only contains limited labeled training data

with limited variation within each class. Traditional data

augmentation methods [12] use human designed rules to

generate more data for the few-shot classes, where the im-

provement to the classifier is limited. Moreover, it is im-

portant to balance between the normal set and the few-shot

set, since trying to improve the performance on the few-

shot classes could hurt normal set classification. Thus, it

is important to generate effective data to expand the intra-

class variation in few-shot classes. Generative models have

shown great promise in synthesizing effective data. Since

normal set usually contains larger intra-class variations,

generative models can be leveraged to adapt the variation in

normal set to few-shot set during data generation. Once we

properly augment the source domain data to promote few-

shot classes, we can adopt DA approaches to train a general

classifier for both source and target domain and both nor-

mal and few-shot sets. In this paper, we utilize MMD-based

regularization for cross-domain alignment, where a classi-

fier can be subsequently trained to effectively classify data

from both domains.

3.2. Generative FewShot CrossDomain Learning

An illustration of our proposed Generative Few-shot

Cross-domain Adaptation (GFCA) algorithm is shown in

Figure 1. An representation model is built first with su-

pervised learning framework to transfer the image into a

discriminative feature domain by training on the source do-

main data. Taking the input of a random noise and a one-hot
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label vector, the generator is trained to synthesize effective

source domain data with the guidance of the discriminator

in the learned feature space. A MMD-regularized encoder

and classifier is then trained using real source domain data,

synthetic fake source domain data, and target domain data to

perform effective classification on data from both domains.

3.2.1 Generative Data Augmentation

Generative models trained via adversarial training can syn-

thesize fake data from random noise [9]. Moreover, condi-

tional generative models have been proved to be more ef-

fective in synthesizing meaningful data by conditioning the

model on additional information such as class labels [23].

For generative data augmentation, our goal is to use gen-

erative models to generate fake data at the learned feature

space with class labels for augmenting source domain train-

ing data. We denote the random noise by z ∈ R
dz , real

feature vector by x ∈ R
dx , and the corresponding one-hot

label vector by y ∈ R
c.

The generator G(·) attempts to synthesize fake feature

vector xf with the inputs of z and y:

G(z|y) = φg(Wg

[

z
y

]

) = φg([Wz,Wy]

[

z
y

]

)

= φg(Wzz +Wyy),

(1)

where Wz ∈ R
dx×dz and Wy ∈ R

dx×c are the weight ma-

trices. φg(·) is the element-wise activation function.

We attempt to augment few-shot classes in the source do-

main by synthesizing fake data using generator G(·) in the

learned feature space. To acquire meaningful synthetic fea-

tures, we could span the feature space of each few-shot class

around its center. Thus, we use Wyy to capture the class

center information and use Wzz to capture the class vari-

ance information. We initialize Wy with the class centroid

of source domain features in the training set. The normal set

contains abundant samples for each class, which makes the

estimation of class centers more accurate than class centers

of few-shot set during initialization. Therefore, we include

an additional L2 regularization on the weight vectors for the

normal set in Wy to discourage it from changing dramati-

cally comparing to initialization. For the random noise part,

to faithfully capture the class variation, we initialize each

column of Wz by taking the top dz principle components

from the source training data Xs and scale each column of

Wz by multiplying the corresponding eigenvalues. Each el-

ement in z is sampled from a uniform distribution between

-1 and 1. We also add a normalization process to make the

synthetic feature vectors be in the same scale as the real

source features. For a fake feature vector xf generated by

G(·), we normalize xf as N(xf ) = xf/ ‖xf‖2 ∗ β, where

β is the average norm of real source domain features.

The discriminator D(·) attempts to distinguish the fake

feature vectors from the real ones, which is designed as:

D(x) = φd(Wdx+ bd), (2)

where Wd ∈ R
1×dx and bd ∈ R. φd(·) projects the input to

a value between 0 and 1.

The generator G(·) aims to generate features similar to

real source features, while the discriminator D(·) aims to

differentiate fake features from real features. Therefore, the

loss function for the generator Lg and for the discriminator

Ld can be formulated as:

Lg = −E[D(xf )] (3)

Ld = −E[D(xr)]− E[1−D(xf )] (4)

where xr represents the real feature vector and xf =
G(z|y) represents the fake feature vector given one-hot la-

bel y and random noise z. As shown above, the generator is

trained by minimizing Lg , while the discriminator is trained

by minimizing Ld. Thus, the training of generator G(·) and

discriminator D(·) can be formulated as a two-player mini-

max problem.

3.2.2 Cross-Domain Alignment and Fair Classification

Maximum Mean Discrepancy (MMD) [29] is a non-

parametric distance estimate between two probability distri-

butions based on their samples. MMD-based regularization

has proven to be highly effective in many DA tasks [17, 19,

29]. Therefore, we utilize MMD to bridge the distribution

gap between the learned representations of source and tar-

get domain features. Given samples Xs = {xs,i}i=1,...,ns

drawn from distribution Ds and Xt = {xt,i}i=1,...,nt
drawn

from distribution Dt, the empirical estimate of MMD can be

written as

MMD(Xs, Xt) =

∥

∥

∥

∥

∥

∥

1

ns

ns
∑

i=1

φ(xs,i)−
1

nt

nt
∑

j=1

φ(xt,j)

∥

∥

∥

∥

∥

∥

H

(5)

where φ(·) is the feature space map from the original fea-

ture space to a universal Reproducing Kernel Hilbert Space

(RKHS) H. Specifically, in this paper, we utilize a multiple

kernel variant of MMD (MK-MMD) proposed by Gretton

et al. [10], which is also the backbone of DAN [17].

We exploit an encoder E(·) for learning transferable

features with dimension dh between source and target do-

mains. For samples from the source domain Xs and the tar-

get domain Xt, the encoder attempts to minimize Le, which

is defined as the MMD between their corresponding repre-

sentations Hs and Ht produced by the encoder:

Le = MMD(Hs, Ht) = MMD(E(Xs), E(Xt)) (6)

Finally, we train a classifier C(·) with c classes and

weight matrix Wc ∈ R
dc×dh to classify samples from both

domains. Since there are only limited labeled training sam-

ples for the cl few shot classes, in order to obtain a good

classifier for few-shot classification, we use the generator to
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synthesize additional labeled samples from the source do-

main for training. Therefore, the classification loss can be

formulated as

Lc =Lsr + Lsf

=− E[logP (Y = yr|E(xsr))]

− E[logP (Y = yf |E(G(z|yf )))]

(7)

where Lsr is the classification loss for labeled real data from

source domain xsr with label yr and Lsf is the classification

loss for fake source domain feature vector xsf generated by

G(·) with label yf .

To further balance between the few-shot set with lim-

ited training samples and the normal set, we incorporate a

weight regularizer on the classifier using a fair classification

(FC) term [11] for fairer classification across few-shot and

normal classes. Denoting the classifier weight vector for the

k-th class by wk, the FC term can be formulated as

Lfc = (
1

Cl

∑

k∈Cl

‖wk‖
2

2
− α)2 (8)

where Cl is the set of the class indices for the few-shot set.

α is the parameter learned from the average of the squared

norms of weight vectors for the normal classes:

α =
1

|Cn|

∑

k∈Cn

‖wk‖
2

2
(9)

where Cn is the set of the class indices for the normal set.

The FC term is based on the assumption that on average,

samples in the few-shot classes should occupy a space of

similar volume in the feature space as the normal classes

[11]. Therefore, in Eq. 8, the average of the squared norms

of the weight vectors for the few-shot classes are regularized

to the same scale as normal classes.

In summary, the overall objective for cross domain align-

ment and few-shot promotion can be written as

Lec = Lc + λLe + γLfc (10)

where λ and γ controls the relative importance of the MMD

regularization term and the fair classification term. The en-

coder E(·) and classifier C(·) are trained jointly by mini-

mizing Lec.

3.2.3 Implementation Details

We choose the standard residual network with 50 layers

(ResNet-50) [14] pre-trained on the ImageNet dataset as the

backbone of our feature extractor. We fine-tune the ResNet-

50 network using the labeled source domain data for each

task and use the last pooling layer as the image represen-

tation. The hyper-parameters λ and γ in the Eq. 10 are

selected as 1 throughout all experiments. We use the sig-

moid activation function for D(·), and the leaky-ReLU ac-

tivation function for G(·), E(·), and C(·). We adopt the

adaptive moment estimation (Adam) to train the network

with β1 = 0.9 and β2 = 0.999. The generator G(·) and

discriminator D(·) is first pre-trained separately to acquire

a good initialization of the generative feature augmentation

network. During the end-to-end training of the entire net-

work, for each iteration, we first sample real labeled source

domain data and unlabeled target domain data. Fake la-

beled source domain features are then synthesized through

the generator. The encoder and classifier are then updated

to minimize Lec. Next, we fix the discriminator and op-

timize the generator by minimizing Lg . Finally, we con-

strain the generator to update the discriminator by minimiz-

ing Ld. Thus, we alternatively update different modules

within GFCA until it converges.

4. Experiments

4.1. Datasets

Office31 [8] consists of images within 31 categories

from 3 domains (Amazon, Webcan, and DSLR). Specif-

ically, Amazon images are downloaded from online mer-

chants with clear backgrounds. Webcam and DSLR images

are taken from office environments, where Webcam images

are taken by a low-resolution web camera and DSLR im-

ages are taken by a high-resolution digital SLR camera.

Office-Home [35] consists of images within 65 cate-

gories from 4 domains (Art, Clipart, Product, and Real-

world). Specifically, Art represents artistic depictions of

objects; Clipart contains clipart images; Product consists

of images of objects without a background, similar to the

Amazon domain in the Office31 dataset; Real-world con-

tains images of objects captured with a regular camera.

4.2. Comparison Experiments

We compare our proposed GFCA algorithm with the fol-

lowing state-of-the-art DA methods: DAN [17], DANN [7],

ADDA [33], PADA [3], MDD [43], SWD [15], CDAN

[18], MCD-DA [27], DIFA [36], and SAFN [40].

Specifically, DAN, SWD, MCD-DA, and SAFN are

discrepancy-based methods, while DANN, ADDA, PADA,

MDD, CDAN, and DIFA are adversarial-based methods.

For baseline comparison, we also directly train a network

with the same structure as the encoder and classifier in

GFCA using only ResNet-50 [14] features from the source

domain (ResNet-50).

For the Office31 dataset, 10 classes are selected as few-

shot classes. For the Office-Home dataset, 20 classes are

selected as few-shot classes. Each few-shot class consists

of 3 samples randomly sampled from the original dataset.

In all our experiments, source domain data are first ran-

domly over-sampled to create a balanced training set. For

fair comparisons across different methods, ResNet-50 [14]

pre-trained on the ImageNet dataset and fine-tuned using

the source domain training samples is utilized as the back-

bone of the compared deep DA methods. We adopt the top-

1 classification accuracy for the unlabeled target samples as

the evaluation metric. The results on the Office31 dataset

and the Office-Home dataset are shown in Table 1 and Ta-

ble 2, respectively.
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Table 1: Accuracy (%) of few-shot classification for DA tasks in the Office31 dataset, where A = Amazon, D = DSLR, and

W = Webcam. Avg l, Avg n, and Avg denote the average classification accuracy for few-shot classes, normal classes, and all

unlabeled target samples, respectively.

Methods A→W D→W W→D A→D D→A W→A Avg l Avg n Avg
ResNet-50 19.3±0.2 57.9±0.5 51.2±0.3 22.6±0.3 23.8±0.7 24.4±0.3 33.2 73.5 60.1
DAN 63.5±0.1 71.7±0.4 86.6±0.1 67.4±0.2 47.9±0.1 51.3±0.1 64.7 84.3 77.9
DANN 37.8±0.2 79.8±0.1 85.4±0.2 44.9±0.4 38.6±0.0 41.1±0.1 54.6 86.0 75.6
ADDA 35.8±0.1 65.5±0.2 79.9±0.1 37.7±0.3 37.6±0.1 40.0±0.0 49.4 85.6 73.7
PADA 19.7±0.0 65.0±0.3 74.4±0.2 26.3±0.4 33.4±0.2 33.5±0.2 42.0 83.8 70.0
MDD 32.0±0.3 75.5±0.2 83.1±0.3 39.0±0.3 35.3±0.3 39.1±0.2 50.6 86.5 74.6
SWD 25.5±0.1 70.0±0.2 77.6±0.0 34.4±0.2 34.1±0.1 36.4±0.1 46.3 83.6 71.3
CDAN 35.1±0.1 71.8±0.1 76.2±0.2 42.9±0.5 33.8±0.1 34.8±0.1 49.1 86.0 73.8
MCD-DA 33.5±0.1 71.6±0.0 76.1±0.1 41.6±0.2 37.2±0.1 39.1±0.1 49.9 84.0 72.7
DIFA 63.0±0.4 67.2±0.2 89.2±0.1 58.3±0.5 49.7±1.0 50.7±0.1 63.0 84.5 77.6
SAFN 40.3±0.4 72.0±0.1 77.9±0.2 48.8±0.2 37.8±0.0 38.2±0.0 52.5 86.0 74.9
GFCA-2Stage 71.3±0.0 81.2±0.1 90.5±0.2 73.4±0.6 46.3±0.0 50.3±0.0 68.8 86.6 80.8
GFCA-WoFC 71.6±0.1 80.1±0.2 90.7±0.2 74.6±0.9 53.0±0.0 55.7±0.0 71.0 86.7 81.6
GFCA 71.3±0.1 80.3±0.2 90.5±0.2 74.9±0.8 52.8±0.0 55.8±0.0 70.9 86.9 81.7

Table 2: Accuracy (%) of few-shot classification for DA tasks in the Office-Home dataset, where Ar = Art, Cl = Clipart, Pr =

Product, and Rw = Real-world. Avg l, Avg n, and Avg denote the average accuracy for few-shot classes, normal classes, and

all unlabeled target samples, respectively.

Methods
Ar Ar Ar Cl Cl Cl Pr Pr Pr Rw Rw Rw

Avg l Avg n Avg
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr
ResNet-50 11.9 35.0 21.1 14.7 24.2 23.7 10.5 11.0 31.5 11.4 9.5 41.2 20.5 58.7 47.7
DAN 35.5 61.0 55.2 28.7 51.4 44.8 31.0 27.7 61.8 38.4 37.1 64.9 44.8 61.7 56.8
DANN 20.3 38.5 31.9 21.6 32.3 30.5 25.1 23.1 49.3 27.3 27.6 52.2 31.6 64.7 55.1
ADDA 19.2 39.7 33.6 17.9 27.5 28.5 22.3 18.6 46.3 29.0 23.5 53.2 29.9 65.3 55.1
PADA 10.7 32.3 17.8 16.1 24.0 24.8 17.1 17.8 44.8 17.6 16.9 45.1 23.7 65.4 53.4
MDD 13.5 29.9 25.3 16.1 26.1 28.7 18.5 19.1 42.4 20.5 21.6 48.5 25.9 65.5 54.0
SWD 17.6 38.1 23.7 20.2 27.2 27.2 22.6 20.1 45.6 20.5 20.0 49.5 27.7 64.8 54.1
CDAN 29.8 54.6 44.3 16.1 41.3 30.3 34.8 31.4 64.5 36.2 32.6 61.7 39.8 65.5 58.1
MCD-DA 19.2 41.7 27.5 23.7 32.4 33.9 26.0 21.8 49.8 27.3 24.5 50.2 31.5 64.6 55.0
DIFA 40.8 54.1 52.9 32.1 42.0 52.6 38.1 34.6 59.0 42.6 38.8 67.2 46.2 64.3 58.7
SAFN 18.7 47.3 30.5 21.9 39.9 29.2 21.8 20.4 46.5 27.9 26.1 49.5 31.6 65.8 56.0
GFCA-2Stage 41.0 66.0 64.5 38.7 58.6 58.2 42.6 36.1 66.8 46.1 44.6 69.9 52.8 64.7 61.3
GFCA-WoFC 43.0 66.4 63.9 36.8 59.3 57.8 44.4 37.4 69.6 46.9 45.0 72.7 53.6 64.6 61.5
GFCA 43.2 67.5 65.6 37.5 59.3 60.2 43.9 36.5 70.5 46.1 45.4 74.5 54.2 64.7 61.7

From Tables 1 and 2, we observe that all compared meth-

ods achieve similar classification accuracy on the normal

set, which are much higher than the baseline. This indicates

that DA is necessary for effective knowledge transfer across

domains with different distributions. Specifically, SAFN

obtains the highest normal set classification accuracy on the

Office-Home dataset, which demonstrates the effectiveness

of its novel approach of feature norm adaptation. However,

the proposed GFCA algorithm performs the best in normal

set classification on the Office31 dataset, which represents

that effective data augmentation through generative models

could also benefit the learning of normal classes.

For few-shot classification, we observe that the proposed

GFCA algorithm makes remarkable performance improve-

ment in all DA tasks comparing with existing DA meth-

ods on both datasets. This demonstrates that our generative

few-shot cross-domain alignment approach could indeed

boost few-shot classification performance and fair classifi-

cation among normal and few-shot classes. Existing meth-

ods generally perform better in few-shot classification when

the size of the source dataset is small (e.g. D→W and

W→D in Office31) since the imbalance between few-shot

and normal set is less compelling. Surprisingly, the classi-

cal discrepancy-based DAN method achieves the best per-

formance in few-shot classification of the Office31 dataset

comparing with other existing methods. However, we also

notice that DAN tends to obtain lower accuracy for normal

set classification due to less cross-domain adaptation ability.

DIFA achieves the best performance in few-shot classifica-

tion of the Office-Home dataset comparing with other exist-

ing methods, which demonstrates that feature augmentation

does provide help in effective domain adaptation for few-

shot classes. Under more difficult DA tasks in the Office-

Home dataset, the classification performance improvement

produced by GFCA becomes much more significant. This

demonstrates the necessity of generative data augmentation

under complex DA problems with extremely imbalanced

source data. Moreover, GFCA consistently achieves the

highest overall classification accuracy comparing to exist-

ing DA approaches.

4.3. Empirical Evaluation

To demonstrate that our generative data augmentation

model could indeed synthesize effective training data and

promote fair classification across both normal and few-shot
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Figure 2: Visualization of A→D task in the Office31

dataset. (a) t-SNE visualization with synthetic fake data

(red), sampled real few-shot source training data (green),

and source data from the original full dataset (blue). (b)

Silhouette scores comparing data with or without synthetic

fake data with clusters defined by class labels. ”All” rep-

resents silhouette scores calculated using all samples and

”few-shot” represents silhouette scores calculated with few-

shot samples. (c) Cosine similarity of class centers between

few-shot source training data (blue) or synthetic fake source

data (red) and the unused few-shot source data from the

original full dataset.

set, we utilize t-SNE [20] to visualize generated fake source

data, along with source data in the training set and unused

few-shot source data from the original full dataset. Fig-

ure 2a shows the few-shot t-SNE visualization for A→D

task in the Office31 dataset. We observe that synthetic few-

shot data generally conform with the unused source sam-

ples in the full dataset for both few-shot and normal classes.

Specifically, different classes form distinct clusters and the

synthetic data generally spread around the center of each

cluster. For few-shot classes, the generated data also ex-

pands the intra-class variation comparing with the few-shot

training samples. We further evaluate the quality of the gen-

erated data using silhouette scores with clusters defined by

class labels and distance calculated using cosine distance

(Figure 2b). We observe that when combined with the syn-

thetic fake data, silhouette scores of the original full dataset

and the training source data both increases. Such observa-

tion is also consistent when all samples or only few-shot

samples are considered. This indicates that the synthetic

data could enhance the clustering structure of the data for

normal and few-shot classes, which could benefit the fol-

lowing classification task. Moreover, from Figure 2a, we

also notice that in cases where the sampled few-shot train-

ing data is far from the class centers estimated by the orig-

inal full datasets, GFCA is able to generate data closer to

the class centers. To further confirm this observation, we

evaluate the cosine similarity between class centers of gen-

erated few-shot data and unused few-shot data, and compare

it with the cosine similarity between class centers of sam-

pled few-shot training data and unused few-shot data (Fig-

ure 2c). We observe that for 7 out of 10 few-shot classes in

A→D task in the Office31 dataset, the class centers of the

synthetic fake data obtain higher similarity with the few-

shot data in the original full dataset, which demonstrates

that the generator could acquire a better estimation of class

centers through adversarial training.

We further investigate the reason for few-shot classifi-

cation improvement achieved by our method. The weight

matrix Wc in classifier C(·) consists of a weight vector wk

for each class k. Guo et al. revealed that there exists a

close connection between the norm of the weight vector

and the volume of the corresponding class partition in the

feature space [11]. Therefore, we calculate the norm of

each class weight vector after training completed to eval-

uate whether the few-shot classes have been promoted with

similar importance as the normal classes by the classifier.

Figure 3 shows the average L2-norms of normal and few-

shot class weight vectors in GFCA and DANN under differ-

ent DA tasks in the Office31 dataset. DANN is trained with

the same classifier structure as GFCA for fair comparison.

We notice for tasks with more imbalanced training set (e.g.

A→W, A→D), weight norms of few-shot classes produced

by DANN are significantly lower than norms of the normal

set, which further verifies the performance deterioration of

DANN under tasks with more imbalanced training data. By

introducing the fair classification term, GFCA yields simi-

lar weight norms for both normal and few-shot sets, which

conforms with the superior performance of GFCA in few-

shot set, normal set, and overall classification.

We also evaluate the performance of GFCA under differ-

ent few-shot settings. Specifically, two factors are investi-

gated: number of few shot classes and number of samples

per few-shot class. Firstly, we fix the number of samples

per few-shot class to 3 and change the number of few-shot

classes from 5 to 15 (Figure 4a). Secondly, we fix the num-

ber few-shot class to 10 and change the number of samples

per few-shot classes from 1 to 5 (Figure 4b). For meaningful

and consistent comparison, we choose the same set of few-

shot samples for the same few-shot class across different

experiments when exploring the influence of a factor. For

example, in the experiments with 5 and 9 few-shot classes,

the shared 5 few-shot classes across these two experiments

contain the same set of samples. The few-shot cross-domain

460



A->W D->W W->D A->D D->A W->A0.0

0.5

1.0

1.5

2.0

L2
-n

or
m

normal class few-shot class

(a) GFCA

A->W D->W W->D A->D D->A W->A0.0

0.5

1.0

1.5

2.0

2.5

L2
-n

or
m

normal class few-shot class

(b) GFCA-WoFC

A->W D->W W->D A->D D->A W->A0.0

0.5

1.0

1.5

L2
-n

or
m

normal class few-shot class

(c) DANN

Figure 3: Average of L2-norms of the classifier weight vectors for normal classes (orange) and few shot classes (green) in

different DA tasks of the Office31 dataset.

learning problem becomes more difficult as the number of

few-shot class increases or the number of samples per few-

shot class decreases. We also train DANN using the same

data for comparison. From Figure 4, we observe that GFCA

consistently achieves remarkable improvement in both few-

shot and overall classification under all few-shot settings.

Specifically, when the number of few-shot classes increases,

the overall classification accuracy in both methods gradu-

ally decreases. However, we observe fluctuation in few-shot

classification accuracy under different number of few-shot

classes, which could relate to the random sampling of few-

shot training samples, as well as the variation in difficulty of

classifying different categories. For DANN, the decrease in

the number of normal classes potentially makes the model

more difficult to learn the normal set while probably more

generalizable to the few-shot set. When the number of sam-

ples per few-shot class increases, we observe that the per-

formance of both methods increases, since larger samples

per few-shot classes represents less imbalanced dataset and

easier few-shot cross-domain learning problem.
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Figure 4: Few-shot and overall classification accuracy of

GFCA and DANN under different few-shot settings in the

Office31 dataset. (a) Classification accuracy with respect to

the number of few-shot classes. (b) Classification accuracy

with respect to the number of samples per few-shot class.

4.4. Ablation Study
We compare GFCA with its two variants. The first vari-

ant is GFCA-2Stage, where data augmentation and domain

adaptation in GFCA are performed in two stages. In GFCA-

2Stage, the generator and discriminator are first trained us-

ing the labeled source domain data. Then, the generator is

utilized to synthesize fake data for source domain data aug-

mentation using balanced class labels. Finally, the encoder

and classifier are trained using the augmented source data

and target data. The second variant is GFCA-WoFC, where

the FC regularization term on the classifier is removed.

From Table 1 and 2, we observe that all variants of the

GFCA algorithm achieve significant improvement in few-

shot and overall classification under all DA tasks compar-

ing to existing methods. Specifically, on average, GFCA

performs better in few-shot and overall classification than

GFCA-2Stage, which demonstrates the advantage of end-

to-end training of our proposed model. GFCA-WoFC yields

the highest accuracy for few-shot classification in the Of-

fice31 dataset. However, it also obtains lower normal set

and overall classification accuracy comparing to GFCA.

From Figure 3b, we observe that classifiers in GFCA-

WoFC have larger norms of few-shot class weight vectors

than norms of normal class weight vectors. This indicates

that generative data augmentation can synthesize data with

enough intra-class variation and expand the volume of few-

shot classes in the feature space. Although generative data

augmentation alone could significantly improves few-shot

classification, regularization with FC term is still needed to

maintain the performance in normal set classification and

the classification fairness across both few-shot and normal

classes. Moreover, in the Office-Home dataset, we observe

that GFCA achieves higher accuracy in both few-shot and

overall classification comparing to GFCA-WoFC, which

demonstrates that FC term is still needed for few-shot pro-

motion and fair classification under more difficult DA tasks.

5. Conclusion
In this paper, we propose a novel GFCA algorithm to

solve the few-shot cross-domain adaptation problem for

fair classification. We utilize generative data augmenta-

tion to synthesize effective source training data for few-shot

classes and alleviate the bias in favor of the normal classes

in the training set, where we train a conditional genera-

tive adversarial network to capture the intra-class variation

of the normal classes. We then leverage effective domain

alignment to adapt knowledge from the source domain to

the target domain, where MMD-based regularization is uti-

lized to learn transferable representations of training sam-

ples using real source data, fake synthetic source data, and

target data. A general classifier is further trained with a

FC regularization term to balance between the underrep-

resented few-shot classes and normal classes for fair clas-

sification. Experiments on two cross-domain benchmark

datasets demonstrate that our method could significantly

improve the performance for both few-shot and overall clas-

sification comparing to state-of-the-art DA methods.
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