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Abstract

Intra-camera supervision (ICS) for person re-

identification (Re-ID) assumes that identity labels are

independently annotated within each camera view and

no inter-camera identity association is labeled. It is a

new setting proposed recently to reduce the burden of

annotation while expect to maintain desirable Re-ID

performance. However, the lack of inter-camera labels

makes the ICS Re-ID problem much more challenging

than the fully supervised counterpart. By investigating the

characteristics of ICS, this paper proposes jointly learned

camera-specific non-parametric classifiers, together with

a hybrid mining quintuplet loss, to perform intra-camera

learning. Then, an inter-camera learning module con-

sisting of a graph-based ID association step and a Re-ID

model updating step is conducted. Extensive experiments

on three large-scale Re-ID datasets show that our approach

outperforms all existing ICS works by a great margin. Our

approach performs even comparable to state-of-the-art

fully supervised methods in two of the datasets.

1. Introduction

Person re-identification (Re-ID) is the task of matching

images of the same person across disjoint cameras. Because

of its significance in surveillance, this task has attracted

broad research interest in recent years. Most previous works

focus on fully supervised [10, 19, 28, 1, 13] and unsuper-

vised [4, 2, 32, 6, 22, 26] settings. The performance of su-

pervised person Re-ID has been greatly improved due to the

development of deep learning techniques. However, these

methods need a large amount of full annotations that are

expensive and time-consuming to obtain, leading to poor
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Figure 1. Comparison of the ID histograms under full and intra-

camera supervisions. The histograms are computed in three large-

scale datasets: Market-1501 [29], DukeMTMC-reID [17, 31], and

MSMT17 [21].

scalability in real-world deployments. Conversely, unsuper-

vised methods require no annotations but their performance

is still far from satisfactory.

This paper aims to learn a person Re-ID model un-

der intra-camera supervision (ICS), which is a new super-

vised setting proposed very recently [36, 16]. It assumes

that identity labels are independently annotated within each

camera and no inter-camera identity association is labeled.

Since the ID association across cameras is known as the

most time-consuming step for manual annotation, ICS can

greatly reduce annotation costs and make the Re-ID tech-

niques more scalable. Nevertheless, the per-camera inde-

pendent labeling nature brings up two challenges: 1) Al-

though IDs within each camera are labeled, most IDs in ICS

contain much less samples than those in full supervision, as

shown in Figure 1. 2) The lack of inter-camera labels re-

sult in more difficulties when dealing with appearance vari-

ations in different cameras.

Therefore, how to properly exploit the labeled data

within cameras and mine the unlabeled relations across
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cameras are two crucial problems in ICS. Existing

works [36, 35, 16, 15] address these problems, respec-

tively, from intra- and inter-camera learning perspectives.

For intra-camera learning, MTML [36] and MATE [35]

construct a multi-branch network that consists of a shared

feature extraction backbone and multiple classification

branches. Each branch learns a parametric softmax clas-

sifier for a specific camera view. However, the paramet-

ric classifiers could become ineffective when IDs contain

only a couple of samples, which is a situation commonly

occurred in ICS. Alternatively, PCSL [16] and ACAN [15]

perform the intra-camera learning by adopting the widely

used triplet loss [8], which mines the hardest positive and

negative pairs within each training batch. The triplet loss

takes only one negative sample each time and does not in-

teract with other negative classes, leading to inferior perfor-

mance and slow convergence [18]. These ineffective intra-

camera learning consequently hurts the inter-camera learn-

ing part, leading to a Re-ID performance much lower than

the counterparts in full supervision.

This paper aims to design a precise model for ICS person

Re-ID. Considering that each camera has a variable number

of IDs and most IDs have only few samples, we propose to

jointly learn a set of camera-specific non-parametric clas-

sifiers for the intra-camera learning. These non-parametric

classifiers, which are implemented with a shared feature ex-

traction backbone and an external memory bank, are inde-

pendent to the number of identity classes, enabling our net-

work to entirely focus on the learning of discriminative fea-

tures. Based on the memory bank, we also propose a quin-

tuplet loss, which takes both in-batch samples and memory-

stored ID centroids into account, to boost the intra-camera

learning performance. These strategies help us to exploit

the per-camera labeled data thoroughly and achieve a Re-ID

model with considerable discrimination ability. Afterwards,

an inter-camera learning step is followed that aims to im-

prove the Re-ID model by mining ID relationships across

cameras. To this end, we design a graph-based strategy

for ID association and pseudo labeling. The pseudo labels

are further utilized as ground-truth to train our network in a

fully supervised manner and gain a better Re-ID model.

Although we address the ICS problem from intra-

and inter-camera learning perspectives as existing ICS

works [15, 16, 36, 35], our approach is distinct in the

learning strategies and achieves much higher Re-ID perfor-

mance. Specifically, our contributions are as follow:

1) We propose jointly learned camera-specific non-

parametric classifiers and a quintuplet loss for intra-camera

learning. These designs are customized not only for the

characteristics of ICS but also for the memory assisted net-

work architecture. They enable our intra-camera learning

module to achieve a Re-ID performance better than existing

ICS full models [15, 16, 36, 35] that consider both intra-

and inter-camera learning parts.

2) Benefited from the high discriminative model ob-

tained above, together with the proposed graph-based asso-

ciation strategy, we are able to get desirable pseudo labels

in inter-camera learning. These labels enable us to effec-

tively train our Re-ID model, which is built on the BNNeck

augmented network architecture [13], in a fully supervised

manner. Riding the wave of architectures successfully ap-

plied in the supervised Re-ID task also boosts the perfor-

mance further.

3) Extensive experiments on three large-scale Re-

ID datasets including Market-1501 [29], DukeMTMC-

reID [17, 31], and MSMT17 [21], show that the proposed

approach outperforms previous ICS works by a great mar-

gin. Our performance is even comparable to fully super-

vised methods on the first two datasets.

2. Related Work

2.1. Person Re­identification

Fully supervised person Re-ID has made significant

progress relying on the success of deep learning techniques.

However, it remains to be an unsolved problem due to chal-

lenges arising from cluttered background, occlusion, as well

as variations in illumination, pose, and viewpoint. Recent

methods have exploited part-based features [19], human

semantics [28], attention mechanisms [1], or data genera-

tion [30] to tackle the challenges. These methods often lead

to complex network architectures. An exceptional work is

Bag of Tricks (BoT) [13] that achieves the state-of-the-art

performance by augmenting the baseline network with a

simple BNNeck component. In this paper, we construct our

network upon the BoT model, i.e. the BNNeck augmented

ResNet-50 [7], to keep our backbone simple yet effective.

Unsupervised person Re-ID has attracted a lot of re-

search interest in recent years. Existing methods can be

roughly categorized into two groups. One is based on do-

main adaptation techniques [4, 32, 5] that transfer knowl-

edge from labeled source domain to unlabeled target do-

main. The other group [6, 12, 22] is purely unsupervised

that requires no external labeled data. Both types of the

methods commonly perform a step to associate IDs across

cameras via K-nearest neighbors [32], clustering [6, 12], or

graph [22] based strategies. Our ICS work also adopts a

graph-based ID association step. But, in contrast to use a

graph-weighted loss [22], we formulate the association as a

problem of finding connected components in a sparse graph.

Semi-supervised person Re-ID aims to learn a Re-ID

model from both labeled and unlabeled data [25]. Intra-

camera supervision (ICS) is a special semi-supervised set-

ting proposed recently. All existing ICS works address

the problem by considering both intra- and inter-camera

learning perspectives. For supervised intra-camera learning,
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PCSL [16] and ACAN [15] take the extensively used triplet

loss [8], while MTML [36] and MATE [35] design a multi-

branch structure to learn parametric classifiers. For inter-

camera learning, ACAN [15] develops a multi-camera ad-

versarial learning approach to reduce the cross-camera data

distribution discrepancy, PCSL [16] utilizes a soft-labeling

scheme, MTML [36] and MATE [35] adopt multi-label

learning strategies. Although we address the ICS prob-

lem from intra- and inter-camera learning perspectives as

well, we propose distinct learning strategies in both parts

and achieve much higher Re-ID performance.

Difference from memory-assisted Re-ID methods.

Although memory assisted non-parametric classification

has been adopted in unsupervised Re-ID [32] and semi-

supervised Re-ID tasks [25], our approach is designed spe-

cific to the intra-camera supervised setting. Specifically, in

contrast to [32, 25] that use a memory to store instance fea-

tures and apply one classifier for all images, we construct

multiple non-parametric classifiers, each of which corre-

sponds to one camera and all of which are learned jointly. In

addition, memory is also used in PCSL [16], but PCSL uses

ID centroids stored in the memory to weight a parametric

classifier for cross-camera soft-labeling, while we use non-

parametric classifiers for intra-camera learning.

2.2. Parametric and Non­parametric Classifiers

Parametric classifiers in this work refer to those imple-

mented by fully connected (FC) layers in a deep neural net-

work (DNN), usually trained with a cross-entropy softmax

classification loss. Such classifiers have been successfully

used in fully supervised person Re-ID [19, 27, 13]. How-

ever, they have the following drawbacks: 1) The training

process pays much attention to learning parameters in the

FC layers that are abandoned during inference for person

Re-ID [27], making the learned feature representation less

discriminative for test data. 2) The classifiers can not be

learned effectively when there are a large number of iden-

tities while each identity only has a small number of in-

stances [24].

Non-parametric classifiers in a DNN are commonly

implemented via a non-parametric variant of the softmax

function. It is first proposed in a fully supervised per-

son search task [24] and extensively adopted in unsuper-

vised [23, 32, 33] and semi-supervised [3, 25] learning.

A common challenge in these tasks is that the number of

classes is huge but each class contains only one or few sam-

ples. A DNN equipped with the non-parametric classifiers

makes its parameters independent to the class number so

that the training process entirely focus on the feature rep-

resentation learning. This property benefits the Re-ID per-

formance since a person is re-identified only based on the

distance of features at the test time. Nevertheless, the non-

parametric model may overfit more easily when training

data is abundant enough [24]. Considering that each cam-

era has a variable number of IDs and most IDs contain only

a few of samples due to the per-camera labeling manner

in ICS, we adopt non-parametric classifiers for our intra-

camera learning. While in inter-camera learning where IDs

contain more samples after association, we choose the para-

metric variant.

3. The Proposed Method

The intra-camera supervision assumes that identity la-

bels are independently annotated within each camera view

and no inter-camera identity association is provided. Sup-

pose there are C cameras in a dataset. We denote the set of

the c-th camera by Dc = {(xi, yi, ci)}
Mc

i=1, in which image

xi is annotated with an identity label yi ∈ {1, · · · , Nc} and

a camera label ci = c ∈ {1, · · · , C}. Mc and Nc are, re-

spectively, the number of total images and IDs in this cam-

era view. N =
∑C

c=1 Nc is the total ID number directly

accumulated over all cameras. It should be noted that the

identities in different cameras are partially overlapped. That

is, a same person may appear in two or more camera views,

but it could be assigned with different IDs due to the per-

camera independent labeling manner. Given this training

set D =
⋃C

c=1Dc, we aim to learn a Re-ID model that can

well discriminate both intra- and inter-camera identities.

To this end, we develop our method from both intra-

and inter-camera learning perspectives. The overall frame-

work is shown in Figure 2. An image is first fed into a

backbone network for feature extraction. The extracted fea-

ture goes through an additional feature embedding layer

and then classified by camera-specific non-parametric clas-

sifiers that are implemented via an external memory bank,

together with an ID classification loss and a quintuplet loss,

for intra-camera learning. The memory bank stores the cen-

troid feature of each ID, which is of moderate discrimina-

tion ability after intra-camera learning. Then, the ID cen-

troids are used for ID association and pseudo labeling across

cameras. In inter-camera learning, the same backbone is

adopted to extract features, along with a classifier parame-

terized by a FC layer to classify images into their pseudo

identity classes.

3.1. Intra­camera Learning

When considering the Re-ID problem within an individ-

ual camera, it can be treated as a fully supervised classi-

fication task. Therefore, it is reasonable to formulate the

intra-camera learning as a fully supervised multi-task clas-

sification problem that learns multiple per-camera ID clas-

sifiers jointly. However, the number of IDs in each camera

varies a lot and most IDs have only several samples, making

parametric classifiers implemented via multi-branch fully-

connected architectures [36, 35] ineffective. Thus, we opt

to use non-parametric variants in this work.
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Figure 2. An overview framework of the proposed method. It consists of a feature extraction backbone, together with an intra-camera

learning branch and an inter-camera learning branch. In intra-camera learning, features are classified via camera-specific non-parametric

classifiers implemented via an external memory bank, optimized by LIntra ID and LIntra Quint. In inter-camera learning, IDs are asso-

ciated across cameras and pseudo labeled, which are further used to update the Re-ID model by optimizing LInter ID and LInter Triplet.

We design a number of non-parametric classifiers, each

of which performs the fully supervised ID classification

within one camera view. All non-parametric classifiers

share a feature extraction backbone and an external memory

bank so that the classifiers are learned jointly. Each classi-

fier, termed as a camera-specific non-parametric classifier,

optimizes an ID classification loss that pulls an image close

to the centroid of its labeled ID while pushes away from the

centroids of all other IDs in the same camera. By consider-

ing the distances between samples and centroids, the ID loss

is good at separating a majority of samples, but may still fail

for hard ones. Regarding to this reason, we also propose a

hybrid mining quintuplet loss to improve the inter-class sep-

arability. The details are introduced in the followings.

3.1.1 Camera-specific Non-parametric Classifiers

As illustrated in Figure 2, our network consists of a feature

extraction backbone, a FC embedding layer, together with

an external memory bank. Based upon this network struc-

ture, we design camera-specific non-parametric classifiers

to perform the classification tasks within each camera view.

Formally, when an image is input, the FC embedding

layer outputs a d-dimensional feature vector (d = 2048 in

our work). The memory bank K ∈ Rd×N stores the up-to-

date features of all accumulated IDs and each column cor-

responds to one ID. During back-propagation, the memory

bank is updated by

K[j]← µK[j] + (1− µ)f(xi), (1)

where K[j] is the j-th column of the memory. f(xi) is a L2

normalized feature extracted from image xi that belongs to

the j-th ID. µ ∈ [0, 1] is an updating rate. After each update,

K[j] is scaled to having unit L2 norm. The updated feature

in each column can be interpreted as the centroid of an iden-

tity class in the feature space, which is a d-dimensional unit

hypersphere.

Given the image xi, together with its annotated intra-

camera identity label yi and camera label ci. The corre-

sponding global ID index j is obtained by j = A + yi,
where A =

∑ci−1
k=1 Nk is the total ID number accumulated

from the first to the ci− 1-th camera view. Then, the proba-

bility of classifying xi into the j-th ID is defined by a non-

parametric softmax function

p(j|xi) =
exp(K[j]T f(xi)/τ)

∑A+Nci

k=A+1 exp(K[k]
T f(xi)/τ)

, (2)

where τ is the temperature controlling the smoothness of

probability distribution.

Note that the non-parametric classifier defined above is

camera-specific, because the sum in the denominator is over

the IDs within the same camera view only. In contrast to ex-

isting works [24, 23, 32, 5] that considers all entries in their

memory bank, our formulation only takes those belonging

to the same camera into account while ignores the IDs in

all other cameras. Thus, each non-parametric classifier is

responsible for the classification task in a specific camera.

To jointly learn all the camera-specific identity classi-

fication tasks together, the objective, termed as the intra-

camera ID loss, is formulated to minimize the negative log-

likelihood of training images in all cameras. That is,

LIntra ID = −
C
∑

c=1





1

|Dc|

∑

(xi,yi,ci)∈Dc

log p(j|xi)



 ,

(3)
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(a) Intra-camera ID loss (b) Quintuplet Loss

ID centroid Image Pull Push

Figure 3. Illustration of intra-camera ID loss and quintuplet loss.

where 1
|Dc|

is a normalization coefficient placed to balance

the variable number of images in different cameras.

3.1.2 A Hybrid Mining Quintuplet Loss

The intra-camera ID loss introduced above in essence pulls

a sample close to its centroid and meanwhile pushes it away

from the centroids of all other IDs within the same camera,

as shown in Figure 3(a). This loss classifies most samples

well, but may be failed for hard examples. To improve the

inter-class separability and intra-class compactness further,

we propose a quintuplet loss as a supplement. Our loss is

constructed based upon the widely used triplet loss [8]. In

addition to the triplet loss that mines hard positive and neg-

ative samples locally within each mini-batch, the quintu-

plet loss also incorporates the hard pairs stored in the global

memory bank. It pulls an anchor close to both its centroid

and the associated hard positive sample, and pushes away

from both the hard negative sample and ID centroid, as il-

lustrated in Figure 3(b).

Mathematically, in each mini-batch, we randomly select

P identities and K instances of each identity, as the com-

mon practice [8]. For each anchor image xa, we design a

hybrid mining scheme that selects two instances and two

identity centroids to form a quintuplet. The positive and

negative instances are sampled to be the hardest ones within

a mini-batch. In addition, we choose the positive ID cen-

troid and the nearest negative ID centroid from the mem-

ory bank. Note that all instances and centroids are selected

from the same camera as the anchor. Then, the intra-camera

quintuplet loss is defined as follows:

LIntra Quint =
P
∑

i=1

K
∑

a=1

[

m1 + max
p=1,...,K

||g(xi
a)− g(xi

p)||

− min
n=1,...,K;j=1,...,P ;j 6=i;cia=cjn

||g(xi
a)− g(xj

n)||
]

+

+
[

m2 + ||f(xi
a)−K[A+ y

i
a])||

− min
j=1,...,N

cia
;j 6=yi

a

||f(xi
a)−K[A+ j]||

]

+
,

(4)

where m1 and m2 are two margins. g(xa), g(xp), and

g(xn) are, respectively, the features of the anchor, positive

and negative instances output from the global average pool-

ing (GAP) layer in the backbone. f(xa) is the anchor’s

feature produced from the FC embedding layer as above-

mentioned. Taking features from different layers is inspired

by the BNNeck structure in [13] and shown to be effective

in our experiments. In addition, A + ya is the global ID

index in K given the intra-camera ID ya, [·]+ = max(0, ·),
and || · || is the Euclidean distance.

3.1.3 The Loss for Intra-camera Learning

In summary, the loss for intra-camera learning is the sum of

the intra-camera ID loss and the quintuplet loss:

LIntra = LIntra ID + LIntra Quint. (5)

3.2. Inter­camera Learning

With the proposed camera-specific non-parametric ID

classification loss and quintuplet loss, our Re-ID model

achieves outstanding discrimination ability within cameras.

Meanwhile, the model also gains certain capability in dis-

criminating IDs across cameras through the joint learning

of all per-camera classification tasks. However, due to the

lack of explicit inter-camera correlations, the model is still

weak at coping with variations in different cameras. To ad-

dress this problem, we perform an inter-camera learning

that consists of a cross-camera ID association step and a

Re-ID model updating step.

3.2.1 Cross-camera ID Association

We formulate the cross-camera ID association task as a

problem of finding connected components in a graph. We

construct the graph based on two observations: 1) The more

similar two IDs are, the more likely they are to be the same

person. 2) Under the intra-camera supervised setting, each

ID has no positive matches within the same camera, and

at most one positive match in any associated camera. Ac-

cording to these observations, we construct an undirected

graph G = 〈V, E〉 for association, where the vertex set V
denotes the IDs accumulated over all cameras and the edge

set E = {e(i, j)} indicates whether the i-th ID and the j-th

ID is a positive pair or not. The edge e(i, j) is defined by

e(i, j) =







1, dist(i, j) < T ∧ c(i) 6= c(j)
∧ i ∈ N1(j, c(i)) ∧ j ∈ N1(i, c(j));

0, otherwise.
(6)

Here, dist(i, j) = ||K[i] − K[j]|| is the Euclidean distance

between two ID centroids stored in the memory bank, and i,
j ∈ {1, · · · , N}. T is a threshold taken by ascendingly sort-

ing the distances of ID pairs and choosing the S-th distance
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value, implying to choose Top S similar pairs. c(i) repre-

sents the camera that the i-th ID belongs to. N1(j, c(i)) is

the 1-nearest neighbor of ID j in camera c(i) and likewise

for N1(i, c(j)). The last two conditions require i and j to

be the reciprocal nearest neighbor of each other.

The constructed graph is sparsely connected. Therefore,

we adopt a union-find algorithm [14] to find all connected

components in the graph. All IDs within each component

are associated and assigned with a same pseudo label. The

pseudo labels are further used to update the Re-ID model.

3.2.2 Re-ID Model Updating

Taking all images and their pseudo labels, we treat the Re-

ID task as a fully supervised problem and adopt the simple

yet effective architecture in BoT [13] to update the Re-ID

model. Specifically, based upon the feature extraction back-

bone learned at our intra-camera learning stage, we append

a FC layer to learn a parametric ID classifier, as shown in

Figure 2. The model is trained with the extensively used

cross-entropy loss with the label smoothing scheme, termed

as an inter-camera ID loss LInter ID in our work, together

with a batch-hard triplet loss LInter Triplet applied to the

features output from the GAP layer. Therefore, the total

loss for inter-camera learning is:

LInter = LInter ID + LInter Triplet. (7)

Note that the above-mentioned inter-camera ID loss is

using a parametric Softmax. Analogous to the intra-camera

learning, we can also implement it via the memory-assisted

non-parametric Softmax. However, the non-parametric ver-

sion is prone to overfit when training data become abundant

after ID association, leading to an inferior performance.

4. Experiments

4.1. Experiment Setting

Datasets and Evaluation Metrics. We evaluate the

proposed method on three large-scale datasets: Market-

1501 [29], DukeMTMC-reID [17, 31], and MSMT17 [21].

The numbers of cameras, IDs, and images contained in each

dataset are reported in Table 1. To simulate the ICS set-

ting, we generate intra-camera identity labels based on the

provided full annotations. Table 1 also lists the accumu-

lated total identity number under intra-camera supervision

(#IDICS), the averaged image-per-person (IP) value, and

the averaged image-per-camera-per-person (ICP) value. For

performance evaluation, we adopt the Cumulative Matching

Characteristic (CMC) and mean Average Precision (mAP),

as the common practice.

Implementation details. We adopt the ImageNet [11]-

pretrained ResNet-50 [7] as our feature extraction back-

bone. Following [13], we remove the last spatial down-

sampling operation in the backbone to increase the size of

Dataset #Cam #ID #Img #IDICS IP ICP

Market-1501 6 751 12,936 3,262 17.23 3.97

DukeMTMC-reID 8 702 16,522 2,196 23.54 7.52

MSMT17 15 1,041 32,621 4,821 31.34 6.77

Table 1. Dataset statistics. #Cam, #ID, #Img, and #IDICS are the num-

ber of cameras, IDs, images, and accumulated IDs under ICS, respectively. IP is the

averaged image-per-person value, ICP is the averaged image-per-camera-per-person

value.

feature maps, and add a batch normalization (BN) layer af-

ter GAP. During both intra- and inter-camera learning, im-

ages are resized to 256 × 128. Random flipping, cropping,

and erasing are performed as data augmentation. The initial

learning rate is 0.00035 and divided by 10 after 40 and 70
epochs. We choose Adam [9] as the optimizer with weight

decay 0.0005. Training batch size is 64, with randomly se-

lected 16 IDs and 4 images for each ID. In intra-camera

learning, images within each mini-batch are sampled ac-

cording to the per-camera labels, and the total number of

epochs is 50. Temperature τ in Equation (2) is set to 0.067
(i.e.1/15). The margins m1 and m2 in Equation (4) are

both empirically set to 0.3. In inter-camera learning, images

in each mini-batch are sampled according to the generated

pseudo ID labels. The total number of epochs is 120. In

graph construction, we select Top S similar pairs as candi-

dates for edge linking, where S is empirically set to be the

same number as #IDICS listed in Table 1. Each experi-

ment runs 5 times and the averaged performance is reported.

4.2. Ablation Study

4.2.1 Effectiveness of The Intra-camera Learning Part

Effectiveness of The Camera-specific Non-parametric

Classifiers. First, we are curious about how well the

camera-specific non-parametric classifiers perform. There-

fore, three model variants are investigated, includingM1: a

multi-branch network structure [36], in which each branch

uses a classifier parameterized by a FC layer and optimized

with a cross-entropy ID loss, for intra-camera learning;

M2: a non-parametric classifier but not camera-specific,

that is, any image can be classified into all accumulated ID

classes;M3: the proposed camera-specific non-parametric

classifiers with the intra-camera ID loss only.

Table 2 presents the comparison results in terms of

mAP(%) and Rank-1(%). From the results we observe that

the camera-specific non-parametric classifiers (M3) out-

perform the camera-agnostic counterpart (M2) by a great

margin, showing that the camera-specific scheme plays

an important role. In addition, the camera-specific non-

parametric classifiers (M3) perform consistently better than

the parametric counterpart (M1) on all datasets. Especially,

it improves the performance by a significant margin (mAP

+14.2% and Rank-1 +9.3%) on Market1501 which has a

smaller ICP value than the other two datasets, as reported in

Table 1 and Fig. 1. It indicates that the non-parametric clas-
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ID #9 ID #11 ID #12 ID #14 

Figure 4. T-SNE visualization of the features learned by M3, M5, and M7, which are respectively shown from left to right in the first

row. Typical example images from IDs #9,#11,#12,#14 are presented in the bottom row.

sifiers are superior to the parametric counterpart especially

when identity classes contain fewer examples.

Models
Market1501 DukeMTMC-ReID MSMT17

Rank-1 mAP Rank-1 mAP Rank-1 mAP

M1 76.8 55.0 75.3 58.9 50.7 25.1

M2 45.5 30.7 33.3 29.1 10.4 6.0

M3 86.1 69.2 78.0 61.9 52.1 25.7

M4 86.8 71.9 79.1 64.0 54.3 28.1

M5 87.5 72.3 79.7 64.7 55.5 28.9

M6 91.5 79.7 80.6 65.5 49.7 23.4

M7 93.1 83.6 83.6 72.0 57.7 31.3

M8 94.1 85.9 87.4 77.2 75.3 52.2

Table 2. Comparison of the different model variants. M1-M5

are intra-camera model variants, in which M1 adopts multi-

branch parametric classifiers, M2 adopts camera-agnostic non-

parametric classifiers, and M3 is our proposed camera-specific

non-parametric classifiers. M4 is M3 with an additional triplet

loss and M5 is M3 with the proposed quintuplet loss. M6 and

M7 are, respectively, adopting a non-parametric and a parametric

inter-camera learning part based upon M5. M8 is a fully super-

vised version.

Effectiveness of The Quintuplet Loss. When validat-

ing the effectiveness of the proposed quintuplet loss, we in-

vestigate two model variants, which are M4: the camera-

specific non-parametric classifiers with the intra-camera ID

loss and a batch-hard triplet loss [8]; andM5: the camera-

specific non-parametric classifiers with the intra-camera ID

loss and the proposed quintuplet loss. From the results

reported in Table 2, we observe that both M4 and M5

gain considerable improvements when compared to M3

that does not consider hard samples. Moreover, the model

using the quintuplet loss (M5) performs consistently better

than the one using the triplet loss (M4), demonstrating that

it is effective to leverage information from both the local

mini-batch and the global memory bank.

Market1501 DukeMTMC-ReID

Precision Recall Precision Recall

96.4% 75.9% 90.1% 74.3%
Table 3. Precision and recall of ID pairs associated by our inter-

camera association strategy.

4.2.2 Effectiveness of The Inter-camera Learning Part

After the comparisons of all intra-camera learning com-

ponents, we validate the effectiveness of the inter-camera

learning part. Once getting pseudo labels, we have two op-

tions for inter-camera learning. They are, M6 that uses a

non-parametric classifier as in intra-camera learning but is

camera-agnostic, and M7 that adopts the parametric clas-

sifier as introduced in Section 3.2.2. The results in Table 2

demonstrate that the modelM7 using the parametric clas-

sifier performs much better than the oneM6 using the non-

parametric variant. The reason we conjecture is that, the

non-parametric version has much less parameters so that it

is easier to get overfitting when most IDs contain abundant

samples after ID association.

In addition, Table 2 also provides the results obtained

by training the inter-camera learning branch in our network

with entire ground-truth labels, which in essence is the fully

supervised counterpart model M8. This model indicates

the upper bound performance that can be achieved by our

Re-ID network architecture.

To investigate how the proposed graph-based ID associ-

ation performs, we provide the precision and recall of the

associated ID pairs using our ID association strategy. As

shown in Table 3, the precision maintains a quite high value

on both Market and Duke, showing the reliability of asso-

ciated pairs for model learning. Besides, the recall is over

74%, indicating that most positive pairs are associated by

our algorithm.
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Methods Reference
Market1501 DukeMTMC-ReID MSMT17

R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP

Fully supervised

OSNet [34] ICCV19 94.8 - - 84.9 88.6 - - 73.5 78.7 - - 52.9

DGNet [30] CVPR19 94.8 - - 86.0 86.6 - - 74.8 77.2 87.4 90.5 52.3

BoT [13] CVPRW19 94.5 - - 85.9 86.4 - - 76.4 - - - -

PCB [19] ECCV18 93.8 - - 81.6 83.3 - - 69.2 68.2 - - 40.4

Unsupervised

ECN [32] CVPR19 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4 30.2 41.5 46.8 10.2

AE [5] Arxiv19 81.6 91.9 94.6 58.0 67.9 79.2 83.6 46.7 32.3 44.4 50.1 11.7

BUC [12] AAAI19 66.2 79.6 84.5 38.3 47.4 62.6 68.4 27.5 - - - -

UGA [22] ICCV19 87.2 - - 70.3 75.0 - - 53.3 49.5 - - 21.7

Intra-camera supervised

MTML [36] ICCVW19 85.3 - 96.2 65.2 71.7 - 86.9 50.7 44.1 - 63.9 18.6

PCSL [16] TCSVT20 87.0 94.8 96.6 69.4 71.7 84.7 88.2 53.5 48.3 62.8 68.6 20.7

ACAN [15] Arxiv19 73.3 87.6 91.8 50.6 67.6 81.2 85.2 45.1 33.0 48.0 54.7 12.6

MATE [35] Arxiv20 88.7 - 97.1 71.1 76.9 - 89.6 56.6 46.0 - 65.3 19.1

Precise-ICS Ours 93.1 97.8 98.6 83.6 83.6 92.6 94.7 72.0 57.7 71.1 76.3 31.3

Table 4. Comparison with state-of-the-art methods.

4.2.3 Visualization of Learned Representations

We utilize t-SNE [20] to visualize the feature representa-

tions learned by our model components. Figure 4 presents

the features of images in 20 IDs, respectively, learned

by the camera-specific non-parametric classifiers (M3),

the entire intra-camera learning model (M5), and the full

model (M7). As Figure 4 shows, the camera-specific non-

parametric classifiers (M3) gain considerable discrimina-

tion ability, but may mix up a number of difficult ID classes

such as #9 and #11, #8 and #13, #1 and #5, as well

as #12 and #14. With the additional quintuplet loss, the

model M5 better separates these hard ID pairs that have

very similar appearances, as sample images of #9 and #11
shown in the bottom row of Figure 4. The full modelM7,

which incorporates both intra- and inter-camera learning,

improves the intra-class compactness and inter-class sepa-

rability further. The full model may still mix up a small

number of IDs, but a part of the reason is because of the

labeling noise, as the presented examples of #12 and #14.

4.3. Comparison with the State­of­the­Arts

In this section, we compare our approach (named as

Precise-ICS) with all existing ICS person Re-ID meth-

ods, including MTML [36], PCSL [16], ACAN [15], and

MATE [35]. From the results we observe that the pro-

posed approach outperforms the other ICS methods by a

great margin. More specifically, the mAP is 12.5%, 15.4%,

and 10.6% higher and the Rank-1 accuracy is 4.4%, 6.7%,

and 9.4% higher than the best performances obtained by

other methods on Market1501, DukeMTMC-ReID, and

MSMT17 respectively. Even the model using only the intra-

camera learning part (Precise-ICS: M5 shown in Table 2)

performs better than existing ICS methods, indicating that

the proposed components in our intra-camera learning can

exploit per-camera labels much more thoroughly.

In addition, we also compare our work with state-of-

the-art methods under different supervision settings, includ-

ing four fully supervised methods and four unsupervised

methods. As expected, our approach achieves much higher

performance than the unsupervised methods no matter if

they transfer knowledge from extra datasets or not. Mean-

while, our approach is better than an effective supervised

method PCB [19], and is even comparable to recent super-

vised methods (DGNet [30], BoT [13]) on Market1501 and

DukeMTMC-ReID. The results demonstrate the potential

for the ICS Re-ID task to achieve high Re-ID performance

while dramatically reduce labeling cost, making this super-

vision setting more scalable to real-world applications.

5. Conclusion

In this paper, we have proposed a new approach to ad-

dress the person Re-ID problem under intra-camera super-

vision. The proposed network consists of a shared fea-

ture extraction backbone, together with two branches for

intra- and inter-camera learning respectively. According to

the per-camera labeling nature of ICS, we propose jointly

learned camera-specific non-parametric classifiers and a hy-

brid mining quintuplet loss for intra-camera learning. The

designed components exploit per-camera labels thoroughly

so that our intra-camera learning part only performs bet-

ter than most existing ICS methods. Benefited from the

discrimination ability gained in this part, the inter-camera

learning module can boost the Re-ID performance further

by mining ID relationship across cameras. Our full model

outperforms all ICS methods by a large margin, greatly re-

ducing the gap to the fully supervised counterparts.
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